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i t  is shown that the problem of the behavior of a long polymer molecule in a solution of other linear polymers 
can be reduced to the problem of the correlation functions of an anisotropic magnet. Expressions are obtained 
for the correlation function of the ends of a probe molecule. The condition for globule formation, the mean 
size of the polymer coil, etc., are also determined. The case when the polymers are adsorbed on a surface (two- 
dimensional polymer solution) is considered separately. It is shown that in this case the familiar results 
obtained for twodimensional magnets can be employed. Other problems are mentioned in which the analogy 
between a polymer solution and a magnet can be applied. 

PACS numbers: 36.20. - r, 82.35. + t 

1. INTRODUCTION will describe the polymer solution, and using the other 

The analogy between a solution of linear polymers and 
a magnet with zero number of components (first estab- 
lished by des ~ l o i z e a u x ) ~  makes it possible to relate the 
average parameters for the given solution to the thermo- 
dynamic averages of the zero- component Heisenberg 
model. Des Cloizeaux used this analogy to determine 
the scaling relationships between the parameters char- 
acterizing a strongly fluctuating polymer solution, and 
connected them with the already familiar scaling rela- 
tionships for a magnet near the phase-transition point, 
The state of the magnet is unambiguously given by two 
parameters-the temperature and the magnetic field- 
in terms of which we may express all  the remaining 
correlation radii of the longitudinal and transverse fluc- 
tuations, the f ree  energy, etc, In exactly the same way, 
given any two parameters which characterize the poly- 
mer solution-say, the monomer density and the aver- 
age degree of polymerization-we may determine the 
correlation radius in solution, the average separation 
between ends of the polymer, and the entropy. Here, 
within the framework of the "polymer solution-magnet" 
analogy, we cannot obtain in principle more detailed 
characteristics of the solution-the equilibrium polymer 
length distribution, the average separation between ends 
of a polymer of a given length-let alone obtain an ex- 
pression for the correlation function of a polymer placed 
into the given solution and having other chemical and 
physical properties. 

In this work, we present a method which allows us to 
obtain all these detailed characteristics: the probe 
molecule method. We consider a magnet composed of 
two interacting subsystems; using one subsystem we 

subsystem we will describe an isolated polymer mole- 
cule in this solution. We find that the problem i s  re- 
duced to calculation of the correlation functions of an 
anisotropic magnet with double the number of compo- 
nents-a well-known simple problem.2 The polymer- 
magnet analogy is used in our work not only in the re- 
gion of strongly fluctuating solutions of linear polymers, 
but also to describe concentrated solutions (melts) and 
solutions containing cyclic polymers. The results ob- 
tained for melts agree with the familiar results3 obtained 
by ordinary perturbation theory methods. The case of a 
two-dimensional solution of polymers (polymers which 
a r e  adsorbed on a surface) is an exception for which per- 
turbation theory i s  not applicable. In this case, the 
polymer-magnet analogy makes it possible to use the 
results obtained by Polyakov for two-dimensional mag- 
nets with an arbitrary number of components to describe 
the polymer solution. 

2. HEISENBERG MODEL IN  THE LIMITING CASE 
n + 0. CORRESPONDENCE BETWEEN A MAGNET 
AND A POLYMER 

Let us consider a lattice1' with classical n-component 
spins of length n i l2  at the lattice points. We write the 
spin interaction Hamiltonian a s  

Here J, = J(x i  - is the interaction parameter between 
spins located at the lattice points i and k ;  the index o! 
takes on values from 1 to n; h i s  the external magnetic 
field, directed along the 1 axis. The summation is over 
all the lattice points. 
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The partition function of the system is 

where ( . . .), means geometric averaging over all the 
spin orientations 

. ).=I . . . n  d a i / J n  dn.. 

where ni i s  the solid angle in n-dimensional spin space. 

In order to change from the variables S,, on which 
the condition ZaSi  = n  i s  imposed, to the usual field 
variables, it i s  convenient to use the Stratonovich- 
Hubbard identity: 

n N / I  

= (dst I,.) " I 2  (-F) I II DC ( x . )  orp [ - f c 9. ( x . )  & (x.)  lii 
i,= r ,k .o  

where J,-' i s  the matrix which is  the inverse of Jik. 

Substituting Eq. (2.3) into Eq. (2.2), we may average 
over S,(xi). For this, we use the relation 

(2.4) 
Here I' i s  a gamma function and J,- 2,,2 i s  a Bessel 
function of order (n - 2)/2. In the limit n - 0, the right- 
hand side of Eq. (2.4) becomes 1 + k2/2 + O(n). Using 
this relation, which allows us to neglect terms which 
vanish as  n - 0, we obtain the following expression for 
the partition function: 

Writing Eq. (2.5) a s  

Z= j e-fI'VJD$, 

we find that in the new variables the Hamiltonian of the 
system is 

The average value (S,(x)) of the spin at the point x, the 
spin correlation functions (Sa(xi)S8(xb)), etc., may be 
obtained by differentiating 1nZ with respect to Iz,(x): 

In Eq. (2.5) we change variables: 

$.'(x) = g n ( x )  (l+h2/2Tz)-"',  T '=T( l+h2 /2TZ) ,  h'=h(l+h2/2T2)'L 

(we set h l= h, hB= 0, p # 1). We obtain 

The expression obtained may be represented a s  the sum 

of averages of the form (qa(xi)qB2(x,). . . $ 7 ( ~ k ) ) H o ,  cal- 
culated with the free-field Hamiltonian 

Using Wick's theorem and the obvious equality 

we may reduce the partition function to the form 

Here 

where Z(N,, N,) i s  the number of different configura- 
tions from N, segments forming Np linear polymers. A 
statistical weight Jib /J, (J, = C, J,,) is assigned to the 
segment with ends at the points xi and q; i.e., the 
probability of two monomers occupying mutually the 
points xi and q if there i s  a chemical bond between 
them i s  given by J~,/J,. Each segment enters with the 
factor Jo/T1 and each end of the polymer with ht/T'. 
The condition of non-self-intersection is  imposed on the 
configuration: two monomers cannot occupy the same 
point. Configurations including cyclic polymers drop 
out, since due to the summation over a, they acquire the 
additional factor n, but n - 0. 

Furthermore, for convenience we will assume that the 
monomericunit is  taken tobe thesegment (i.e., the chemi- 
cal bond, and not the atom). Except when speaking of 
the virial coefficient, the term "monomer" will be used 
specifically in this sense--i.e., to designate a "polymer 
segment". 

We designate h' and T' respectively a s  h, and T,. 
From Eq. (2.7) it is not difficult to see  that the param- 
e ters  - ln(Jo /T,) and - 21n(hp /T,) play the role of the 
chemical potentials of the monomer and polymer, and 
completely characterize the polymer ensemble. The 
relationship between h, and T, and the "magnetic" pa- 
rameters h and T i s  one-to-one; the transformation 
from h,, Tp to h, T has the form 

Equations (2.7) and (2.9) differ from the correspondingfor- 
mulas of des Cloizeaux,' in whichno distinction is made 
between h, hp,Z, and Z ,,,,. These differences a r e  in- 
significant only at small h / ~ ,  while at k / ~ -  1 they 
strongly change the results. Since at low T, the region 
h/T - 1 corresponds to the melting of long (L - T-'I2) 
polymers, these differences must not be neglected. 

Let us write the correspondence equations between the 
polymer and the magnetic parameters. We assume 
hereafter Jo = 1. Then from Eq. (2.8) we may write for 
the average number of polymers LV, and for the average 
number of monomers N, 

In practice, however, it is  much more convenient to ob- 
tain the equations for the polymer parameters directly 
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from the diagrams obtained on calculation of Z(h ,  T) ac- 
cording to Eq. (2.6), For example, for the concentra- 
tions of the polymers and monomers (per unit cell of 
the lattice) we obtain 

P ~ ( X ) = ~ / ~  ( ~ I ~ = ~ ( X ) / ( I + ~ / ~ X ( X ) )  )+PAX) .  (2.13) 

The correlation function for the transverse components 
of S, determines the correlations between the ends of 
the same molecule: 

where G(x- y) i s  the correlation function for the ends of 
the polymer chain, averaged over all molecules. Anal- 
ogously, the statistical average 

( (S t  ( x )  -hS t2 (x ) /T)  (Sl (y) - h S , 2 ( y ) / T )  ) 

gives the correlation function 9(x- y) for the ends of 
all the polymer chains. 

If in Eq. (2.6) we leave n finite and omit the factor 
(1 + h 2 / 2 ~  2)N and the primes on h and T, then 

will give the partition function for a solution containing 
linear and cyclic polymers. Each cyclic polymer will 
enter with the factor n stemming from the summation 
over a. Such a system, however, i s  no longer equiva- 
lent to any Heisenberg magnet. It i s  necessary to re- 
quire also that 

since otherwise the matrix J;' is defined. At n =0 ,  
an addition to Jik of the form k6,, did not change the 
properties of the system; at n#O this is already not so. 
The parameter J,,/J,, at i = k  gives the probability of 
congruence of the ends of an isolated segment. Since 
we admit of cycle formation, the probability may be 
different from zero. The Hamiltonian of the system has 
the form 

For the average numbers of polymers and monomers, 
Eqs. (2.10)-(2.13) hold a s  before. Equation (2.14) also 
holds. At h=O it determines the correlation function 
of the probe chain (see Sec. 4). For the average num- 
ber of cycles we obtain a formula analogous to Eq. 
(2.10): 

The correlation function for the density of monomers 
entering into the cyclic polymers is expressed in terms 
of the average value of the fields $, according to the 
formula 
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and the correlation function of monomers of the same 
cyclic polymer i s  expressed according to the formula 

where the double angle brackets mean the irreducible 
average. 

3. SELFCONSISTENT-FIELD APPROXIMATION 

We assume that the fluctuations of the fields $, are  
small. We introduce new variables cp, (xi), reckoned 
from the average values of $,(xi): 

$,(xi) =A+w (xi) $B(x~)=vB ( X I ) .  

We write the Hamiltonian up to terms of second order 
in 9, (we consider linear polymers, i.e., the model 
with n=O) 

H=H,+H. 

Here 

E=L\ -+ h/T ,  q ,  ( q )  =N-'" C cp,(x,) exp (iqx,) , 

N i s  the number of lattice points. The minimum HA i s  
achieved for  

Taking into account Eq. (3.2), we write 

HA=TNAZ12+N ln ( ! + f 2 / 2 ) ,  

H.=~/,C (I/J(q)-I+h/TE+TAZ) Icpr(q) 1' 
q 

The mean square fluctuation of cp, is 

as h - 1  

i f - + T I ' ]  TE d3q, 

a3 1 h -' (3.4) 
( ( P : ( X ) ) = . - - -  -- I '-1 TE d3q3 ''I. (Zn)'T I [ 

Here we have changed from summation over q to inte- 
gration over the reciprocal-lattice cell, a3 i s  the volume 
of the unit cell of the lattice. 

If we introduce the mean square length of the segment 
1 2 :  

then for small q 

Substituting Eq. (3.5) in (3.4), we obtain 
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For k = 0 we obtain for A,: 

A"2(l/T--I).  

Thus, the condition for small fluctuations i s  

as/13<(T.-T)/T,,  T , = l .  

We see  that a3/Z3 i s  the Ginzburg number and will be 
considered in this section a s  a small parameter. 

In the zeroth order in the fluctuations, using Eqs. 
(2.12), (2.13), and (3.2), we obtain for the polymer and 
monomer densities 

p:' =hA/2T( l+bz /2 ) ,  p:' =TAZ/2.  (3.6) 

From this the average degree of polymerization of the 
molecules in solution is: 

L ( o ' = ~ : )  /p:' =Tg/h o r  L(o'- l=TA/h.  (3.7) 

We also note that small  h and T correspond to the situa- 
tion in which the density i s  close to unity (melt): 

tion of state of the solution of cyclic polymers in this 
approximation is  

In the next approximation with respect to the fluctua- 
tions, Eqs. (3.14), (3.1 5) appear a s  follows: 

4. AN ISOLATED CHAIN IN THE POLYMER 
SOLUTION 

To describe the statistical properties of a single iso- 
lated chain located in a solution of other polymers we 
consider, in addition to the n-component field used to 
describe the polymer solution, another n-component 
field interacting with it and use it to describe the iso- 

LzT'"lh, p,=l-T. (3.8) lated chain. Distinguishing the parameters character- 
izing these n-component fields by the indices 1 and 2 

From Eq. (3.1) we obtain for  the transverse correlation respectively, we write the partition function of such a 
function or,  which is the same thing, for the correlation system as 
function of the ends of the polymer: 

Z =  jn D Y , . ( ~ . ) ~ Y ~ - ( ~ . ) ( (  -ix I [ (  +iB(xt)+T) hie ' 
(3.9) s m G ( 9 )  =(q?L2/2d+l/L) -I,  R 

d i s  the dimensionality of the space. 

For the mean square separation between the ends of 
the polymer chains, we obtain 

or,  taking into account Eq. (3.7), 

Thus, the self- consistent-field approximation corre- 
sponds to the approximation of a solution of Gaussian 
chains. 

Let us find the equation of state for a solution of Gaus- 
sian chains. For this we use the familiar relation4 

k is  the Boltzmann constant and T is  the temperature of 
the solution. Substituting the value Z(k, T) = e - H A  in Eq. 
(2.7) fo r  Z,,1, we obtain 

A similar equation of state for a polymer solution was 
first obtained by  lor^.^ For the case n +O, we con- 
sider the simplest situation: k = 0 and the system i s  
above the transition point, i.e., there a r e  no linear poly- 
mers. Then in first  order in the fluctuations: 

where the integration is carried out over the cell of the 
reciprocal lattice. Thus, the density of cyclic polymers 
is proportional to the Ginzburg number Gi. The equa- 

If h, - 0, then the density of the polymers described by 
the second field tends to zero. Thus, in this limit the 
average (qZ6 $,,) is the correlation function of the ends 
of a linear polymer, each segment of which i s  assigned 
a weighting factor JZik/T,, and the monomer density 
and the number of polymers in the surrounding solution 
a r e  determined by the parameters J,/T, and h , / ~ , .  

On the other hand, using the identity (2.3) it is not 
difficult to see  that the partition function (4.1) has a 
simple physical meaning, a s  the partition function of a 
2n- component anisotropic magnet with a Hamiltonian 

We shall verify later that for the description of long 
molecules, the anisotropy should be small compared 
with J,; therefore it i s  convenient to write Eq. (4.2) in 
the form 

Thus, the problem of the correlation function of the 
probe molecule is reduced to the problem of the trans- 
verse correlation function of an anisotropic magnet. 

The average (S~(xi)S16(%)) -(91B(~i)$t~(~k)),  P # is 
a s  before the correlation function for the ends of a poly- 
mer in a solution. The transverse correlation functions 
of an anisotropic magnet in the region of weak fluctua- 
tions have the form2 
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Gl,=(h/M+ck2)-',  a + l ,  (4.4) 
G2== (hlM-h+ ck2)-I, (4.5) 

where c - r: = 12/2dpm (ye is the correlation radius of the 
longitudinal fluctuations, d is the dimensionality of the 
space), and M is the magnetic moment. 

In order to obtain the expression for the correlation 
function of chains of length L, we must perform an in- 
verse Laplace transformation from the variable A to L. 
Then 

G L ( k )  -const.exp(-LckZ-hL/M). (4.6) 

From this, h/M= 1/E (this also follows from the results 
Of Sec. 3), since G,(k) is at k=O the length distribution 
function of polymers in solution5: 

In the coordinate representation 

GL(z)  - (G,/L3h) exp ( - z z /4Lc) .  

In the region of strong fluctuations, we may use the 
scaling  relation^.^ In this case, Eqs. (4.4), and (4.5) 
a r e  replaced at b e < <  1 by 

GI.- (hR/MR+ (kr.)')-', (4.8) 
G,.- (hR/MR-hR+ (krS)')-' .  (4.9) 

From the scaling relations it follows that 

where v is the critical exponent of the correlation radi- 
us  (v=3/5). Performing an inverse Laplace trans- 
formation with respect to A in Eq. (4.9), we obtain the 
correlation function of the ends of the probe chain: 

From Eq. (4.10) we obtain for the average length of 
the molecule in solution the relation 

For small h (i.e., for large E ) 

and, using the relation between (1 and v, 

we obtain 

For the mean square size of the molecule in solution 
we then obtain 

If we introduce the quantities 

then Eqs. (4.6)- (4.8) will be satisfied, if we take c ,  L, 
and 1 to mean c R, L ~ ,  and ER. If hR/MR - hR << ( h R / ~ R ) 2  
then the major role is played by the fluctuations asso- 
ciated with a phase transition that is of second order in 
A. In this region, L >> (zR)2 and the length distribution 

function G, has the form 

y is the critical exponent of the susceptibility. 

Equations (4.4) and (4.5) describe the Gaussian be- 
havior of the "average" molecule in solution, and also 
the Gaussian behavior of the isolated molecule of length 
L - (h/M- A)-'. Corrections to Eqs. (4.4), (4.5) ar ise  
only when account is taken of the interaction of long- 
wavelength transverse fluctuations. The magnitude of 
this interaction is proportional to the magnitude of the 
external magnetic field. From Eq. (3.7) it follows that a 
weak magnetic field h - 1/E corresponds to the case of a 
solution of long molecules. In polymer language this 
means that the effective second virial coefficient of the 
interaction of quasimonomers in solution decreases in 
inverse proportion to the average length of the mole- 
cules in s ~ l u t i o n . ~  

An accurate value for the second virial coefficient may 
be  obtained by writing down the first  correction with re-  
spect to the fluctuations for the mean square separation 
between the ends of the probe molecule. Simple calcula- 
tions (which we omit) give to f i rs t  order in a3/Z3 (L>> 1): 

where 

The I, term in Eq. (4.11) describes the effective in- 
crease in the length of each segment 

and the I, term determines the effective repulsion of 
monomers in solution. This repulsion is substantial 
only for very long molecules L > > U ~ ( E ) ~ / Z ~ ,  which, a s  
seen from Eq. (4.7), do not contribute to the average 
characteristics of the solution. Equation (4.9) i s  ob- 
tained a s  the average separation between the ends of 
molecules of average length L, distributed according 
to (4.7) with 1 = L. Knowing the form of this distribu- 
tion, we may obtain for R'(L): 

R$ ( L )  = l R z ( ~ +  (4n3/311 1')  ( L - I )  I,L''-). (4.13) 

Comparing Eq. (4.13) with the usual ser ies  of perturba- 
tion theory for an isolated non-self-intersecting mole- 
cule (see Ref. 7) 

we obtain for the effective virial coefficient in solution; 

For weakly fluctuating solutions, the parameter B 
agrees with the value calculated from ordinary perturba- 
tion theory.3 For strongly fluctuating solutions, we 
must take L, E , p,, and a3/Z3 in Eqs. (4.13) and (4.14) to 
mean the renormalized values 

Here p, is the true concentration of the monomers in 
the solution. 
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The form of Eqs. (4.13)- (4.14) demonstrates the 
validity of the representation of the molecules in a 
strongly fluctuating solution (proposed by de GennesR) 
a s  a Gaussian chain of "blobs," each of which has a size 
on the order of the correlation radius r, - p ; " ' ( d V - l )  and 
contains p, r,d -p~'(du-l'  monomers. This chain occurs 
in the melt (p, ~ 1 )  of other such chains of "blobs." A s  
i s  evident from Eq. (4.14), such a representation is ap- 
plicable to molecules whose length is not very great: 
LR<< (zq2 (in blob units). When the inverse inequality 
i s  satisfied, obviously we must sum the entire pertur- 
bation-theory series. Just a s  for a separate long mole- 
cule with repulsion,g this leads to the familiar law R'(L) 
- LZ". 

Until now we have considered the situation in which 
the probe molecule has the same properties a s  the sur- 
rounding solution molecules. We note that in Eq. (4.1) 
we may introduce different quantities J,,, and J,,, to de- 
scribe the two different types of segments-segments of 
the probe molecule and segments of the solution mole- 
cule. Below, we analyze the general case, when not 
only a r e  J,, and Jz ik  different, but the quantities charac- 
terizing the interaction of the monomers among them- 
selves a r e  different. Since the case of strong fluctua- 
tions i s  the most interesting, we write the Hamiltonian 
of two interacting subsystems, confining ourselves to 
terms up to q4: 

where 

Here u,,, u,,, and u,, a r e  field-interaction constants. 
Each type of monomer i s  characterized by its own stiff- 
ness c,, which is  proportional to the square of its per- 
sistent length.,' 

We note that by the simple transformation 

the Hamiltonian of such a system i s  transformed to 

where ii ,, = c;, u11/4, UZ2 = c ; ~ u ~ ~ / ~ ,  and G,, = c;'c;'u,,j4. 
We note that when any stiffness (for example, c,) i s  
large, the corresponding interaction constants u,, and 
ii,, a r e  small. 

Since it is always assumed that the concentration of 
probe molecules in solution is a s  small a s  desired, they 
obviously do not affect the state of the solution. We con- 
sider the case in which the average separation between 
the ends of the probe molecule i s  greater than the corre- 
lation radius in the solution (in the opposite limiting 
case, the correlation function of the probe molecule is 
the same a s  for the isolated polymer chain). In this 
case, it is convenient at f irst  to integrate in the Hamil- 
tonian (4.16) over scales that a r e  smaller than the cor- 
relation radius. Renormalizations of such a Hamiltonian 

were conside~ed by ~okrovskif  , Lyuksyutov, and 
~hmel 'n i t sk i i '~  fo r  the case of an arbitrary number of 
components of the fields $, and $,. If the number of 
components of each field is  zero, the renormalization 
equations obtained in Ref. 10 may be written to first  
order in E =  4 - d a s  

~ U I I "  -- = en,,'-32 ( u ,  , R )  ?, 

d E 

Here = l n ( ~ / l ) ,  a i s  the interaction radius of mono- 
mers  (in the lattice model-the cell size), R is the 
scale up to which the renormalization is carried out. 

Solving Eq. (4.17) with initial conditions (4.16), we 
obtain 

u,lR=(H/n)rE,,(3217,,x+1)-1. ~ ~ ~ = ( R l a ) ' E , , ( 3 2 i i , , s +  I ) - ' ,  (4.18) 

Thus, depending on the relationship between u and re, 
the following situations a r e  possible: 

a) if re i s  sufficiently large and GI ,>  0, then all the uR 
take the universal form uR=&/32, and in this case the 
results of the preceding discussion for chains of identi- 
cal monomers a r e  applicable; 

b) if Y, i s  not very large, then the uR a r e  a s  usual not 
equal to each other. 

After we have taken into account all the fluctuations 
of the field $, using renormalizations, we may com- 
pletely integrate over it, i.e., take into account the 
effect of the solution on the probe polymer chain. For 
this we expand the Hamiltonian (4.16), considering all 
the parameters in it to be renormalized, close to the 
minimum with respect to $, ($, ,=M) up to terms on the 
order of ( q t -  M),. Next, integrating e-" with respect 
to $,, we obtain for the field $, the effective Hamil- 
tonian 

Using the equation of state of the field $, 

we obtain the following expression for the effective peak 
of the field $,: 

eff - 
a22 - U ~ ~ ~ - ( U ~ ~ ~ ) ~ / U ~ ~ ~ ( ~ + ~ , ~ / ( ~ M ~ U , , " ) )  

We note that from the results obtained in the beginning 
of the section and Eq. (4.19), it follows that 

where zR is the average length of the polymer in solu- 
tion in 'blob" units 

Depending on the sign of u$, two types of limiting be- 
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havior of the foreign molecule in solution a re  possible. 
if u;: > 0, then, starting from LR >> (U ;; r;3)2 ( L ~  
is the number of effective monomers of lengths r, in 
the probe molecule), the average size of the probe 
molecule is given by R~ - L ~ " .  If & < 0 then starting 
from LR-  (~;L~r;3~,  the molecule transforms into the 
globular state3' (similar to the coil-globule transition, 
see  the review by Lifshitz, Grosberg, and ~hoklov"). 

5. TWO-DIMENSIONAL CASE (LINEAR POLYMERS, 
ADSORBED ON A SURFACE) 

In the preceding section we saw that the representa- 
tion of the molecule in solution as a Gaussian chain of 
"blobs" gives the correct result for molecules that a re  
not very long. Below we shall see  that in the two-di- 
mensional case, such a chain is non-Gaussian. This is 
connected with the fact that for d = 2  the non-self-inter- 
section condition is more complex than in a space of 
greater dimensionality. Thus, for example, in the 
situation represented on Fig. I, at d >  2 this condition 
only forbids superposition of two parts of the chain on 
one another, while at d =  2 it furthermore forbids pene- 
tration into the whole region A. Formally, the fact that 
d =  2 is a special case is evident from the fact that in 
Eqs. (3.4) in the two-dimensional case, the simplest 
corrections due to the transverse fluctuations diverge 
logarithmically as h - 0 (for sufficiently long chains). 
An interesting characteristic of a magnet with n = 0 i s  
that the corrections to the magnetic moment, arising 
from the transverse fluctuations, a re  positive. In con- 
t ras t  to the usual magnets with n = 2 and 3, the fluctua- 
tions in this case lead to an increase and not to a de- 
crease in the average moment. 

The first  to take systematic account of the renormal- 
izations arising in the two-dimensional case for an 
arbitrary n- component magnet was P~lyakov . '~  We use 
the results of Ref. 13, bearing in mind that they a re  ap- 
plicable even for n = 0. The Hamiltonian of the magnet 
is conveniently written a s  

Here, Co -re2 is the effective stiffness. A s  S, we will 
take the magnetic moment averaged over a volume with 
dimensions r,-p;U/("-l), where v is the exponent in 
the functional dependence R'- L2" for an isolated non- 
self-intersecting two-dimensional chain. 

As shown in Ref. 13, at h =0, the averaging over the 
transverse fluctuations for separations larger than r, 
and less than some scale R lead to logarithmic renor- 
malization of the average moment 

and of the effective stiffness 

The magnetic field h and the temperature T a re  not re- 
normalized. In the case p,- 1, i.e., for low tempera- 
tures, to estimate T[c,s~(Y,)] -' we may use the formu- 
las of self-consistent-field theory: 

whence 

Furthermore, we will designate the coefficient (2 - n)T/ 
[ ~ T C , S ~ ( ~ , ) ]  a s  A. In the case of a melt, A =a2/rZ2, and 
in the case of strong fluctuations A = 1. 

If h #O, then renormalizations (5.2), (5.3) a r e  signifi- 
cant only up to scales in which the magnetic field term 
is of first  order in the gradient term: 

where ZR i s  the average length of the polymers in solu- 
tion in "blob" units. For the correlation radius of the 
transverse fluctuations we obtain the estimate 

According to Eq. (2.14), this is the average separation 
between the ends of the linear molecule, The polymer 
density is 

The monomer density i s  not renormalized, since the 
major contribution to Ta lnZ/a T comes from a region of 
separations less than r,. Writing the right -hand side of 
Eq. (5.4) using Eq. (5.5) in terms of polymer quantities, 
we obtain 

The correlation function of the isolated chains may be 
determined by making the field S, 2n- component [ S 
=(St, S,)] and adding to the Hamiltonian (5.1) the term 
AZSi [see Eq. (4.2)) Then, besides R, , another char- 
acteristic scale (J/x)'/~ appears. If 

then this is the s ize  of the probe chain. In this case the 
renormalizations a r e  carried out up to separations on 
the order of (J/A)'/~. Then from Eq. (5.3) we obtain for 
the size of the probe chain the formula 

At first  glance, such a result contradicts Eq. (5.6). In 
fact, however, the discrepancy arises from the change 
(compared with the three-dimensional case) in the mole- 
cule length distribution function. For the correlation 
function of the transverse components of the moment, we 
obtain 
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From this the length distribution of molecules in solu- 
tion is 
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Calculating the average size of the molecule in solution 
using Eqs. (5.7) and (5,8), we obtain a result which 
agrees with Eq. (5.6). 

6. CONCLUSION 

We have given a short description of a method which 
allows us to reduce practically any problem in polymer 
solution theory to a corresponding magnetic problem, 
which a s  a rule has already been solved. In addition to 
the problems considered in our work, the polymer- 
magnet analogy may be applied to the description of a 
mixture of polymers of different composition, and also 
to solutions cf polymers with a non-equilibrium length4' 
distribution4' orwith a spatially inhomogeneous distribu- 
tion. Due to lack of space, we could not dwell at length 
on the description of cyclic polymers, o r  on mixtures 
of cyclic and linear polymers. 

Finally, we point out an interesting correspondence 
between the problem of polymer behavior in a limited 
volume and the problems of magnetism of small par- 
ticles, and the analogy between surface effects in a 
solution and in magnets, etc. 

We take this opportunity to express our deep apprecia- 
tion to V. L. ~okrovski i ,  M. V. Feigel'man, D. E. 
~hmel'nitskii, and also A. Yu. Grosberg, I. Ya. Eruk- 
himovich, and E. I. Shakhnovich for many discussions 
of magnetic and polymeric aspects of our work. 

')Here we introduce the lattice only for simplicity in formu- 
lation of the model. We can easily generalize to a contin- 
uous model. 
By the persistent length we mean the distance along a chain, 

over which the orientation of one link ceases to affect the 
orientation of another. 

3, The result that long rigid moleucles in a fluctuating solu- 
tion of flexible molecules go over into the globular state has 
been obtained  independent!^ by Grosberg, Erukhimovich, and 
Shakhnovich.12 This corresponds to the particular case c i  
>>c2, as a consequence of whichGI and clz are  small  and 
a re  not renormalized; then ~ ~ , - f i ' ~ ~ / u f i  < 0. 

4,  With the condition, that this distribtuion may be represent- 
ed  a s  an aggregate of equilibrium distributions. Our method 
is  inapplicable to a monodispersed polymer solution. 
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Translated by C. Flick 

An estimate of the percolation probability in 
inhomogeneous media 

M. I. Shvidler 

(Submitted 3 July 1980) 
Zh. Eksp. Teor. Fiz. 80,666-668 (February 1981) 

A universal lower estimate of the probability of percolation is obtained for a random system containing 
subregions of a conductor and of an insulator. The estimate depends on macroscopic functionals: the effective 
and mean conductivities of the system, and for anisotropic systems also on the direction of the mean field- 
intensity vector; that is, on characteristics that can be determined quite simply experimentally. 

PACS numbers: 72.10.Bg 

We consider a heterogeneous system consisting of that do not take part in the transport process. For es- 
subregions occupied by a uniform and isotropic conduc- timation of the size of such regions, in the theory of 
tor, with conductivity a,, and of subregions of zero p e r ~ o l a t i o n ' ~ ~  a quantitative characteristic has been 
conductivity (insulators). It is  known that with a suffi- introduced: the percolation probability P, interpreted 
ciently irregular and complicated structure of the medi- a s  the fraction of the conductor volume that takes part 
urn, there may exist isolated regions of the conductor in transport. In its essence, the value of P is a char- 
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