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We study the strong turbulence excited by the gradient instability in the ionospheric plasma. We show that 
the energy transfer in such a turbulence has the character of spontaneous symmetry breaking with subsequent 
nonlinear interactions between the excited waves. We find the k spectrum of the turbulence. 

PACS numbers: 94.20.Ww, 94.20.Bb 

INTRODUCTION along the Ear th ' s  magnetic field) is the source  f o r  the 
disequilibrium. T h e  dr i f t  waves which build up  due t o  

It i s  well known that turbulence a p p e a r s  in a liquid 
this  instability (which we shal l  ca l l  the p r i m a r y  instability) 

o r  a p lasma because a sys tem with a l a r g e  number of 
propagate along the y-axis  and have wavelengths of the 

degrees  of f reedom tends t o  get r i d  a s  soon as possible o r d e r  of 50-100 m.  
of a disequilibrium produced in i t .  In a n  incompressible  
liquid this  leads to  the excitation of a l a r g e  number of 
degrees  of f reedom and to the appearance of the Kolmo- 
gorov cascade along the spec t rum with a constant 
energy flux."' P l a s m a  turbulence is m o r e  diversified, 
but in many c a s e s  it i s  s i m i l a r  t o  hydrodynamic tu r -  
bulence. Examples in which deviations f r o m  the usual  
Kolmogorov scheme of energy t r a n s f e r  along the spec-  
t r u m  a r e  possible a r e  therefore of interest .  One such  
example, which is considered in the p resen t  paper ,  is 
drift-wave turbulence with unmagnetized ions. Drift- 
wave turbulence i s  of in te res t  f r o m  a thermodynamic 
point of view if only because these  waves a r e  produced 
by the disequilibrium of the sys tem itself.  A s  we 
show in the presen t  paper ,  the energy t r a n s f e r  mech- 
an i sm in the turbulence considered has  then s o m e  
similar i ty  to spontaneous symmetry  breaking in field 
theory. It is profitable f o r  the sys tem to break  the 
initial symmetry  thanks to  a n  instability, a f t e r  which 
conditions a r e  produced in it  f o r  a v e r y  fas t  energy 
t rans fe r  t o  the dissipation region. Another reason  f o r  
interest  in  drift  turbulence is i t s  prevalence in  the 
ionospheric and laboratory p lasmas  and the important 
par t  played by drift  waves in t ransport  p rocesses .  

It i s  well known that the  buildup of drift  waves s t a r t s  
when we take into account dissipative mechanisms,  f o r  
instance, by taking into account fr ic t ion f o r c e s  o r  
Landau damping ( see ,  e.g., Ref. 3 and re fe rences  given 
there) .  A s  long-wavelength dr if t  waves have a l inear  
dispersion law, the turbulence which o c c u r s  tu rns  out 
to  be strong. In o r d e r  to  have a possibility to  compare 
the resu l t s  with experiments  we  sha l l  consider  the 
case  of the ionospheric p lasma in which, a t  heights of 
the o r d e r  of hundreds of ki lometers ,  t h e r e  ex i s t s  in 
the equatorial electro-jet a "pure" dr if t  turbulence, 

The  problem of the energy t r a n s f e r  to  the observed 
m e t e r  waves is not a t r iv ia l  one and is discussed in a 
l a r g e  number of p a p e r s  ( s e e  Ref. 7 and the re fe rences  
given there) ,  s ince  in the one-dimensional geometry, a t  
rea l i s t i c  ionospheric p a r a m e t e r s ,  the nonlinear t e r m s  
in the  equations of motion a r e  v e r y  s m a l l  and the 
t r a n s f e r  proceeds slowly. Under these conditions it  is 
"profitable" f o r  the sys tem t o  choose a somewhat dif- 
ferent ,  f a s t e r  means  of energy t r a n s f e r  into s h o r t e r  
waves. A s  we stated already,  to  d o  this  the sys tem 
breaks  the one-dimensional symmetry  spontaneously. 
T h i s  t akes  place thanks to  the secondary instability of 
the p r i m a r y  wave in the density gradient.  The instab- 
ility of the one-dimensional propagation was  found in 
Ref. 7. However, in contrast  to  the  s tatement  in Ref. 7, 
f o r  rea l i s t i c  p lasma p a r a m e t e r s  the secondary in- 
stability genera tes  waves with wavelengths of the s a m e  
o r d e r  of magnitude a s  the p r i m a r y  one and, hence, it 
does not by itself explain the observed t rans fe r .  The 
ro le  of the symmetry  breaking and of the secondary 
waves manifests  itself in the nonlinear theory, s ince the 
initial wave already in te rac t s  "with itself" through the 
secondary waves and this  leads to  energy t rans fe r  to 
m e t e r  waves. The  shor t  waves a r e  stabilized by the 
viscosi ty  and th i s  leads to the formation of nonlinear 
packets  which propagate obliquely close to the  y-axis. 
In the long-wavelength region, where we can neglect the 
viscosity, a turbulence spec t rum k d 3  was  obtained. 
The  resu l t s  a g r e e  well with the data  f r o m  ionospheric 
experiments  and  r a d a r  measurements. '  F o r  instance, 
experiments  show that amplitude fluctuations have a 
level of the o r d e r  of 5 to  lo%, and the  theory gives 
7v0. The k-3 spec t rum i s  a l s o  confirmed by ionospheric 
and r a d a r   measurement^.^ 

encompassing wavelengths f r o m  hundreds of m e t e r s  t o  
a few m e t e r s  (see,  e.g., Refs. 4 and 5 and the re fe rences  

5 1. EQUATIONS OF MOTION 

given there) .  The mechanism f o r  the wave buildup in To  derive the bas ic  equations we shal l  s t a r t  f r o m  
that case  is the instability found in Ref. 6, which o c c u r s  two-fluid plasma hydrodynamics which, as is well known, 
in a n  inhomogeneous p lasma with a cur ren t  and with is valid i n  the c a s e  considered f o r  wavelengths of the 
non-magnetized ions when c:>v; (z, i s  the sound speed order of several meters and larger:, 
and u, the drift  velocity of the electrons in  the electro-  
jet.) The ver t i ca l  density gradient in the ionosphere 1 V n L( E+ T[v.xBl f n.'- +v.v.=O, 
dn,/dz (the z-axis  is along the ver t i ca l  and the x-axis m, 1 n 

(1) 
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an/atf V (nv.) =0, 
an/dt+V (mi) =0, 

E=-V@, 

where u,,i a r e  the collision frequencies with neutrals. 

Our assumptions a r e  the following: 1) The ions a r e  
unmagnetized. 2) The electric fields a r e  electrostatic. 
3) The electron and ion densities a r e  equal. 4) The 
ions and electrons a r e  isothermal. 5) We neglect the 
electron inertia. 6) We neglect the ion inertia, for in 
real  cases c:> v: and vi  >> w . The two-stream insta- 
bility does therefore not ar ise  under these conditions 
and we consider the generation of type-I1 bursts (see 
Ref. 7). 

We direct the z-axis along the inhomogeneity, ver-  
tically upwards, and the x-axis along the Earth's mag- 
netic field. From (1) we find the electron velocities: 

V. 
(rot u.).= -div v,, 

9. 

v, is the drift velocity of the electrons in the electro- 
jet " 10' m/s. Substituting (5) and (6) in the e1.ectron 
continuity equation we get 

In (5) and (6) we neglected the electron inertia and 
terms containing (v,/S1,)'" in a l l  other respects 
Eq. (7) is exact. 

Neglecting the ion inertia in (2) we get 

Substituting (8) in (4) we get 

In the following estimates we shall use the experimental 
parameters given in Ref. 5 for the ionospheric plasma 
in the equatorial electro-jet: 

c.l-1W ( m l ~ ) ~ .  
Writing n in the form n=n,(z) +%, we get from (7) for 
the quantity n' = E/no(z) 

an' anf a V i a  v I aZw 
- + " d 4 -  -+- 2--w-_1-. 
at a y  (VYL a y  ) n.n,dy e Q.Q. az2 

1 dW. an' +K (x---- 
ay ay a z  an ' )  

Here We =u: n' - e@/me. Similarly we get from Eq. (9) 

(12) 
We neglected in Eqs. ( l l ) ,  (12) the small  drift of the 
ions in the electro-jet and the gradient drifts. For the 
plasma parameters considered these drifts a r e  two 
orders of magnitude smaller than the electron drift and 
a r e  normally neglected. Moreover, taking these effects 
into account does not lead to any principally new fea- 
tures. 

$2. LINEAR THEORY 

For perturbations of the form exp(-iwt +ik,y +ik,z) 
we get in the linear approximation from (11) and (12) 
the dispersion equation 

~ = v ~ u , / S ~ ~ S ~ , .  For the plasma parameters of (10) we 
have q =  1/45. From (13) we find? 

It follows from (14) that waves propagating along the 
y-axis with k, = 0 have the largest growth rate: 

When the small ion drift in the electro-jet is  taken into 
account 

and the maximum growth rate is  reached for a small  
k,, k," k,~uOi/v,,. For the sake of simplicity we shall, 
a s  in Ref. 7, assume that k,=O. (Taking a small k, 
into account does not change the results obtained.) 
Substituting the numerical values of (10) in (15), we find 
that the condition y >  0 for the primary instability gives 

A, = 2n/k,, A,," 30 m. Thus, the primary instability 
results in buildup of waves with A,- 50 m or more. 

The next question concerns nonlinear mechanisms 
whereby the energy of these long waves is transferred 
to the short " 5 m waves. (We have already mentioned 
that radar measurements and ionospheric experiments 
have revealed generation of such waves.) It is shown 
in Ref. 7 that for a one-dimensional wave moving along 
the y-axis and for the plasma parameters given by ( lo) ,  
the dispersion Eq. (13) i s  valid also in second order in 
the amplitude, which leads to a very slow steepening 
of the wave. We note also that the one-dimensional 
propagation of the wave is unstable and that gradients 
produced by the primary wave along the y-axis generate 
a secondary wave moving along the z-axis. This in- 
stability was obtained in Ref. 7 for the case when the 
mode with k , = O  was excited. One can then obtain the 
dispersion equation for the secondary instability, and 
hence Re w and Im w, from the appropriate expressions 
for the primary instability for the formal substitution 
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FIG. 1. (We assume here  that due to the primary instability the 
harmonicA cosk,y i s  excited.) We get f o r  the secondary 
instability7 

S1. R ~ ~ ( ' J = - -  $ud Ak, cos k,y=-k,ud,, 
v. 

(17) 

From the condition y ( 2 ) >  0 we find the minimum wave- 
length excited by the secondary instability. From (18) 
it follows that 

P,,(=) a r e  Hermite polynomials, 

One s e e s  easily that localized eigenmodes grow when 
n, < 0 and the density behavior is a s  in Fig. 1 and for  
n,> 0 and a density behavior a s  in Fig. 2. In that case  
Eq. (30) shows that the t ransverse  derivative is  smal l  
compared to the longitudinal one. The reason is that 
the wavelength of the inhomogeneity i s  la rge  "(k, n,)-I 

and the quantity u,, varying over distances 2sk,' affects 
the density well weakly. 

For the plasma parameters given in (10) (Q,vi/aiv, 
= 300) we get 

As the actually observed amplitude i s  of the o rde r  of 
5 to lo%, (20) gives 

The  density perturbation produced by the primary 
instability thus produces an instability of the vertically 
propagating waves. Positive perturbations with the 
density behaving a s  in Fig. 2 then excite a wave moving 
upwards, and a negative segment of a perturbation with 
the density behavior of Fig. 1 generates a wave moving 
downwards. Notwithstanding the fact that the modes 
appearing here have a wavelength of the order  of that 
of the primary wave, i.e., by themselves they do not 
explain the formation of short-waves, their  role in the 
nonlinear dynamics i s  very large, a s  shall become 
c lear  in what follows. 

in contrast to the statement of Ref. 7 where the value 
A($," 5 - 6 m i s  given for  the secondary waves. The 
secondary instability thus produces modes of the s ame  
wavelength a s  the primary one. Since the characteris-  
tic dimension of the change in the density in the primary 
wave turned out to be of the order  of the wavelength of 
the secondary wave, we must evaluate the secondary in- 
stability more correctly. Since the secondary in- 
stability is  important in what follows, we check on the 
existence of localized modes. 

The starting equations for  the secondary instability 
follow from (9) and (11) 

$3. INTERACTION BETWEEN VERTICAL AND 
HORIZONTAL WAVES 

Q a V , I  awe an, 2- (2+-) ----vdz- 
at v,L ay Qe Q e  ay a~ 

From (11) and (12) we can obtain a single ra ther  un- 
wieldy equation which was studied in Refs. 9-11. For  
studying the transfer  we proceed differently, explicitly 
separating the vert ical  and the horizontal waves and 
their  interactions. We turn to the original Eqs. (11) 
and (12) and we shall look fo r  a solution in the form of 
a sum: 

For the sake of simplicity we shall assume k ,  to be 
such that y'2'(k,) i s  close to 

czr 8, an, 
Tm. = - $Vd. - 

V ,  a~ 
(n, is the primary wave). Neglecting smal l  viscous 
t e rms  we then easily get from (4) the equation for  the 
eigenmodes; it has the form of a ~ch rod inge r  equation 

We shall assume here the functions n, and W, to 
satisfy Eqs. (22) and (23) with nonlinear t e r m s  taken 

Expanding the density perturbation near the inflection 
point we get the ~ch rcd inge r  equation for  a harmonic 
oscillator. Hence for  n,> 0 and the inflection point 
(see Fig. 2) we have FIG. 2. 

In the quasiclassical approach 
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into account, i.e., 62. ;(+--- cin, 6 2  dn, 
Il'udnr-+ 2 +Z~dn,nr- 

V. az ( Va 1 a!l an, 1 aW, an2 1 aW2 dnZ 1 aWz dn2 --------- +--- 
at ~ 2 ,  ay az ri. dy oz Q. d l  ciy  

Equations ( 3 3 )  and ( 3 2 )  indicate that n, i s  a nonlinear 
wave moving along the z-axis and changes a t  small  
amplitude into the secondary wave considered ear l ie r .  
For  that reason we can drop in ( 3 2 )  the unimportant 
t e rms  with L and neglect in ( 3 2 )  and ( 3 3 )  second deriva- 
tives with respect to y in comparison with second 
derivatives with respect to z .  Moreover, we shall show 
that the remaining nonlinear t e rms  in ( 1 1 )  and ( 1 2 )  
result in small  corrections to the results  obtained below. 

Subtracting Eqs. ( 3 2 )  and ( 3 3 )  from the equations for  
the sums n, +n, and W ,  + W, we get equations for  n, and 
W,: 

All equations a r e  written in a reference f rame moving 
with the drift. Moreover, we have neglected in ( 3 5 )  
small  t ransverse derivatives az/az2 in  comparison with 
a2/ayz [see Eq. ( 3 0 ) ] .  

Using linear theory we can transform the nonlinear 
t e rms  in Eqs. ( 3 2 )  and ( 3 4 ) .  We evaluate 

From the dispersion equation ( 1 3 )  we find -viw -ik2,c2, 
- - - v i m , ,  and then 

i aw, Q, 
$ w l .  

Q. a~ -", 
As the dispersion relation fo r  the secondary instability 
is obtained from the dispersion relation fo r  the primary 
one by the substitution 

62. 
h, - k., S2. -t o - k,u,,, UI. = --$udn,, 

V. 

we can obtain directly from ( 3 6 )  

From this we find for  the nonlinear t e r m s  

1 u u W S2. on 
$ u d n 2 L  

62. cly oz v. dz ' 
1 ow* utz, - ---- = - dn,n2 ($1 ' $udn, - . 

62, dy uz a~ 

As  a result we get the se t  of equations: 

5 61 0 01 5- - (5 -,- -) + 2 $udn, - 
dt %.L Oy 2. dz 

UrL,n, c.- 3-n *I 
my v,  dy- ' 

Equations ( 3 9 )  and ( 4 0 )  describe the interaction between 
the nonlinear waves that move along the y-  and z-axis. 
[we discarded in ( 3 9 )  the nonlinear t e rm 

an, awl aw, an, ----- 
a y  a~ a y  az ' 

which i s  smal l  compared to those retained.] The sec-  
ond te rm in ( 3 9 )  describes the primary instability, and 
the next one the transfer  from the wave n, to the wave 
n,. The last  te rm on the left-hand side of ( 3 9 )  i s  the 
one of greatest interest to us,  a s  it represents  the 
self-action of the wave n, with participation of the wave 
n,. Similarly, in ( 4 0 )  we take into account the secondary 
instability, the transfer  f rom the wave n, to the wave 
n , ,  and the self-action of n, occuring with the wave n,  
participating. 

$4. ENERGY TRANSFER AND TURBULENCE 
SPECTRUM 

It i s  seen from ( 3 9 )  and ( 4 0 )  that the energy transfer  
from the long-wave to the short-wave modes occurs 
in the wave n, thanks to the t e rm 

and in the wave n, thanks to the last te rm in ( 4 0 ) .  
Qualitatively Eq. ( 3 9 )  i s  already close to the Burgers 
equation with an  instability y = (S2,v,/veL)V. 

We find now the characterist ic  dimensions and wave 
amplitudes for  which the instability i s  stabilized. We 
consider f i r s t  the wave n,. Viscosity stabilizes the 
distortion of the nonlinear packet whose s ize  is given by 
the condition: 

Substituting here the plasma parameters from ( 1 0 )  we 
get 

h,n,n,-0.02 m . ( 4 1 )  

Due to the development of the instability the nonlinear 
t e rm grows to the amplitude: 

A,-103nn,nl [m]. 

Hence 

We now consider Eq. ( 4 0 ) .  Comparing the transfer  
with the instability we get 

Comparing transfer  and viscosity we find 

a c,'$ a2n, ---- an, an, 

( 4 4 )  
h.nln2-0.02h,/h, [m]. 
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F r o m  (41) and (44) follows the value A," A,. A s  a resul t  
we get n -  1/14 f o r  n-n,-n,. The  experiments  indicate 
f o r  n a n  o r d e r  of 5 to  l O f ,  which a g r e e s  well with the 
value obtained. F o r  A experiment  gives a value of the 
o r d e r  of a few meters ,  which a l s o  a g r e e s  with the 
resul t  (42). 

The following s c h e m e  f o r  the energy t r a n s f e r  along 
the spec t rum there fore  a r i s e s .  F o r  the  p r imary  wave, 
propagating along the y-axis  it  i s  advantageous to  b reak  
the one-dimensional symmetry  and excite a wave pro- 
pagating vert ical ly .  Through this  secondary wave the 
pr imary  wave undergoes a s t rong  "self-action" which 
leads to i t s  steepening and energy t r a n s f e r  along the 
spectrum. The spontaneous breaking of the p r imary  
symmetry  which occurs  h e r e  is v e r y  s t rongly related 
to the s i m i l a r  effect in field theory. F r o m  a f o r m a l  
point of view the c ross ing  nonlinearity 

vanishes f o r  a single  harmonic. However, t h e r e  i s  no 
superposition pr inciple  f o r  it .  The  la t t e r  would mean 
that this  instability would vanish identically. One 
verif ies  easi ly  that,  in  general ,  the c ross ing  nonlinearity 
does not vanish even f o r  a s u m  of two different harmon- 
ics .  Therefore,  if the coefficient of such  a non-linear- 
ity is very  la rge  it may be  advantageous f o r  the sys tem 
to excite two o r  more  waves in  o r d e r  to  have the  pos- 
sibility to el iminate  the disequilibrium very  rapidly. 
The resultant energy t r a n s f e r  along the turbulence 
spectrum i s  s t rong  in the p resen t  case,  s o  that we a r e  
forced to r e s t r i c t  ourse lves  to qualitative es t imates  
when determining the spec t rum.  

Since the excited modes propagate along the y-axis, 
we shal l  consider  the spec t rum as a function of k,, 
and a s s u m e  that k,  i s  s m a l l  enough to neglect viscosity. 
We consider Eq. (39). In the s tat ionary c a s e  the  t e r m  
with the instability must  be  proportional t o  the non- 
l inear  t e r m  with t rans fe r ,  a s  there  a r e  no o ther  t e r m s .  
A s  a resul t  we  get 

(a, depends weakly on y).  A s  the spec t rum (45) is 
obtained in a f r a m e  of re fe rence  fixed in the  dr if t ,  the 
large-scale  t ransport  of density pulsations with speed 
u, is automatically eliminated. F o r  the  spec t rum u, 
we get f rom (36) 

Ud U d 2  - - Eve (ku) - kV-'. 
nzLk, ' (46) 

The  spec t rum &a k-,3 a g r e e s  r a t h e r  well with experi-  
ments  and has a s imple  physical meaning. It follows 
f r o m  Eqs.  (39) and (40) that the charac te r i s t i c  t ime  f o r  
energy exchange between the ver t i ca l  and the horizontal 
components i s ,  in the region where  the viscosity can be  
neglected, proportional to the growth r a t e  of the secon- 
dary  instability yrh [ see  ( l8 ) l .  (Together with this  
energy exchange there  i s  a l so  a t r a n s f e r  t o  short  waves.) 
In a s tat ionary turbulent s ta te  the charac te r i s t i c  t ime  
ylA must be  of the s a m e  o r d e r  as the  charac te r i s t i c  
pumping t ime,  i.e., yl:). The  condition ~ $ ) " y &  yields 
a spec t rum a- kb3 .  We note that in Refs. 9 to  11 they 
studied the  s p e c t r a  of the gradient instability in the 
f ramework  of a modified hypothesis that the correlat ion 
is relaxed (in the  s p i r i t  of Kraichnan's scheme)  and 
they showed that the spec t rum can be  in the range f rom 

to kd4. 

We turn to t h e  nonlinear t e r m s  which we neglected. 
F o r  instance, in (35) we neglected the  t e r m  

Taking this  t e r m  into account gives in Eq. (39) a t e r m  
2q ud n,an,/ay and, apar t  f r o m  that,  a nonlinear viscosity 
which is not a t  a l l  important f o r  the consideration of the 
t r a n s f e r .  One s e e s  easi ly  that the correct ion obtained 
is s m a l l  compared to the nonlinear t e r m s  retained in 
(39). Similar ly,  taking into account the nonlinear t e r m  

in Eq. (33) leads to  a correct ion in (40) of the f o r m  
2~ 2(S2,/u,)udn,n2an,/ay which is s m a l l  compared t o  the 
nonlinear t e r m s  which w e r e  retained.  
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