
yield a t  the limit of applicability of the linear approxi- 
mation an additional conductivity Au= 800 52-' cm" , 
which amounts to 4% of the conductivity on in the nor- 
mal state. Using the result of Maki and Takayama; 
that below Hc, the addition to the conductivity differs 
by a factor ln[L/~(T)l,  we obtain a t  1 - h = 0.04 the 
value Au= 0. 4un, i. e . ,  the fluctuations should cause 
pf to decrease to 0. 7pn, in agreement ~ i t h  the experi- 
mental data. 

It i s  useful to estimate the range of fields below H, 
in which fluctuations can occur. It i s  shown in Ref. 13 
that the temperature range of the fluctuation region 
(the region where the fluctuations a r e  large enough for 
their interaction to be taken into account) i s  

[h,, = H,(t)/Hc2(0) and AC i s  the discontinuity of the heat 
capacity in the transition]. Substituting the parameters 
of V,Ge and using for the estimate the heat-capacity 
discontinuity of Ti,Mol, (Ref. 14), AC = 3 m ~ / c m ~  . K, 
we obtain AT/Tc(H) = 5%, o r  in terms of the magnetic 
field 

which i s  also close to the experimentally observed width 
of the pf(h) anomaly. 

Estimates of the additional conductivity and of the 
width of the fluctuation region thus allow u s  to attribute 

the anomalies of pf(h) a s  h - 1 to fluctuations. 

In conclusion, the authors thank A. I. Larkin and 
Yu.N. Ovchinnikov for a discussion of the results and 
to I.D. Zhukovskaya for help with the calculations. 
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A new approximation is obtained for the local-field correction G(q, o) to the permittivity ~ ( q ,  o) of a 
homogeneous interacting electron gas. The starting point is the exact equation derived by one of us 
[Gorobchenko, Sov. Phys. JETP 50, 603 (1979)] as well as an estimate of the statistical expectation values of 
the second-quantization operators, obtained by the technique of the coupled equations of motion for the 
equal-time Green's functions. The result obtained for G(q, o) is compared with other known approximations. 
The results of calculation of the static correction G(q, 0) for the local field and of the static structure factor 
S(q) are presented. 

PACS numbers: 05.30.Fk 

1. INTRODUCTION model system a r e  expressed in terms of its permittivity 
E (4, w ) ,  which is customarily expressed in the form 

One of the central problems of the theory of simple 
metals i s  allowance for the long-range Coulomb inter - 
action between the conduction electrons. This problem ~ ( q , o ) = l +  

Q.(n, w) 

I-G(q, w)Q.(cl,o) ' 
(1) 

is  treated a s  a rule within the framework of the inter- 
acting-electron-gas model against the background of a 
uniformly distributed positive charge. ' It i s  known that where Q,(q, o) = - ~ ( ~ ) x , ( q ,  a), v(q) = 4re2/q2 0 is the 
practically all the physical characteristics of such a Fourier component of the Coulomb potential, 
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and G(q, w) i s  the so-called correction for the local 
field. In Eq. (2), (CtO+ck0) a r e  the 
mean occupation numbers of the single-electron states, 
and c,+ and c, a re  the electron creation and annihila- 
tion operators. 

The main difficulty of the permittivity theory lies in 
the determination of the local-field correction that takes 
into account the local distortion of the density induced 
near the electron on account of exchange and correla- 
tion effects. In view of the long-range character of the 
Coulomb forces, the determination of G(q, w) with guar - 
anteed accuracy i s  an exceedingly complicated prob- 
lem. And while this problem has been the subject of 
intensive theoretical research in recent years, it has 
found no satisfactory solution to this day (see the re- 
cent review?. 

A new approach to the  determination of the correc- 
tion for the local field was developed in Ref. 3, where 
the following exact formula was obtained for G(q, w): 

The angle brackets denote here statistical averaging, 
N is the total number of the electrons, S(q) i s  the static 
structure factor, ii(q) i s  the F-ier component of the 
electron-density operator, an> B,,(q) is an operttor con- 
nected with the commutator [V,C&~~C,,], where V is the 
operator of the potential energy of the system. Here 

The quantity AP(q, w )  i s  defined in Ref. 3. It is  a very 
small correction, and within the framework of the ap- 
proximation used in the present paper it can be neglect- 
ed. 

In accordance with (31, the problem reduces to find- 
ing for a system of interacting electrons expectaiion 
values of the form (CLc,), G(q)ii+(q)), and G(q)B,(q)). 
A very simple approximation was used in Ref. 3 for 
these quantities, whereby they were calculated a s  in 
a system of noninteracting electrons of the same den- 
sity. The calculation has shown that even so crude an 
approximation leads to a perfectly satisfactory result 
for the static correction G(q, 0), for the local field when 
compared with other known approximations of this 
quantity. 

The purpose of the present paper i s  to develop further 
the method proposed in Ref. 3. In Sec. 2 we estimate 
average characteristics of the type G(q)k) by the tech- 
nique of coupled equations of motion of the equal-time 
Green's  function^.^ These characteristics can be ex- 
pressed in term of the dielectric constant of the sys- 
tem, and this leads, when account is  taken of (1) and 
(3), to the need for a self-consistent calculation of the 

functions G(q, w)  and c (q, w ) .  A new formula for the 
correction for the local field i s  derived in Sec. 3, where 
a detailed comparison i s  made also of our approxima- 
tion with the previously proposed approximations of 
Toigo and Woo~lruff,~ Rajagopal and Jain,%nd others,?-' 
a s  well a s  with the simplest approximation of Ref. 3. 
This formula, which initially contains a septuple in- 
tegral, is recast in Sec. 4 in a form suitable for com- 
puter calculations. The calculation results a r e  dis- 
cussed in Sec . 5. 

2. CORRELATION FUNCTIONS CONTAINING THE 
PARTICLE NUMBER DENSITY 

We shall show how, knowing the dielectric function 
of the system, we can estimate statistical mean values 
of the form %(q,t)B), where i (q , t )  i s  the Fourier com- 
ponent of the particle-number density operator in the 
Heisenberg representation and & i s  a certain product 
of second-quantization operators. We use for this pur- 
pose the method of equal-time Green's functions4 within 
the framework of which_ the_ calculation of correlation 
functions of the form @(t )B)  reduces to calculation of 
the Fourier transforms, with respect to time, of a re-  
tarded and advanced Green function 

( (A ( t )  1 B>(')=-ih-'B(t) < [ A  ( t ) ,  B ]  )e-", (7a) 

Here B(t) is  the unit step functions, the square brackets 
denote a commutator, and the time constant 6 - +0. 

Taking into account the definition (4) of the operator 
i(q),  we introduce into consideration, besides the 
Green's function (@(q, t) 1 ~ ) ) ~ '  also i ts  partial compon- 
ent ( ( ~ ~ ~ ( t ) c ,  +,(t) I B))'". I'he latter satisfies the equa- 
tion of motion, which takes in the Fvarier representa- 
tion the form 

The right-hand side of this equation contains a new 
Green's function of higher rank, stemming from the 
commutator of the operator c:oc,,ao with the potential- 
energy operator of the system. In first-order approxi- 
mation this Green's function can be estimated by re -  
taining in the sum over p only the "coherent" contribu- 
tion with p=q ,  and then carrying out the decoupling 
by pairing the creation and annihilation operators of 
electrons having equal momenta. As a result of this 
simplification, the second term in the right-hand side 
of (8) i s  replaced by the expression 

after which this equation can be easily solved for the 
Green's function (G(q) IB)?' of interest to us ,  for which 
we obtain the following approximate formula: 

Here 

is the permittivity in the random-phase approxima- 
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tion. We note that the explicit form of the operator B 
is  no longer used anywhere af ter  the derivation of (9). 

We consider now the particular case when B = G + ( ~ ) .  
It i s  known that the quantity 

i s  the linear response of a system of interacting elec- 
trons to the introduction of a test charge, and is con- 
nected with the permittivity by the relation 

~ - ' (9 ,6 ) )=I f~(q)~(q .  0).  (12) 

Recognizing that 

we obtain for ~ ( q ,  w) in accord with (9) and (2) 

Yet the exact formula for the response function is known 
to be (see, e .g . ,  Ref. 2) 

x(q, 0 )  = x o ( ~ ,  o)ls(q, o),  (15) 

where 
s(q,o)=l-~.(q) [1-G(q,  o)Ixo(q, o) 

is  the so-called effective permittivity, which deter- 
mines the screened interaction of an electron with an 
external charge, with account taken of the local dis- 
tortion of the average induced density. Comparison of 
(14) and (15) suggests immediately a "prescription" for 
converting the approximat_ion (9) into a perfectly exact 
result for the case when B = i t ( q ) .  It suffices to this 
end to substitute c,,(q,u) by & , w )  in (9). 

It i s  clear from general considerations that the in- 
dicated change should improve the approximation (9) 
also in the case of an arbitrary operator B, therefore 
to estimate the correlation function (ii(q,t)B)_ we use 
just this improved approximation for (Gi(q) 1~)) : ' .  

The calculation of a correlation function of the form 
G(~)B) reduces in the method of the equal-time Green's 
functions to evaluation of a Fourier integral: 

- - " d o  a e " do e-'"' 
(A(t)B) = 5 -e-'.' ( A  ( t ) ~ ) .  = j 2n- ([A ( t ) , h ~ ) ~  (17) 

2n 

where the known relation 
( B A  ( t )  ),=e-"""(A(t) 8>,. 

is used in the course of the transformation. Taking 
into account the definition (7) of the Green's functions, 
we can also represent (17) in the form 

(d(t)b = i h f  $- [ ( ~ I B ) ) : )  - u ; I~ ) ) / ) I .  
n l-e- 

(18) 
- - 

In this case the Fourier transform of the advanc_ed 
Green's function (G 1~)):' i s  obtained from (@ I B ) ) ~ '  
by reversing the sign of the time constant 6. 

In accordance with (18) we arr ive  a t  the following es- 
timate for the correlation function of interest to us: 

Setting the time argument t equal to zero, we can use 
this formula to calculate also ordinary statistical mean 
values of the form G ( q ) ~ ) .  

In particular, starting from (191, we obtain directly 
for the static structure factor (5), taking (2) and (12)- 
(14) into account, 

which i s  a well known exact result.' 

3. ANALYSIS OF EQUATION FOR THE CORRECTION 
FOR THE LOCAL FIELD 

We shall use  Eq. (19) to estimate the mean value of 
the operator ji(q)B,(q), which enters in (3) and contains 
products of six electron creation and annihilation opera- 
tors. To this end it i s  necessary to turn to know the 
mean value of the commutator 

The latter reduces to a product of only four second- 
quantization operators, and thus to simpler correlations 
between the particles. In first-order approximation 
these correlations can be taken into account within the 
framework of the ordinary Hartree-Fock decoupling 
scheme. In this approximation, the mean value of the 
commutator (21) reduces to 

To permit a rea l  calculation of the correction for the 
local field, we introduce a t  this stage the following two 
simplifications. First ,  we use  for the mean value of 
the commutator (2 1) the approximate Hartree-Fock ex- 
pression (22); second, we neglect both in the expres- 
sion and in Eq. (2) for the function x0(q, w) ,  the differ- 
ence between the exact occupation numbers n, of the 
single-electron states and the corresponding occupa- 
tion numbers f, in the free-electron system. By the 
same token we take x0(q, w) to mean the usual Lindhard 
formula. 

When (22) and (19) a r e  taken into account [it  i s  neces- 
sary  to set  t = O  in (19) and go to the limit as T- 01 
expression (3) for the correction for the local field i s  
transformed into 

Here = (c,+, - & , ) / R ,  and F(q, 8) is  defined by the 
expression 

where Z(q, w) is  the effective permittivity, which in ac- 
cord with (16) i s  itself dependent on the sought correc- 
tion for the local field. A self-consistent calculation is  
needed also for the static structure factor S(q )  in (23); 
this factor, a s  seen from (20) is  given by 
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h 
- 

ti " ~ ~ ( q ~ o )  (25) 
~ ( q ) =  - - ~ m  J d o  e-l(q, a ) =  - -1m J do------ 

nu(q)N nN t h o )  ' 

It i s  of interest to track the connection between Eq. 
(23) and the simplest approximation for the local field, 
which follows from the exact formula (3) and i s  con- 
sidered in Ref. 5. This approximation i s  obtained from 
(23) it we put in (24) and (25) Z(q, w) = 1 or ,  equivalently 
[by virtue of (16)], if we use as the "bare" correction 
for the local field its Hartree-Fock value G,(q, w) = 1. 
Then S(q) becomes the static structure factor So(q) of a 
non-interacting electron gas, and F(q, 9) reduces to the 
unit step function O(S2). Taking into consideration the 
obvious relation 

we obtain 

Expression (26) differs from Eq. (22) of Ref. 3 only in 
notation. 

It i s  useful to compare Eq. (23) also with other known 
approximate expressions for the dynamic correction for 
the local field. In this connection, we call attention 
first to the definite similarity of the structures of the 
integrals in (24) and (25) and note that in these integrals 
the reciprocal effective permittivity c"(q, w )  serves a s  
a sort  of weighting factor for the frequency "averaging" 
of the functions (w - a,, + 26)-' and x,(q, w). Without this 
averaging, Eq. (23) would take the form 

1  
x(fk-fk+q) (fp-fP+q) +. 

rq zS' 
(27) 

which coincides exactly with the approximate expres- 
sion first obtained by Rajagopal and Jain6 for the cor- 
rection for the local field, and later by a number of 
other workers using various 

The numerical calculation, by Brosens et a1. ,I0 of the 
function PRJ(q, w) showed this function to have pathologi- 
cal singularities a t  the frequencies 

These singularities were carefully investigated by Holas 
et a1. ,8 who were able to prove analytically the exis- 
tence of logarithmic divergences of RepRJ (q, w) and of 
jumplike discontinuities of ImpR,(¶, w) at the charac- 
teristic frequencies (28). The character of the diver- 
gence of RepRJ (q, w) a s  w - w, was established in ex- 
plicit form in Ref. 11, In the opinion of the authors of 
Refs. 9 and 11 the nature of the indicated singularities 
of the correction (27) for the local field i s  due to the 
combined effect of the abrupt cutoff of the integration 
region by Fermi distribution functions and of the pre- 
sence, in the integrand, of a second-order pole at w 
= ak9-i6.  

The approximation (23) obtained by us differs from 
P,, (q, w)  in that it contains in place of the complex and 
frequency-dependent functions (w -Okq +if))-' andx0(q, w )  

the real and frequency -independent quantities F (q, 
aka)  and S(q), in which the frequency dependence i s  
averaged out with a weighting function ?-I(¶, w). This 
one circumstance alone, which leads to the vanishing 
of the second-order poles in (231, eliminates com- 
pletely the unphysical singularities of PR,(q, o) even 
when distribution functions of the Fermi type a r e  used 
(see Sec. 5). We note also that the appearance of the 
static structure factor S(q) in the denominator of the 
right-hand side of (23) is  not connected with any ap- 
proximation whatever, and i s  stipulated by the exact 
formula (3), while the quantity 

(ft-f .+.)  (fs.-f.+q)F(q. Qk.1 

does not depend on the frequency by definition, being 
an approximate value of the average of frequency-in- 
dependent operator. Therefore, despite the formal 
similarity, the results (23) and (27) a r e  qualitatively 
different . 

We compare, finally, Eq. (23) with the expression for 
the correction obtained for the local field in the ap- 
proximation of Toigo and WoodruffS and which trans- 
forms identically into 

where 

The difference between (29) and (23) reduces to a re-  
placement of the ratio F(q, a,,)/S(q) by the function (30), 
which is real  and does not depend on frequency. In 
this sense the approximation of Toigo and Woodruff i s  
closer to our result than the approximation of Rajago- 
pal and Jain. 

The analysis above shows that Eq. (23) i s  quite uni- 
versal and covers practically all those known free- 
field-correction approximations that do not require in- 
troduction of a priori assumptions in the theory (as i s  
done, for example by Singwi et a1 ."I3). An important 
feature of the structure of this formula is that is  gives 
a nonzero result for P(q, w) only to the extent that 
F(q, 51,) depends on k. Were there no such depen- 
dence, the expression under the summation sign in 
(23) would reverse sign upon permutation of k and p 
and the sum would be zero. Therefore the actual form 
of the dependence of F(q, aka) on the argument a,, i s  
of primary importance. 

We note that the function F(q, a )  defined by (24) has 
the property 

~ ( q ,  Q ) + F ( ~ .  -Q) =I. (31) 

Since c*(q, W )  = c(q, - w )  in a homogeneous electron gas, 
we can also rewrite (31) in the form 

I  - d o  
- - ~ r n J  n 

e - (q ,  o )  (a-Q+iij) = I, -- 
from which it follows that 

1 - do' 
~ ~ g - ' ( q , o ) = l - f l J  = I m e - ' ( q . o ' ) .  

- m  
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Thus, the property (31) i s  equivalent to the Kramers- 
Kronig relation (32b). The validity of the "sum rule" 
(32a) can be easily verified directly by using the follow- 
ing exact relations: 

il - 
n k ~ - n k + ~ ~  = ( [ck,+ ~ k + ~ ~ ,  n^+ ( q )  I ) = - - j d o  In, zko(q, a ) ,  

- m 

where x,,(q, w) i s  a partial contribution to the response 
function (11) and is  given by 

The sum rule (31) can be effectively used to calculate 
the correction for the local field by formula (23). The 
actual value of the constant in the right-hand side of 
(31) plays no role whatever, so that this sum rule re-  
flects in practice only the antisymmetry property of the 
function Aq, 52) relative to the reversal  of the sign of 
9. In this sense, the same property i s  possessed also 
by the function F,,(q, 52) [see Eq. (30)]. The function 
F(q, a )  experiences a t  the point 52 = 0 a discontinuity 
whose size depends on the value of q and on the form of 
the function c(q, w). The largest discontinuity takes 
place a t  = l .  In this case F(q, 52)=0(52). The func- 
tion F,,(q, w )  has no discontinuity a t  52 =O.  As for the 
function F(q, a) ,  which is  obtained by a self-consistent 
solution of Eq. (23), its discontinuity a t  52 = 0 is in- 
termediate between these two extremal values. 

4. DERIVATION OF THE CALCULATION FORMULAS 

We show now how the initial formula (23) for P(q, w), 
which contains a septuple integral, can be recast  in a 
form that lends itself to an effective self-consistent 
calculation. 

We first replace k in the terms containing f, +, by 
-k-q, and replace p in the terms with f,,, by -p-q. 
As a result we get 

where 

and we have left out for brevity the argument q on the 
function F(q, 52). 

We  change next to dimensionless variables, in which 
the wave vectors k, p, and q a r e  measured in units of 
k, and the frequencies o and 52 in units of E, /E .  The 
integrals with respect to k and p will be calculated in a 
cylindrical coordinate system with z axis along the vec- 
tor (-q). The coordinates k and p will be designated 

k = ( z ,  t'", c p ) ,  p=(zf ,  t'", cp ' ) .  (35) 

In this case we have 
Q.q=qZ-2qz==B, QPq=q2-2qzf=B', (36) 

I k-p I '=t+tl-2 (tt') '" cos (9-9') +s ,  ( z ,  z') , 
(37) 

I k+p+q12=t+t'+2(tt') '" cos (cp - rp ' )  +sz(z,  z') , 

s ,  ( z ,  2') = (2-z')'= (8 -Q' )  2 /4q2 ,  

s,(z,  2 ' )  = (z+zl-q)'= (8+n')2/4q' ,  

The rule for changing from summation to integration in 
the coordinate system (35) i s  given by 

Taking (36)-(39) into account and changing in the in- 
tegrals with respect to z and z' to new variables and 
a', defined by the relations in (36), we obtain 

3ar 1 "' 
P(~,O)=-'- j d B  jdQ1{~,(8,Q')[@(8',Q)F(Q) 

1611 q Z S ( q )  -U, 

+ @(-Q' ,  - B ) F ( - Q )  I -  Jz(B,  B') [ Q ( - Q ' ,  Q ) F ( Q ) +  Q(Q' ,  -Q)F( -Q)  I ) ,  

(40) 
where w,,, = 2 q ~  q 2 ,  and J,,,(O, a ' )  stands for the fol- 
lowing triple integral: 

Here, T, T' and si a r e  functions of 52 and Q'. With 
this 

and the relation s , (Q ,  52') is  determined by Eqs. (38). 
As for the numerical coefficient 3arJ16r in (40), i ts  
origin can be easily understood if it is recognized that 

N v ( k F ) / ~ , = 8 ~ . f 3 n .  

The functions Ji(52, a ' ) ,  a s  can be seen directly from 
definition (411, a r e  invariant to permutation of Q and 
a'. A detailed calculation of these function is  con- 
tained in Ref. 14, and we confine ourselves only to the 
result: 

J ( T ,  T', s )  =T ln 1x1 +T'ln I Y I +' f , (W-B-s ) ,  (43) 

where 

We note that the real  and imaginary parts of the func- 
tion P(q,  w) a r e  connected by the dispersion relation 

whose validity follows directly from the form of the 
initial formula (23) for the correction for the local 
field. It therefore suffices to calculate from (40) only 
ImP(q, w), and ReP(q, w) can then be found by using 
(44). This calculation procedure is  convenient because 
for the imaginary part of the correction for the local 
field formula (40) admits a further simplification. By 
virtue of (34) we have 

I m @ ( Q 1 ,  Q ) = n [ S ( o - Q ) - 6 ( o - Q ' ) ]  

and after simple transformations we obtain ultimately 

We have introduced here the function 
f ( o ,  o f ) = [ F ( o ' ) - F ( ~ ) l g ( o ,  o r ) + [ F ( - u p ) - F ( o )  l g ( - o ,  o f ) ,  (46) 

where we have introduced the functions where g(w , w ') is  defined a s  follows 
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The problem of finding the correction for the local 
field reduces thus the calculation of the single integrals 
(24), (25), (44), and (45). We note that the function 
(46) has logarithmic singularities of the derivative at 
the points w' = *w. This circumstance must be taken 
into account when evaluating the integral (45), but does 
not lead to substantial difficulties. In addition, the 
function F(o ') has a discontinuity a t  the point w ' = 0, 
and this can be easily taken into account by dividing a t  
q < 2 the region of integration in (45) into two parts,  
(-o,, 0) and (0, w,). Finally, we note that in the num- 
erical calculation of the real  part of the correction for 
the local field it i s  convenient to use the following 
representation of the dispersion relation (44): 

where w,= max(0, -w,), while P,(w) and P,(w) a r e  short- 
handed for the real  and imaginary parts of the function 
P(q, w). 

5. RESULTS FOR THE CORRECTION FOR THE LOCAL 
FIELD AND FOR THE STATIC STRUCTURE FACTOR 

Of greatest interest for the theory of simple metals 
i s  the static permittivity c(q, O), which can be easily 
found from Eq. (1) if one knows the static correction 
for the local field, G(q, 0) = -P(q, 0)/Q,(q, 0). How- 
ever,  a s  seen from Eqs. (23)-(251, for a self-consis- 
tent calculation within the framework of the approxima- 
tion considered in the present paper we must know the 
frequency dependence of the permittivity. The actual 
calculation was performed a s  follows. During the in- 
itial stage we used in the right-hand sides of (24) and 
(25) not &, w) but i ts  value in the random-phase ap- 
proximation [see Eq. (lo)]. Next, Eqs. (45) and (47) 
were used to calculate the frequency dependence of 
P (q ,o ) ,  and this yielded a more accurate &,o). The 
latter was introduced into (24) and (25), and the pro- 

FIG. 1. Real and imaginary parts of the correction for the 
local field as functions of the frequency at q = 1 and r, = 1, 
represented respectively by the solid and dashed curves [the 
frequency is in units of &*/h and the wave number in units of 
kF, in which case the characteristic frequencies W ,  are, in 
accord with (28), equal to 1 and 31. 

TABLE I. Static correction for the local field at r, -- 3. 

cedure was repeated until a self-consistent solution 
was obtained. The convergence of this iteration pro- 
cedure turned out to be very rapid-two o r  three itera- 
tions resulted usually in satisfactory accuracy. 

An idea of the frequency dependence of the function 
G(q,o) can be gained from Fig. 1. The curves of this 
figure agree, in their general character, with the 
analogous curves calculated in the approximation of 
Toigo and Woodruff,15 although there is of course no 
quantitative agreement. We note that neither ReG(q, w )  
nor ImG(q, w) shows even an indication of a divergence 
a t  the frequencies (28), in contrast to the situation in the 
approximation of Rajogapal and Jain (see the correspond- 
ing calculations in Refs. 9 and 11). Moreover, the 
curves calculated by us behave even far from w, quite 
differently than the corresponding curves of Refs. 9 and 
11. 

As seen from Eqs. (23)-(25), the correction for the 
local field i s  in our approximation a function of r,. The 
actual calculations show, however, that in the static 
limit o=O the function G(q,O) depends on r, very little, 
and therefore we list In Table I complete data ior  G ( q ,  0) 
at only one value r,= 3. It is seen from this table that 
a t  small wave numbers we have G(q, 0) =q2/4 .  At large 
q ,  on the other hand, the function G(q, 0) behaves exact- 
ly a s  the static correction for the local field in the 
simplest approximation of Ref. 3 [see formula (26)]. 
The last circumstance i s  easy to understand if it i s  
recalled that the approximation (26) is  obtained from 
(23)-(25) by putting in them ;(q,O)= 1. This substitut- 
ion i s  fully justified in the limit a s  q - 00. The depen- 
dence of G(q,O) on r, manifests itself most noticeably 
in the wave-number region 1.1 S q S 2.1. The values 
of the function G(q,O) in this region of q ,  for different 
values of r, in the metallic-density range, a r e  listed in 
Table 11. 

We note that the procedure for the self-consistent 

TABLE If. Dependence of the function G(q.0) on the parameter 
Y * .  
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while as q - - they are approximated by the formula 
S(q) -. l-4ar8/3nq'. 

FIG. 2 .  Behavior of the static structure factor of an interact- 
ing electron gas in the metallic-density range. 

solution of the sys tem of Eqs.  (23)-(25) at each  i t e ra -  
tion s tage includes as a requi red  element  the  recalcula-  
tion of the s tat ic  s t ruc ture  factor  S(q). T h i s  quantity 
i s ,  as i s  well known, a l s o  of independent in te res t ,  s ince  
many physical charac te r i s t i cs  of a sys tem of interact- 
ing electrons are expressed  by functionals of S(q). We 
show therefore in Fig. 2 t h e  r e s u l t s  of the  calculation 
of S(q) for  a number of values of the parameter  r,. In 
the limit of s m a l l  q ,  the  curves  in Fig. 2 tend to a n  
asymptotically c o r r e c t  relat ion ( a s  q - 0) 

S ( q )  +q'/2a2(3r.)  ", 

We note that in  the approximation of Rajagopal and 
Ja in  the  s ta t i c  s t r u c t u r e  factor  has  also the  s a m e  
asymptotic behavior ( s e e  Ref. 9 for  the  proof). 
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The anisotropy of absorption of longitudinal and transverse acoustic phonons in the 3X 10" band in a 
CaF,:Eu2+ crystal is investigated experimentally and theoretically in the case of resonant interaction of the 
phonons with the electronic state 4f65d(T8 +) of the Eu2+ ion, split into a doublet by uniaxial compression of 
the crystal. The anisotropy agrees with the selection rules for transitions induced by dynamic deformation of a 
lattice in the field of a hypersound wave. 

PACS numbers: 63.20.Mt 

Experiments  have been recently performed1-3 on the 
behavior of nonequilibrium monochromatic t e raher tz  
acoustic phonons in uniaxially s t r e s s e d  CaF, and SrF, 
c rys ta l s  activated with EuZ* ions. The  Eu2+ ions are 
situated in  the la t t ices  of these c rys ta l s  in a cubic field 
of high symmetry  On and s o m e  of the Eu2+ levels  have 
orbital degeneracy. Use is made in Refs. 1-3 of the 
fact4 that uniaxial deformation spl i ts  the orbi tal ly  de- 
generate radiative level I?; of the excited 4f 65d config- 
uration of EuZf into two, and the magnitude of the doub- 
let splitting can vary  smoothly in a range of severa l  

dozen rec iproca l   centimeter^."^ The  exis tence of 
resonant single-phonon transi t ions between the compo- 
nents  of the deformation doublet has  made it possible 
to  effect both f luorescent  detectionlS2 of nonequilibrium 
monochromatic phonons with frequencies  up to 2.4 THz 
[piezospectroscopic phonon detector  (PPD)], as well as 
the i r  generation in nonradiative relaxation of the 
optically excited ions .Is3 

The  ballistic charac te r  of the propagation of t rans -  
v e r s e  phonons with v ~ 0 . 5  THz was demonstrated in 
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