Anisotropic spectra of weak sound turbulence
V. S. L'vov and G. E. Fal’kovich

Institute of Atomic Energy, Siberian Department, Academy of Sciences USSR
(Submitted 10 July 1980)
Zh. Eksp. Teor. Fiz. 80, 592-596 (February 1981)

The weak turbulence of waves with a weakly damped dispersion law is considered. Small anisotropic
increments to the isotropic spectrum of the Kolmogorov type are found in the stationary case. It is shown that
weak anisotropy of a source located in the region of small k should lead to an appreciably anisotropic
spectrum in the region of large k. The strongly anisotropic stationary spectra are determined.

PACS numbers: 43.25.Cb

INTRODUCTION

The theory of wave turbulence has been intensive-
ly developed in recent years in connection with problems
of plasma physics, nonlinear optics, and hydrodyna-
mics. In the presence of dispersion of the propagation
velocity and a low level of nonlinearity, the interaction
between waves is weak, which allows us to use the
kinetic equation for the description of the turbulence.
An important achievement of the theory has been the
determination of the spectra of weak wave turbulence
as exact solutions of the kinetic equation.'”® An iso-
tropic medium is usually considered. In this case, for
a decay law of dispersion and for a scale-invariant
situation

On=A0n  Vikakak=A"Vi ki,

where Vklk k, is the matrix element of three-wave
interaction, the spectrum of the turbulence is

B~k (1)

Here d is the dimensionality of the k space. The spec-
trum (1) is realized in the inertial scale interval k&,

< k<k,, where the source is located in the region
k=k,, and at k=k, is the drain of the energy of the
waves; this corresponds to a constant energy flux over the
spectrum.

In addition to the isotropic spectra, small anisotropic
increments to them have also been found:*

S~k " cos Oy, (2)

where n specifies the source. We turn our attention to
the fact that, since a>1 (the decay situation), the aniso-
tropic increment falls off with increase in 2 more
slowly than the isotropic part of the spectrum. This
indicates an unusual instability of the isotropic spec-
trum—even a small anisotropy of the source leads to
an essentially anistropic spectrum deep in the inertial
interval.

In the present work, we find the strongly anisotropic
spectra of weak turbulence for the physically interest-
ing case of a weak-decay dispersion law. Since the
dispersion is small, waves propagating in a narrow
cone of angles take part in the three-wave interaction
(in the case of linear dispersion law w, =ck, only
waves with collinear wave vectors interact). Assuming
that the angular dependence of the spectrum », changes
little over the dimensions of the interaction angle, we
use a differential approximation in the angle variables.
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In Sec. 1, we find the small stationary increments to
the spectrum (1), of the form

Onx

. aZ aP, (cos Bux) K FV2 1=0,1,2, ..., (3)

1=0

n;'
for the dispersion law w,~ k" ¢(£<<1).

Formula (2) is a special case of formula (3) when all
the u; except ¢, are equal to zero. It is easy to see
from (3) that the higher the number of the harmonic [
the more rapidly does the corresponding increment to
the spectrum increase with increase in £. Inasmuch as
an anisotropic source is always present in real physi-
cal situations, the finding of strongly anisotropic
spectra is of interest. This problem is solved in Sec.
2 for a model, scale-invariant dispersion law:

w~k'*e (4a)
and for the dispersion law
oy ==ck(1+a’k?), (4b)

which is more interesting from the physical point of
view. In this latter case, 2z is some characteristic
length, ak,<<1. The spectra of n, (10) and (12) that

are obtained possess the property that the smaller
their characteristic angular size, the more slowly does
the spectrum decrease with increase in k2. Each such
spectrum is unstable in the same sense as the isotropic
spectrum—in a real system there is always a small
anisotropy with a characteristic angle much smaller
than the angular dimension of the spectrum, so that the
results of Sec. 1 will be applicable. This allows us to
draw the conclusion that in the presence of even a small

. anistropy of the source the spectrum is sharply chopped

up in the region of large & up to angles of the order of
the interaction angle. '

1. SMALL INCREMENTS TO THE
SPECTRUM

ISOTROPIC

Three wave processes are allowed in the case of the
decay dispersion laws (4), and the kinetic equation has
the form

dn/dt=4n j {1V ks 20 (01— 01— 02) 8 (K— Ky —Ks) [ 03—ty —nama ]
5
“2‘Vk-kkzlza((l’l_(l’k_ﬁ’z)s(kl_k—kz) [nznh_n|nu_n1"2]}dk|dk2~ ( )
Here the matrix element of the three-wave interaction
for waves with almost linear dispersion laws can be
written as

y (ktkz) (klkfl) (kzks)
Vios=B (k,esk /-[+ + ]
kqkak: ( 2ks) q Ek, ki ks )
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where ¢ is a constant of the order of unity.

Let a source that is different from zero at small £ be
weakly non-isotropic (n is the vector specifying the
preferreddirection). Consideringthe axially-symmetric
case for simplicity, we seek a solution of (5) in the
form

me=A[k="++ef (cos Oax) k1. (6)

Since we are considering the stationary case, dn,/dt=0.
We integrate (5) over dk, with the help of 4(k-k,-k,).

In the obtained expression, we can set kalkz

~ (kk, |k - kll)”2 without risking contradiction. Then,
integrating over d cost,, with the help of a 6-function

of w, we get the equation (x =k, /k)

1
j‘ (1—z'+¢) 2=/ (49220 (n,n,—n,ny—nyny)
0

_2 J. (I‘"——l)”"”““’x‘dx(n,n,,——n,n,.—n,n,) =0

1

Here n, =n,,1(9kkl) and n, =nk2(6kk2) are taken at

B 0 1—
e

2 2 z

I[ (1—z)ln(1—=z)+zlnz]

in the first integral,

2 2 _
%ﬂ 921—-,=e Iri [zlnz—(z—1)In(z—1) ]

in the second integral, while 6 = 9,3,1 *x%/(1 -x%). The
quantities 6,, 6, are the angles of interaction in the
processes k, +k,~k and k+k,—~£%,. As is easy to see,
they are determined by the deviation of the dispersion
from linearity.

We now substitute (6) in (7), linearize with respect to
€ and, dividing the second integral into two identical
terms, we carry out in one of which the transformation
x—~1/x and in the other x = x(1 - x)"/(**%) (these are in
fact the conformal transformations proposed by
Zakharov®). Using the smallness of the angle of inter-
action, we expand

1(co8 Bax,) =f(cos Bax) — (f’ cos Bax—f" sin® Bax cOS® @i,) 01&./2

and for f(cos6,) =f(y) we obtain the equation (the factor
of the converging integral in the kinetic equation)

(o575 = (e

This is a Legendre equation. The analytic solution of
the equation over the interval y € [~ 1, 1] has the form

f=i a,.D.(y),

Ne=0

where D,(y) are the Legendre polynomials. In this
case, &, =-9/2+¢&n(n+1)/2 and we arrive at Eq. (3).

2. ANISOTROPIC SPECTRA

For the scale-invariant dispersion law (4a) we seek
anisotropic solutions of the kinetic equation in the scale-
invariant form

n~f(y) k=", (8)
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Following the same procedures as in Sec. 1 (integration
over dk,, over the angle, conformal mapping), we ob-
tain in first order in € the following equation:

[—2af+(1—4") (1~ 42911 ] [ 2*(1-2)* [z ln 2+ (1-2)In(1-2)]

X[z="/ (1—2) ~1—z="3(1—2) =] dz=0. (9)

As is easy to see, the integral converges, while the
solution of the equation for f(y), which is finite at
y € [-1,1)], has the form

F) ==y (1+y) =,

In the derivation of Eq. (9), we used a differential
approximation, discarding the higher derivatives of f
with respect to y. This can be done only if f(y) is an
analytic function. Requiring that f be an analytic
function of y, we obtain

) =1—=y)"(1+y)",
Thus, the anisotropic spectra have the form

|C2|<a.

n,m=0,1,2,....

e~ (1 — €08 Bax) ™ (1 + COS Bax) He="/sFeimi1/2,

(10)

We note that since the integrals in the kinetic equation
converge, the spectra (3) and (10) are local.

We now consider the case of the dispersion law (4b).
The spectrum #0=Ak™%'2 now satisfies the kinetic
equation only in zeroth order in ¢?£*. We seek
the anisotropic solution in the form

ne~f(cos Oux) k=1 (1+Ea’k?).

Such a spectrum is not local, and the integrals in the
kinetic equation diverge. Therefore it is necessary to
introduce the cutoff k2 <k,. The equation for f(cos 6,)
is obtained in first order in a2k?, by equating to zero
the coefficient of the most diverging integral (which
behaves as £*,2). To obtain this equation, we must ex-
pand 'kalkz|2 (nyn, — .0, —n,n,) up to terms propor-
tional to a?, expand the argument of the 6-functions of
the frequencies up to terms proportional to a*, and then
integrate (5) first with respect to dk, and then with
respect to d cos 6,,. As a result, we obtain

5t 27\ 39/ 1—y° 9 f\] _
(G- z(55rs)] - (1)
In the square brackets we again have a Legendre equa-

tion. Since, by definition, f(y) =0, the solution of (11) is

P.(y) at P.(y)=0,

0 at P.(y)<0 n=0,1,2...

nw={

and the turbulence spectrum has the form
w 27 39 .
ne ~k="*f,(cos B.k)[1+(3-+76(l+i)l) ak’]. (12)

The spectrum falls off more slowly for larger (.
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