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Elastic interaction between an electron-hole drop and a dislocation in a semiconductor is considered. It is 
shown within the framework of the isotropic model that the EHD interacts with an edge dislocation but not 
with a screw dislocation. The binding energy of the EHD with an edge dislocation is calculated and found to 
be three orders larger than the EHD-impurity binding energy. The trajectories of EHD in the elastic field of 
zero-initial velocity dislocation are calculated. Allowance for the EHD energy loss to emission of elastic 
waves and for friction against the lattice can cause the EHD to "fall" on the dislocation. It is shown that near 
the dislocation axis the EHD finds it more convenient to assume a cylindrical shape (to flow along the 
dislocation axis). If the semiconductor contains a network of dislocations, this flow of the electron-hole liquid 
(EHL) can lead to formation of a conducting cluster made up of EHL filaments. 

PACS numbers: 61.70.Yq, 62.30. + d, 71.35. + z 

1. It was shown by a number of experiments1-3 that 
electron-hole drops (EHD) a re  localized in semiconduc- 
tors on donor and acceptor impurities. For Ge samples 
with impurity density n, = 3 x 1013 cm-3 the force needed 
to detach the EHD from the impurity per electron-hole 
pair i s  approximately f N (for a drop radius of 
the order of cm). This value agrees with a theo- 
retical calculation of the EHD-donor binding energy. '~~ 
At lower densities, n, = 3 x 10'' cm", however, the 
dependence of the EHD detachment force on the drop 
radius turns out to be different than in the case of pin- 
ning of an EHD on an impurity: thus pointing to the 
existence of other trapping centers. This is also at- 
tested to by the experimental data of Westervelt? who 
notes that the coefficient of diffusion of an EHD in a Ge 
crystal with dislocations in an order of magnitude 
lower than in a crystal without dislocations. This i s  an 
indirect indication that dislocations can also serve a s  
EHD trapping centers. 

In the present study we have investigated the elastic 
interaction of an EHD with a disloaation, and deter- 
mined the influence of this interaction on the pinning 
of the EHD. We show that the force needed to detach 
an EHD from an edge dislocation, per electron-hole 
pair, is inversely proportional to the square of the drop 
radius and, for example for a spherical drop of radius 
a = 2 X cm, amounts to 4.8 x lo-'* N. This exceeds 
by more than two orders the force needed to detach an 

EHD from an impurity. The results i s  attributed to 
the fact that the radius of the electrostatic interaction 
of the EHD with the impurity is small and equals ap- 
proximately the Debye screening radius t-,, whereas 
the elastic interaction of an EHD with a dislocation i s  
not screened and the entire EHD volume interacts with 
the dislocation. 

2. Consider a crystal with an isolated dislocation 
and containing an EHD. It is known that the EHD has 
elastic-stress fields6 and that the density of the crystal 
elastic energy, with allowance for the interaction of the 
EHD with the strain field, can be represented in the 
form718 

where u,,(r) is the strain tensor, DIj is the combined 
strain potential of the electrons and hole, n(r)  is the 
coordinate-dependent density of the electrons and holes 
in the EHD, and c,,,, are  the elastic constants. Since 
the crystal contains two sources of elastic stresses,  
the strain tensor can be represented by the sum u,,(r) 
= u t ( r )  + u$(r), where d;(r) is the strain tensor pro- 
duced in the crystal by the EHD and u$(r) is the strain 
tensor produced by the dislocation. The total elastic 
energy of the crystal U =  Jdrw(r )  consists of the 
drop's elastic energy U,,, of the dislocation elastic en- 
ergy U,,, and of the energy U,,, of the EHD interaction 
with the dislocation, for which the following expression 
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holds: 

We consider f irst  the interaction of an infinite 
straight dislocation with a spherical EHD in an iso- 
tropic medium." Let the dislocation axis be parallel 
to the z axis. Using the formulas obtained in Refs. 8 
and 9 for U:;(r) and u::(r) respectively, we can verify 
that in the isotropic case the second term of (2) is  
zero, and the interaction of the EHD with the disloca- 
tion i s  determined only by the f i rs t  term. Recognizing 
that in the isotropic case Dil = D6,], where D =  D, + D,, 
i s  the combined strain potential of the electrons and 
holes, we can represent the interaction energy (2) in 
the form 

Ui,,= J d r ~ n  (r) u,di(r), (3 ) 

with n(r )  =no inside the drop and zero outside. It fol- 
lows from this expression that in the isotropic case 
the EHD interacts only with an edge dislocation, since 
a screw dislocation produces in this case pure shear 
stresses.  

Substituting u::(r) (Ref. 9) in (3) and integrating, we 
obtain the energy of the interaction of an EHD with an 
edge dislocation 

where N =  (4/3)nn,a3 i s  the total number of electron- 
hole pairs in the EHD; a i s  the drop radius; p and cp 
a re  the polar coordinates of the center of the drop in a 
plane perpendicular to the dislocation axis, with the 
angle cp reckoned from the z axis, which lies in the 
slip plane xz (Fig. 1); b, i s  the dislocation Burgers 
vector, and o is the Poisson coefficient. U,,, does not 
depend on the coordinate z ,  owing to the translational 
symmetry along the z axis. 

We note that at p > a the interaction energy (4) i s  de- 
termined by the dilatation produced by the dislocation 
at the center of the drop. The minimum of the energy 
of the EHD interaction with the dislocation corresponds 
to a drop center located at the point p = (3/4)"4a, cp 
= a/2 (see Fig. I ) ,  with 

FIG. 1. Equilibrium position of spherical drop near a dis- 
location axis. The rest of the half plane corresponds to x = 0 
andO<y<*. 

We assume here and elsewhere that the combined 
strain potential of the electrons and holes is positive: 
D>O. 

The force needed to detach the EHD from the disloca- 
tion in a direction perpendicular to the z axis, per 
electron-hole pair, i s  

Estimating this quantity for  Ge and assuming that D 
= 3 eV, b, = 5 x lo-' cm, and a= 1/3, we find that f 
= 4.8 x lo-'' N at a = 2 x cm. This value i s  larger 
by more than two orders than the force needed to de- 
tach an EHD from an impurity, and unlike the latter i s  
inversely proportional to the square of the drop radius. 
This dependence of the force on the drop radius agrees 
qualitatively with the experimental data. 

We present also comparative estimates of the binding 
energy of EHD with various crystal-lattice defects. 
The binding energy of an EHD with an impurity does 
not depend on the drop radius, and in the case of Ge, 
for  example, equals 7 meV.5 For crystal-lattice de- 
fects such a s  vacancies o r  interstitial atoms, the bind- 
ing energy due to elastic interactions turns out to be 
of the order of U,,, -D(b/aI3N, where b i s  the lattice 
constant. This energy, just a s  in the case of EHD- 
impurity interaction, does not depend on the drop r a -  
dius and i s  of the order of 0.5 meV for Ge. On the 
other hand, the EHD-dislocation binding energy (5) i s  
proportional to the square of the drop radius. For a 
drop of radius a = 2 x lo'= cm in Ge it i s  of the order of 
5 eV (no = 2.7 x 1017 cmm3), o r  larger by three orders 
than the binding energy of the EHD with an impurity, 
and points to the important role played by the disloca- 
tion in the EHD pinning process. 

It follows from the foregoing analysis that at equili- 
brium the EHD sits  on the dislocation. In the calcula- 
tion of the interaction energy, however, we did not 
take into account the redistribution of the electron and 
hole densities in the EHD under the influence of the 
forces exerted by the dislocation. Allowance for this 
redistribution i s  important, for example, when EHD 
interaction with shallow donor and acceptor impurities 
is considered, and limits the effective radius of the 
force exerted by the impurity. This radius turns out 
then to be of the order of the Debye screening radius 
r,, while the energy of the interaction of the EHD with 
the impurity is independent of the drop radius [cf. (5)] 
and i ts  order of magnitude is u:,, -e2/c Y,, where e is 
the electron charge and c is the static permittivity of 
the semiconductor. 

In interactions of EHD with dislocations, however, 
owing to the difference between the electron and hole 
strain potentials D, and D,,, the bare potentials pro- 
duced by the dislocations at the electrons and holes, 
v e ( r )  = ~,u',:(r) and Vh(r) = ~ , 4 : ( r )  respectively, are  
different in magnitude, s o  that the screening potential 
ecp(r) due to the inhomogeneous fluctuations of the elec- 
tron and hole densities near the dislocation axis, can- 
not cancel them out simultaneously. In our case, 
consequently, the reaction of the electron-hole plasma 
on the dislocation potential does not screen the latter. 
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statements concerning the character of this motion. 

FIG. 2. Family of equipotential lines of the potential of the 
interaction of an EHD with an edge dislocation (solid lines). 
The dashed lines are the force lines, which comprise an 
analogous family of circles orthogonal to the family of the 
equipotential lines. The arrows mark the direction of the force 
acting on the EHD. 

This conclusion pertains to the asymptotic value of the 
potential, i.e., i t  is valid at distances p much larger 
than the Debye screening radius, which is of the order 
of r, -10" cm for the degenerate electron-hole plasma 
in an EHD in Ge. These qualitative arguments a re  sup- 
ported by the corresponding quantitative calculations. 

3. We have considered above the case of an equili- 
brium position of a spherical EHD near a dislocation 
axis, but it in experiment it i s  possible for the drops 
to be produced at a certain distance away from the 
axis. It is therefore of interest to consider two-dimen- 
sional drop motion in a potential (4) produced by an 
edge dislocation. We confine ourselves here to the 
case p > a, when the equipotential lines of the give 
potential U(p, rp) = Uo form in the xy plane the family of 
circles shown by the solid lines in Fig. 2. Their ra-  
dius i s  

and their centers lie on the y axis at points with coor- 
dinates y, = -R sign U,. The equipotential lines cor- 
responding to negative energy U, <O a re  located in the 
right-hand half-plane 0 < cp < n, while those for  positive 
energies Uo > 0 are  in the left-hand half-plane ?r < rp 
< 27. Corresponding to the energy U,= 0 is a straight 
line that coincides with the x axis, The drop executes 
finite motion in such a potential if i t s  total (kinetic 
+ potential) energy E i s  negative. The region of finite 
motion is contained in this case in the circle U(p, p) 
=E. Infinite motion corresponds to positive energies 
E > 0. 

We examine now in greater detail the finite motion of 
an EHD with zero initial velocity. Let the initial coor- 
dinates of the drop be p, and rp,, with 0 < cp, < r. The 
region of finite motion of the drop correspdnds in this 
case to a circle of radius R = p0/2 sin rp,, whose center 
lies on the y axis at a point with coordinate y ,=R .  Un- 
fortunately, the potential (4) does not admit of separa- 
tion of the variables in the Hamilton-Jacobi equation, 
s o  that the equations of the EHD motion in this potential 
were solved numerically with a computer for the case 
p >  a .  It is possible, however, to make several general 

First, since the EHD mass and the potential of the 
interaction of the EHD with the dislocation a re  propor- 
tional to the total number N =  (4/3)m0a3 of the particles 
in the drop, this number drops out of the equations of 
motion, and trajectories of drops with different radii 
turn out to be identical in this case (if po and q o  are  
same). This is true i f  the distance between the drop 
and the dislocation becomes smaller than the radius of 
the drop in the course of i t s  motion. 

Second, according to the virial theorem," the average 
kinetic energy of a drop moving in a potential that is 
(at p > a) a homogeneous function of the coordinates with 
a homogeneity exponent -1, i s  given by the expression 
E= -E = -U(po, pol. From this we can readily deter- 
mine the mean squared velocity of the drop: 

We note that it is likewise independent of the drop size. 
Figure 3 shows the computer-calculated two-dimen- 
sional trajectory of the drop for initial conditions x, 
= -IOU, yo= lOa, and rp,= 3r/4. 

It is of interest to cite also the functions p(t) and rp(t). 
They a re  shown in Fig. 4, from which i t  follows that 
the motion of the drop in such a potential can be ap- 
proximately characterized by a certain period of mo- 
tion T. In addition, interest attaches to the maximum 
velocity v,,, on the trajectory and to the minimum dis- 
tance h,, from the trajectory to the dislocation axis 
On the basis of similarity theory, the dependences of 
these quantities on the initial conditions can be ex- 
pressed in the form 

E I 

FIG. 3. Trajectory of EHD at an initial drop position xo 
= -lOa, yo= 10a a= 3r/4; a is  the radius of the drop. 
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FIG. 4. Time dependences of p ( t )  (a) and ~ ( t )  (b) for x o =  -10a, 
y o =  10a, and cpo = 3*/4; a is the drop radius, to is defined in 
(11). 

Here \k(q,), i9(cpo), and F(cp,) a r e  certain functions that 
depend only on the initial angle p,. The drop radius 
was introduced into these formulas for convenience. 
None of these quantities depend, naturally, on the drop 
radius. For Ge we have m, + m, = 5 X 1VZ8 g, SO that 
the times a r e  to = 1.5 x lo-" sec  and 4.6 x 10'1° sec 
for drop radii a = 2 X and 2 x lom4 cm, respectively. 

The numerical values of the functions \k, i9, and F 
for three initial positions of the drop A ,  B, and C a r e  
listed in Table I. In the calculation of these functions 
we have assumed that p > a .  As follows from (10) this 
calls for satisfaction of the condition p, > a/F(rp,). We 
note that at the initial drop positions 

the maximum speed of the EHD on the trajectory ex- 
ceeds the speed of longitudinal sound c ,  -5 x lo5 cm/ 
sec. As for the mean squared velocity, calculation by 
formula (8) yields for (u2)112 a value of the order of 
7.3 x lo5 cm/sec at p cm and rp, -3n/4, which 
also exceeds the speed of sound. 

TABLE I. Computer-calculated values of the functions *(p,), 
@(q$), andM%) which characterize respectively T, v,,,and 
P ,,,in [Egg. (8)-(lo)] for three different trajectories A ,  B ,  and 
C .  

I I I I 

Trajectory / Initial angle 

I , 

The drop motion was investigated above without al- 
lowance for  the friction forces acting on the EHD. 
As shown by ~e ldysh , '  the EHD velocity i s  limited in 
many cases by the viscous-friction force due to inco- 
herent emission and absorption of acoustic phonons by 
the electrons and the holes of the drops. This force, 
calculated pe r  electron-hole pair ,  does not depend on 
the drop radius and, fo r  example, equals f l=  1.5 
x 10'19 N for  Ge at T = 1 K and an EHD speed of the 
order  of but less  than the speed of sound. In addition, 
when the drops moves faster  than sound, a deceleration 
force i s  produced by the Cherenkov emission of sound 
by the moving drop. 1'*12 This force (likewise calcu- 
lated pe r  electron-hole pair)  i s  inversely proportional 
to the radius of the drop and exceeds appreciably the 
viscous-friction force. Thus for a drop moving in Ge 
at  a speed u not much higher than the speed of sound 
and having a radius a = 2 x lom5 cm the force (which is  
inversely proportional to u2) amounts to f, = 2.3 
x 10-l7 N. 

We note also that at  subsonic but near-sonic speeds 
and at sufficiently low temperatures T c 1 K it may be 
important to take into account the friction forces con- 
nected with emission of elastic waves by the drop if i ts  
motion is not uniform. The calculation of the energy 
lost to emission of elastic wave by an EHD moving 
around a dislocation along a calculated trajectory i s  a 
laborious task. We have therefore confined ourselves 
to a model estimate of the energy lost by an EHD mov- 
ing uniformly along a circle. Thus for a drop moving 
in Ge at  a speed u ~ 0 . 9 ~  the friction force (per elec- 
tron-hole pair) due to emission of elastic waves by the 
drops i s  f, -10'18 N. This estimate was made for a 
circular orbit of radius R, = 2 . 5 ~  with a = 2 X cm. 
These numbers correspond approximately to the nearly 
heart-shaped segment of the trajectory shown in Fig. 
3. 

All the listed friction forces turnout to be substantial- 
ly l e s s  than the force f, with which the dislocation acts 
on the drop. The value of this force per  electron-hole 
pair  i s  independent of the drop radius and i s  inversely 
proportional to the square of the distance p between the 
EHD and the dislocation axis4 at p > a. For example, 
in Ge at  p =  lom4 cm we have f, = 2 x N, therefore 
in first -order approximation the drop motion will be- 
have a s  described by us. 

Friction forces can cause, however, the EHD to land 
on the dislocation. Let us estimate this effect quanti- 
tatively. The energy lost by the EHD per  period i s  
determined by the work of the friction forces f,,. At 
initial angles cpo not much different from n/2 i n/4 this 
work is of the order of A = f,flp,. The number n of 
revolution that the moving drop makes before it loses 
all i t s  energy i s  determined from the condition nA 
= l~(~,cp,)I .  Hence n -~b,/2?rf,, P:. For -1(T4 cm 
the average drop speed (7) i s  of the order of the speed 
of sound, therefore, using the value f,, -fl -1.5 x lW19 
N (for viscous friction), we get n -260. If the average 
drop speed i s  higher than that of sound, n turns out to 
be of the order of 3 (we recall that this estimate i s  ob- 
tained for a drop radius a = 2 x cm; if a = 2 X 
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cm we have n = 30). The time of one revolution of the 
target on the trajectory at pa cm turns out to be 
of the order of 10'' sec  (8). Thus, in this concrete 
case the drop loses i ts  energy at respective times 0.3 
psec (n = 30) and 0.03 psec (n = 3). The drop lifetime, 
however, i s  usually from 1 to 30 psec. 

4. We have considered above the interaction between 
a spherical EHD and a dislocation. The reason was 
that in an anisotropic crystal in the absence of external 
forces the surface tension causes the drop to assume 
a spherical shape. The drop shape can change, how- 
ever, in the dislocation field, and this effect manifests 
itself most strongly near the dislocation axis. 

In the equilibrium position the drop energy, which 
consists of the potential energy of the drop in the dis- 
location field and the surface-tension energy, is a 
m i n i m ~ m . ~ '  On the one hand, it is favorable for the 
drop to "flows along the dislocation axis and decrease 
thereby its  potential energy, but the surface energy is 
increased thereby because of the increased surface 
area  of the EHD. To estimate quantitatively the pos- 
sibility of this "flow," let us  find the energy of the in- 
teraction of an edge dislocation with a cylindrical EHD 
whose cylindrical axis is parallel to the dislocation 
axis. This energy is calculated in the same manner 
as in the case of a spherical EHD, using Eq. (3), and 
i ts  value i s  

where N =  rd2Hn, is the total number of the electron- 
hole pairs, d is the cylinder radius, H is the height, 
and p and cp a r e  the polar coordinates of the cylinder 
axis. The energy minimum corresponds to cp = r/2 and 
p=d ,  while the sum of the surface energy and the ener- 
gy of interaction of the cylindrical drop with the dislo- 
cation can be represented in the form 

where cu is the surface-tension coefficient. 

For a spherical EHD with the same number of 
electron-hole pairs, the sum of the surface energy and 
the drop-dislocation interaction energy in the equili- 
brium position (5) i s  

The dimensionless quantities 6, and 6, characterize the 
ratio of the surface energy to the energy of the elastic 
interaction of the EHD with the dislocation. Estimat- 
ing them for Ge (at d<< H): no = 2.7 x 1017 ern-', bX 
= 5 x 10'' cm, D= 3 eV, u= 1/3, and a! = 2 x 1V4 erg/ 
cm2 (Ref. 13) we obtain respectively 6, = 0.08 and 6, 
= 0.1. It is important that both a re  much less than 
unity, i.e., the contribution of the surface energy i s  in 
both cases much smaller than the energy of the elastic 
interaction of the drop with the dislocation. 

It follows from (13) and (15) that at d <a the energy 
of a cylindrical EHD is lower than that of a spherical 
one by an approximate factor a/d .  Thus, it is profit- 
able for an EHD near the a dislocation axis to assume 
a cylindrical shape (to flow along the dislocation axis), 
and the gained elastic energy of the interaction of the 
EHD with the dislocation exceeds the surface-energy 
loss to the surface tension. Within the framework of 
the assumed model, the cylinder length can be limited 
either by the dislocation length L or  by the condition 
imposed on the cylinder radius d, which naturally 
cannot be less than the average distance n',lJ3 between 
the particles in the liquid. If a dislocation grid i s  
present in the semiconductor, this flow of the electron- 
hole liquid (EHL) can lead to formation of a conducting 
cluster made up of EHL filaments. 

It i s  important to note this behavior of an EHL near 
a dislocation axis hinders the formation of spherical 
drops. It is clear that when the condition 6,,,<< 1 i s  
satisfied such a drop will be simply squashed by the 
forces applied to them by the dislocation. Formulas 
(5) and (6) should then pertain to the case 6,,, >> 1. 

We have disregarded in our analysis the change of 
the properties of an EHL under influence of elastic- 
s t ress  fields due to the dislocation. Yet these forces 
can influence significantly the band structure of the 
s e m i c o n d ~ c t o r ~ ~  and lead thereby to a change of the 
EHL properties. To clarify this point we turn to the 
experimental data of Ref. 15, where the properties of 
EHL in uniaxially deformed Ge were studied. The data 
of that reference indicate that the properties of the 
EHL change substantially at pressures p 2 5 kgf/mmz, 
when the EHL density decresses by an approximate 
factor of five, the binding energy to one-half, and the 
drop lifetimes increase by about ten times. This 
change of the EHL properties is due to the lifting of 
the degeneracy of the energy spectrum in a uniaxially 
deformed crystal and to the change of the populations 
of the electron and hole valleys. Of course, the struc- 
ture of the s t ress  fields in a crystal with a dislocation 
is more complicated than in a uniaxially deformed 
crystal, but these results can be satisfactorily used 
for estimates. Using the known value of the shear 
modulus p =6  X lo6 ~ / c m '  for Ge (Ref. 16), we find 
that s t resses  on the order of 5 kgf/mm2 a re  reached 
a t  distances on the order of lV5  cm from an edge dis- 
location. At larger distances it can be assumed that 
the properties of the EHL remain the same a s  in an 
ideal crystal. 

The change produced in the EHL properties by the 
deformation might influence the flow of the EHL along 
the dislocation axis and, in particular limit this flow. 
Thus, the parameter b,,, [ ~ q s .  (14) and (16)], which 
characterizes the ratio of the surface energy of the 
drop to the energy of the elastic interaction, contains 
the electron-hole pair density no, which can become 
much smaller near the dislocation axis. As for the 
surface -tension coefficient a, which also enters in the 
formulas for  6,,,, we know of no experiments in which 
this coefficient was measured in a deformed crystal, 
and confine ourselves here therefore to a rough estimate. 
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The surface tension coefficient decreases with de- 
creasing binding energy 9 and of the particle density 
no in the EHL. This decrease is given by cu -an:' 
(for underformed Ge this formula yields cu - I F 3  erg/ 
cm2). Thus, the EHL surface tension i s  decreased up- 
on deformation. As a result, the parameter 6,,, 
-9n','I3 remains practically unchanged, therefore the 
change of the EHL properties near the dislocation axis 
can apparently not limit i t s  flow along the dislocation 
axis. However, the change of the EHL properties near 
the dislocation axis should increase the EHL lifetime 
and change the luminescence, in analogy with what ob- 
served in uniaxially deformed Ge crystals. l5 

In conclusion, the authors thank A. V. Subashiev for 
helpful discussions and M. N. Evstigneev fo r  help with 
the numerical calculations. 

'1 The manner in which the dislocation affects the EHD shape 
will be discussed in Sec. 4. 

2, The elastic energy of the drop itself in an isotropic medium 
depends only on i ts  volume and does not change when the drop 
shape is  changed. In addition, we also assume that the energy 
of the interaction of the electrons and holes inside the drop 
is constant. 
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