Energy transfer and turbulence spectrum when the
gradient instability is excited in the ionospheric plasma

S. S. Moiseev, R. Z. Sagdeev, A. V. Tur, and V. V. Yanovskil

Khar’kov Physicotechnical Institute, Academy of Sciences of the Ukrainian SSR

(Submitted 15 July 1980)
Zh. Eksp. Teor. Fiz. 80, 597-607 (February 1981)

We study the strong turbulence excited by the gradient instability in the ionospheric plasma. We show that
the energy transfer in such a turbulence has the character of spontaneous symmetry breaking with subsequent
nonlinear interactions between the excited waves. We find the k ~* spectrum of the turbulence.

PACS numbers: 94.20.Ww, 94.20.Bb

INTRODUCTION

It is well known that turbulence appears in a liquid
or a plasma because a system with a large number of
degrees of freedom tends to get rid as soon as possible
of a disequilibrium produced in it. In an incompressible
liquid this leads to the excitation of a large number of
degrees of freedom and to the appearance of the Kolmo-
gorov cascade along the spectrum with a constant
energy flux.'"> Plasma turbulence is more diversified,
but in many cases it is similar to hydrodynamic tur-
bulence. Examples in which deviations from the usual
Kolmogorov scheme of energy transfer along the spec-
trum are possible are therefore of interest. One such
example, which is considered in the present paper, is
drift-wave turbulence with unmagnetized ions. Drift-
wave turbulence is of interest from a thermodynamic
point of view if only because these waves are produced
by the disequilibrium of the system itself. As we
show in the present paper, the energy transfer mech-
anism in the turbulence considered has then some
similarity to spontaneous symmetry breaking in field
theory. It is profitable for the system to break the
initial symmetry thanks to an instability, after which
conditions are produced in it for a very fast energy
transfer to the dissipation region. Another reason for
interest in drift turbulence is its prevalence in the
ionospheric and laboratory plasmas and the important
part played by drift waves in transport processes.

It is well known that the buildup of drift waves starts
when we take into account dissipative mechanisms, for
instance, by taking into account friction forces or
Landau damping (see, e.g., Ref. 3 and references given
there). As long-wavelength drift waves have a linear
dispersion law, the turbulence which occurs turns out
to be strong. In order to have a possibility to compare
the results with experiments we shall consider the
case of the ionospheric plasma in which, at heights of
the order of hundreds of kilometers, there exists in
the equatorial electro-jet a “pure” drift turbulence,
encompassing wavelengths from hundreds of meters to
a few meters (see, e.g., Refs. 4 and 5 and the references
given there). The mechanism for the wave buildup in
that case is the instability found in Ref. 6, which occurs
in an inhomogeneous plasma with a current and with
non-magnetized ions when ¢2>v% (¢, is the sound speed
and v, the drift velocity of the electrons in the electro-
jet.) The vertical density gradient in the ionosphere
dn,/dz (the z-axis is along the vertical and the x-axis
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along the Earth’s magnetic field) is the source for the
disequilibrium. The drift waves which build up due to
this instability (which we shall call the primary instability)
propagate along the y-axis and have wavelengths of the
order of 50-100 m.

The problem of the energy transfer to the observed
meter waves is not a trivial one and is discussed in a
large number of papers (see Ref. 7 and the references
given there), since in the one-dimensional geometry, at
realistic ionospheric parameters, the nonlinear terms
in the equations of motion are very small and the
transfer proceeds slowly. Under these conditions it is
“profitable” for the system to choose a somewhat dif-
ferent, faster means of energy transfer into shorter
waves. As we stated already, to do this the system
breaks the one-dimensional symmetry spontaneously.
This takes place thanks to the secondary instability of
the primary wave in the density gradient. The instab-
ility of the one-dimensional propagation was found in
Ref. 7. However, in contrast to the statement in Ref. 7,
for realistic plasma parameters the secondary in-
stability generates waves with wavelengths of the same
order of magnitude as the primary one and, hence, it
does not by itself explain the observed transfer. The
role of the symmetry breaking and of the secondary
waves manifests itself in the nonlinear theory, since the
initial wave already interacts “with itself” through the
secondary waves and this leads to energy transfer to
meter waves. The short waves are stabilized by the
viscosity and this leads to the formation of nonlinear
packets which propagate obliquely close to the y-axis.
In the long-wavelength region, where we can neglect the
viscosity, a turbulence spectrum &, k™% was obtained.
The results agree well with the data from ionospheric
experiments and radar measurements.? For instance,
experiments show that amplitude fluctuations have a
level of the order of 5 to 10%, and the theory gives
7%. The k=2 spectrum is also confirmed by ionospheric
and radar measurements.®

§1. EQUATIONS OF MOTION

To derive the basic equations we shall start from
two-fluid plasma hydrodynamics which, as is well known,
is valid in the case considered for wavelengths of the
order of several meters and larger:’

d (E+—1[v.xB] )+u,,,2 LY (1)
c n

e
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dv; Vn, e

=—u?— +—E—v,vi=0,
o ui— vivi=0 (2)
on/ot+V (nv.) =0, (3)
dn/ot+V (nv,) =0, (4)
E=-VO,

where v, ; are the collision frequencies with neutrals.

Our assumptions are the following: 1) The ions are
unmagnetized. 2) The electric fields are electrostatic.
3) The electron and ion densities are equal. 4) The
ions and electrons are isothermal. 5) We neglect the
electron inertia. 6) We neglect the ion inertia, for in
real cases ¢2>v3 and v; > w. The two-stream insta-
bility does therefore not arise under these conditions
and we consider the generation of type-II bursts (see
Ref. 7).

We direct the z-axis along the inhomogeneity, ver-
tically upwards, and the x-axis along the Earth’s mag-
netic field. From (1) we find the electron velocities:

8 [ur e® \ v 9 jul e®
T
v e T e T g\ e T e, ()

7 u,’l e® ) Ve 0 (u,“ll ed )

Vie=—— ( nn— - nn—
ay \ Q, m.Q. Q. dz \ Q, m.Q.
Ve

(6)

(rot v,) ;=

div v,,

v, -is the drift velocity of the electrons in the electro-
jet ~ 10> m/s. Substituting (5) and (6) in the electron
continuity equation we get

on on Ve [ue 2 env’m)
— TV — — n—
at 6y Q. ( Q. m.Q.
e (0D In 0D In ve e
— (—————)+=—=—— VO Vnr=0. 7
m,Q,( dy 0z 9z 0y) Q. m.Q. " @

In (5) and (6) we neglected the electron inertia and
terms containing (v,/92,)?~ 107%, in all other respects
Eq. (7) is exact.

Neglecting the ion inertia in (2) we get
1 e
vu=—-—;‘Vl (u‘-’lnn+7{i®). (8)

Substituting (8) in (4) we get

on 1
on_1 (u,‘An+~e—nA(D) -
at Vi m; Vil

e

VOVn=0. 9)

In the following estimates we shall use the experimental
parameters given in Ref. 5 for the ionospheric plasma
in the equatorial electro-jet:

Ve~d 10t 51 vi~250 571, Q,~5.10° g1,
1 dn,

-1
= =102
™ dz) 600 m, v,=10* m/s_

Q~9057, L= ( (10)

cl= -"—hu.z+u.‘=k —Tﬂ',
m; m;
c2~10° (m/s)?.
Writing z in the form n =ny(2) +#, we get from (7) for
the quantity »’ =7/ny(2)

on’ b (Zep Pl ly 21 TW.
at dy v oyl Q.Qdy ° Q.Q, 0z
+__1 ( oW, 6n'_ aw, 6n')
Q. dz dy oy 0z

ve € (0 , 90 9 ,90)=0_ (11)

Qm \ay" oy ez oz

Here W, =uZn’ —e®/m,. Similarly we get from Eq. (9)
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lega ,00 9 00
- —( ’ + ’—)=0.

ay " Gy 9z " oz
(12)
We neglected in Eqgs. (11), (12) the small drift of the
ions in the electro-jet and the gradient drifts. For the
plasma parameters considered these drifts are two
orders of magnitude smaller than the electron drift and
are normally neglected. Moreover, taking these effects

into account does not lead to any principally new fea-
tures.

§2. LINEAR THEORY

For perturbations of the form exp(-iwt +ik,y +ik,2)
we get in the linear approximation from (11) and (12)
the dispersion equation

Q. kS

—k =(1——-f_
o=hve vk, L K

) (*vim—ik“C.‘)j%, (13)

i

Y=v;v,/Q;Q,. For the plasma parametérs of (10) we
have ¥=1/45. From (13) we find:®

Qo Kb (14)
Vi

k,,Vu
= k0 Np=
oSy e VT e

k*=ktk?, o=ortive || <] o]

It follows from (14) that waves propagating along the
y-axis with k,=0 have the largest growth rate:

Vi Va 2 ¥ 12
AR kSt (15)
When the small ion drift in the electro-jet is taken into
account

Y max=

=Kk (Voe+voi}),

and the maximum growth rate is reached for a small
k., k.~ Ry /vy,. For the sake of simplicity we shall,
as in Ref. 7, assume that k,=0. (Taking a small &,

into account does not change the results obtained.)
Substituting the numerical values of (10) in (15), we find
that the condition y >0 for the primary instability gives

Ay>Amin=m-1070,7", ' (16)

Ay=21/ky, A~ 30 m. Thus, the primary instability
results in buildup of waves with A;,~ 50 m or more.

The next question concerns nonlinear mechanisms
whereby the energy of these long waves is transferred
to the short ~5 m waves. (We have already mentioned
that radar measurements and ionospheric experiments
have revealed generation of such waves.) It is shown
in Ref. 7 that for a one-dimensional wave moving along
the y-axis and for the plasma parameters given by (10),
the dispersion Eq. (13) is valid also in second order in
the amplitude, which leads to a very slow steepening
of the wave. We note also that the one-dimensional
propagation of the wave is unstable and that gradients
produced by the primary wave along the y-axis generate
a secondary wave moving along the z-axis. This in-
stability was obtained in Ref. 7 for the case when the
mode with 2 ,=0 was excited. One can then obtain the
dispersion equation for the secondary instability, and
hence Re w and Im w, from the appropriate expressions
for the primary instability for the formal substitution
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Y=z, 27>y, k> ke, Qo> —Q,
10w Q

3
Vg Vgy=— —— ———— = — YU3A €08 kmy.
Ve

L'~ Aknsin kny,
Q dy

(We assume here that due to the primary instability the
harmonic A cosk,,y is excited.) We get for the secondary
instability’

Q,
Ve

. Qo \* kn N
o o{ (%) 0]

Vi

Reo® = —

e Ak, cos kny=—k,v4,, (17)

(18)

From the condition ‘?’>0 we find the minimum wave-
length excited by the secondary instability. From (18)
it follows that

Q, Vi \ Kmla vy
i 2 2 ke 19
(V.Q{)ZAcf?k (19)
For the plasma parameters given in (10) (Q,v;/Q;v,
=~ 300) we get
Yy knDed? 3 k2, km=2/An10"" M, Ami =341 (20)

As the actually observed amplitude is of the order of
5 to 10%, (20) gives

Aoy ~ 30—60 m, (21)

in contrast to the statement of Ref. 7 where the value
A‘,,f&,"‘ 5 -6 m is given for the secondary waves. The
secondary instability thus produces modes of the same
wavelength as the primary one. Since the characteris-
tic dimension of the change in the density in the primary
wave turned out to be of the order of the wavelength of
the secondary wave, we must evaluate the secondary in-
stability more correctly. Since the secondary in-
stability is important in what follows, we check on the
existence of localized modes.

The starting equations for the secondary instability
follow from (9) and (11)

an, _( Q. [} )L 1 oW, , ony
at vl oyl Q Q. 9y "oy
Q, on, 93\ v, 1 OW.
(-t ——=0 2
( ve dy 02) Q, Q. 09z ! (22)
anz 1 2 Q(
-5-—:(0. An, — Q. AWZ) . (23)

For the sake of simplicity we shall assume k&, to be
such that ¥2)(k,) is close to
(2) _Qe on, 24
max == e PYUa: 3y ( )
(n, is the primary wave). Neglecting small viscous
terms we then easily get from (4) the equation for the
eigenmodes; it has the form of a Schrodinger equation

90 . i(Qe/vek,)pdn,/dy
—_—k 1+ =0, 2
P k [ 1 a+tv oy P=0 ( 5)

O=[o (1+p) +k.va 10, (26)

Expanding the density perturbation near the inflection
point we get the Schrodinger equation for a harmonic
oscillator. Hence for #,> 0 and the inflection point
(see Fig. 2) we have

E=—k2 (1_*_ (Qw/v.k,) Ynykim )’ E,

ety ks (27

In the quasiclassical approach
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¥ FIG. 1.

o (1+y) +k,v¢=—i—&—m—¢nlk,,., (28)
v, k;
O=e"P, (Joy), (29)
P,(Vay) are Hermite polynomials,
_ Ve \ i v
a—k,( Q) (H?I) . (30)

One sees easily that localized eigenmodes grow when
n,<0 and the density behavior is as in Fig. 1 and for
n,>0 and a density behavior as in Fig. 2. In that case
Eq. (30) shows that the transverse derivative is small
compared to the longitudinal one. The reason is that
the wavelength of the inhomogeneity is large ~(k,#,)™"
and the quantity v,, varying over distances 2nk;,! affects
the density well weakly.

The density perturbation produced by the primary
instability thus produces an instability of the vertically
propagating waves. Positive perturbations with the
density behaving as in Fig. 2 then excite a wave moving
upwards, and a negative segment of a perturbation with
the density behavior of Fig. 1 generates a wave moving
downwards. Notwithstanding the fact that the modes
appearing here have a wavelength of the order of that
of the primary wave, i.e., by themselves they do not
explain the formation of short-waves, their role in the
nonlinear dynamics is very large, as shall become
clear in what follows.

§3. INTERACTION BETWEEN VERTICAL AND
HORIZONTAL WAVES

From (11) and (12) we can obtain a single rather un-
wieldy equation which was studied in Refs. 9-11. For
studying the transfer we proceed differently, explicitly
separating the vertical and the horizontal waves and
their interactions. We turn to the original Eqgs. (11)
and (12) and we shall look for a solution in the form of

a sum:
n=nytn,, W=W,+W,. (31)

We shall assume here the functions », and W, to
satisfy Eqs. (22) and (23) with nonlinear terms taken

y

FIG. 2.
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into account, i.e.,

on, 1 oW, on, 1 oW, oun, 1 oW, on,

at Q, Jdy oIz Q. dy 0z Q. 0z oy

1 0w,

Q. on, 0\ Ve
B D T =
( v, 0y 0z) Q Q, 0z 0. (32)
d 1 Q
T, (e ammgraw) o (33)

Equations (33) and (32) indicate that #, is a nonlinear
wave moving along the z-axis and changes at small
amplitude into the secondary wave considered earlier.
For that reason we can drop in (32) the unimportant
terms with L and neglect in (32) and (33) second deriva-
tives with respect to y in comparison with second
derivatives with respect to z. Moreover, we shall show
that the remaining nonlinear terms in (11) and (12)

result in small corrections to the results obtained below.

Subtracting Eqs. (32) and (33) from the equations for

the sums 7, +n, and W, + W, we get equations for », and
W,:

an, (!2, " 0) ve 1 OW, + 1 dn. W,
ot Vel y/ Q. Q. ady Q. dy 0dz
B 1 oW, on, 1 on, oW, _1_ aW, on, —0, (34)
Q Jdy o9z Q, dy o0z Q. dJdy 0z
on, __1_(’:l *n, _&azw.) -0 (35)
at Vi ay* Q. dy*

All equations are written in a reference frame moving
with the drift. Moreover, we have neglected in (35)
small transverse derivatives 8%/82% in comparison with
82/0y* [see Eq. (30)].

Using linear theory we can transform the nonlinear
terms in Eqgs. (32) and (34). We evaluate

1 8W‘
Q. dy

; 1 my _6_(-0,’k,,’—v.~m)
Q. m. ay g ™

From the dispersion equation (13) we find —v;w —ik3c2
=—V;w,, and then

1 aw, Q

—— T e 36

o 3y o (36)
As the dispersion relation for the secondary instability
is obtained from the dispersion relation for the primary
one by the substitution

2
Ky = kyy Q¢ —8%, © = ks, Vap=— Yoan,,
Ve
we can obtain directly from (36)
1 oW, Qe\*
=(2e) v, ]
Q. oz (v,) Pvanas (37)

From this we find for the nonlinear terms

1 on, vW, 82, un,
—_— =- Poang s
Qe oy vz Ve Jz (38)
1 oW, on, Qe\* n,n,
o (2 o
Qe Jdy vz Ve dy
As a result we get the set of equations:
on._(sz " aJ ) +sz on,
ot L oy ) Y T
J ~,= .
- (B) v S (39)
Vi Jy*
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d y0n, Q. dan, Qe dan,

it — 2w + ) 2

az( 3t v, e (v, Vo=
¢ dn, )_( Q. )z " { onn, on, 0 ( an,
v; 0z° Ve ¥vs dy 0z dz rattz) ay }

2
= (22) youn, 2 202, (40)
Ve oy Iz

Equations (39) and (40) describe the interaction between
the nonlinear waves that move along the y- and z-axis.
[We discarded in (39) the nonlinear term

on, oW, oW, odn,
which is small compared to those retained.] The sec-
ond term in (39) describes the primary instability, and
the next one the transfer from the wave #, to the wave
n,. The last term on the left-hand side of (39) is the
one of greatest interest to us, as it represents the
self-action of the wave n, with participation of the wave
n,. Similarly, in (40) we take into account the secondary
instability, the transfer from the wave »n, to the wave
n,, and the self-action of n, occuring with the wave »,
participating.

§4. ENERGY TRANSFER AND TURBULENCE
SPECTRUM

It is seen from (39) and (40) that the energy transfer
from the long-wave to the short-wave modes occurs
in the wave n, thanks to the term

Qe \? an,n,
( ) Poan, ’
Ve ay

and in the wave 7, thanks to the last term in (40).
Qualitatively Eq. (39) is already close to the Burgers
equation with an instability y = (R,v,/v,L)¥.

We find now the characteristic dimensions and wave
amplitudes for which the instability is stabilized. We
consider first the wave n,. Viscosity stabilizes the
distortion of the nonlinear packet whose size is given by
the condition:

& S oy, ¢t 0%n,

(v.)wvd dy ™ vi Oy*
Substituting here the plasma parameters from (10) we
get

Anina~0.02 m. (41)

Due to the development of the instability the nonlinear
term grows to the amplitude:

Qe § (Q, )2 ,. onm,
- ~ n,,
ve L Vit . Ve y !
Ay~10°nyn, [m].
Hence
A~Y20~4.4 m. (42)

We now consider Eq. (40).
with the instability we get

Comparing the transfer

9 Q. \? on Q\* ., on on.

E(T‘) ¢‘v¢n.nz—ay’ ~ ( - ) "«F'L’g—ay‘ n;—o; R (Tlad (29 (43)
Comparing transfer and viscosity we find

9 ¢ 9*n, Q. 6n, 0n,

ST (2 von S

0z ~v; 0z° Ve "oy oz (44)

A:nyna~0.020, /A, [m].
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From (41) and (44) follows the value A,~ A,. As a result
we get #~ 1/14 for n~nr,~n,, The experiments indicate
for » an order of 5 to 10%, which agrees well with the
value obtained. For A experiment gives a value of the
order of a few meters, which also agrees with the
result (42).

The following scheme for the energy transfer along
the spectrum therefore arises. For the primary wave,
propagating along the y-axis it is advantageous to break
the one-dimensional symmetry and excite a wave pro-
pagating vertically. Through this secondary wave the
primary wave undergoes a strong “self-action” which
leads to its steepening and energy transfer along the
spectrum. The spontaneous breaking of the primary
symmetry which occurs here is very strongly related
to the similar effect in field theory. From a formal
point of view the crossing nonlinearity

an 00 on 9@

9y 0z 9z oy
vanishes for a single harmonic. However, there is no
superposition principle for it. The latter would mean
that this instability would vanish identically. One
verifies easily that, in general, the crossing nonlinearity
does not vanish even for a sum of two different harmon-
ics. Therefore, if the coefficient of such a non-linear-
ity is very large it may be advantageous for the system
to excite two or more waves in order to have the pos-
sibility to eliminate the disequilibrium very rapidly.
The resultant energy transfer along the turbulence
spectrum is strong in the present case, so that we are
forced to restrict ourselves to qualitative estimates
when determining the spectrum.

Since the excited modes propagate along the y-axis,
we shall consider the spectrum as a function of %,,
and assume that &k, is small enough to neglect viscosity.
We consider Eq. (39). In the stationary case the term
with the instability must be proportional to the non-
linear term with transfer, as there are no other terms.
As a result we get

- any
ny ~ ) Yvanin, ——,
l)y

), \ 2 .
me () e 45)
Ve n, vaky, v nlLk,
H Qi\* 1 B
(= jen.(kv)dkw e, (ky) ~ (_'h_) W v

[

(n, depends weakly on y). As the spectrum (45) is
obtained in a frame of reference fixed in the drift, the
large-scale transport of density pulsations with speed
v, is automatically eliminated. For the spectrum v,,
we get from (36)

Va

n,Lk,’

Vze ~

Eue (k) ~ Ll:—::zk"_J' (46)
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The spectrum €« k~; agrees rather well with experi-
ments and has a simple physical meaning. It follows
from Egs. (39) and (40) that the characteristic time for
energy exchange between the vertical and the horizontal
components is, in the region where the viscosity can be
neglected, proportional to the growth rate of the secon-
dary instability ;) [see (18)]. (Together with this
energy exchange there is also a transfer to short waves.)
In a stationary turbulent state the characteristic time
¥{») must be of the same order as the characteristic
pumping time, i.e., ¥(}). The condition ¥}, ~ ¥{;) yields
a spectrum «< k-3, We note that in Refs. 9 to 11 they
studied the spectra of the gradient instability in the
framework of a modified hypothesis that the correlation
is relaxed (in the spirit of Kraichnan’s scheme) and
they showed that the spectrum can be in the range from
k3 to k7%,

We turn to the nonlinear terms which we neglected.

For instance, in (35) we neglected the term
1 e 9 aQ,
o )

Taking this term into account gives in Eq. (39) a term
2¢v,n,9n,/9y and, apart from that, a nonlinear viscosity
which is not at all important for the consideration of the
transfer. One sees easily that the correction obtained
is small compared to the nonlinear terms retained in
(39). Similarly, taking into account the nonlinear term

1 e 9 0,

{v,fmv.-a_z("’ dz )

in Eq. (33) leads to a correction in (40) of the form
24%(Q,/v,)vyn, n,dn,/3y which is small compared to the
nonlinear terms which were retained.
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