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The weak turbulence of waves with a weakly damped dispersion law is considered. Small anisotropic 
increments to the isotropic spectrum of the Kolmogorov type are found in the stationary case. It is shown that 
weak anisotropy of a source located in the region of small k should lead to an appreciably anisotropic 
spectrum in the region of large k. The strongly anisotropic stationary spectra are determined. 

PACS numbers: 43.25.Cb 

INTRODUCTION 

The theory of wave turbulence has been intensive- 
ly developed in recent  y e a r s  in connection with problems 
of plasma physics, nonlinear optics, and hydrodyna- 
mics.  In the presence of dispersion of the propagation 
velocity and a low level of nonlinearity, the interaction 
between waves i s  weak, which allows u s  t o  use  the 
kinetic equation for  the description of the turbulence. 
An important achievement of the theory h a s  been the 
determination of the s p e c t r a  of weak wave turbulence 
a s  exact solutions of the kinetic equation.'-3 An iso-  
tropic medium i s  usually considered. In this  case ,  f o r  
a decay law of dispersion and f o r  a scale-invariant 
situation 

0il=h~01. VII,LL,LL.=PVL,L~*, ,  

where V k  k is the mat r ix  element of three-wave 
' 2 3  

interaction, the spec t rum of the turbulence is 

In Sec. 1, we find the s m a l l  s ta t ionary increments  to 
the spec t rum ( I ) ,  of the  f o r m  

f o r  the dispersion law w k -  kl+'(&<< 1). 

Formula  (2) is a special  c a s e  of formula (3)  when a l l  
the d ,  except u, a r e  equal t o  ze ro .  It is easy to s e e  
f r o m  (3) that the higher the number of the harmonic 1 
the m o r e  rapidly does the corresponding increment  to  
the spec t rum increase  with increase  in k .  Inasmuch a s  
a n  anisotropic  source  is always present  in r e a l  physi- 
cal  situations, the finding of strongly anisotropic 
s p e c t r a  i s  of interest .  T h i s  problem is solved in Sec. 
2 f o r  a model, scale- invariant  dispersion law: 

~ ~ - k l + ~  (4a) 

and f o r  the dispersion law 

o , - c k ( 1  t a 2 k ' ) .  . . 
n/-k-3v'-d.  which i s  m o r e  interest ing f r o m  the  physical point of 

Here d is the dimensionality of the k space.  The spec-  view. In this  i a t t e r  case ,  z i s  s o m e  character is t ic  
t r u m  (1) is real ized in the iner t ia l  sca le  interval  k, length, uk,<< 1. The  s p e c t r a  of n, (10) and (12) that 
<< k<< R , ,  where  the source  i s  located in the region a r e  obtained p o s s e s s  the property that the s m a l l e r  
k = k,, and a t  k = k, i s  the d ra in  of the energy of the the i r  charac te r i s t i c  angular  s ize ,  the more  slowly does 
waves; this  corresponds to a constant energy flux over  the  the spec t rum d e c r e a s e  with increase  in  k .  Each such 
spectrum. spec t rum i s  unstable in the s a m e  s e n s e  a s  the isotropic 

spectrum-in a r e a l  sys tem there  is always a smal l  
In addition t o  the isotropic  spec t ra ,  s m a l l  anisotropic  

anisotropy with a charac te r i s t i c  angle much s m a l l e r  
increments  to  them have a l so  been found:4 

than the angular dimension of the spec t rum,  s o  that the 
f i t l ~ - n , ~ k ~ - '  c 05 O,,,. (2) resu l t s  of Sec. 1 will  be applicable. This  allows u s  to  

- - 

draw the conclusion that in the presence of even a smal l  
where n specifies the source .  We turn our  attention to 

anistropy of the source  the spec t rum is sharply chopped 
the fact  that,  s ince a! > 1 (the decay situation), the aniso- 

up in the region of l a rge  k up to angles  of the o r d e r  of 
t ropic  increment fa l l s  off with increase  in k more  

the interaction angle. 
slowly than the isotropic par t  of the spec t rum.  This  
indicates a n  unusual instability of the  isotropic  spec-  
trum-even a s m a l l  anisotropy of the source  leads to 
a n  essentially anis tropic  spec t rum deep in the iner t ia l  
interval.  

In the p resen t  work, we find the strongly anisotropic  
spec t ra  of weak turbulence f o r  the physically interest-  
ing case  of a weak-decay dispersion law. Since the 
dispersion is smal l ,  waves propagating in a narrow 
cone of angles  take par t  in the three-wave interaction 
(in the c a s e  of l inear  dispersion law L L ~ ~  = c k ,  only 
waves with collinear wave vectors  interact).  Assuming 
that the angular dependence of the spec t rum n, changes 
litt le over  the dimensions of the interaction angle, we 
use a differential approximation in the angle variables .  

1. SMALL INCREMENTS TO THE ISOTROPIC 
SPECTRUM 

T h r e e  wave processes  a r e  allowed in the case  of the 
decay dispersion laws (4), and the kinetic equation has 
the form 

Here the mat r ix  element of the three-wave interaction 
f o r  waves with a lmos t  l inear  dispersion laws can b e  
written a s  
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where q i s  a constant of the o r d e r  of unity. 

Let a source  that is different f r o m  z e r o  a t  smal l  k be 
weakly non-isotropic (n is the vector  specifying the 
pre fe r red  direction). Considering the axially-symmetric 
c a s e  f o r  simplicity, we  seek  a solution of (5) in the 
f o r m  

nk=A[k-'12+ef(cos eat) k"]. (6) 

Since we a r e  considering the s tat ionary case ,  dnk/dt = O .  
We integrate (5) over  dk, with the help of b(k-k,-$). 
In the obtained expression,  we can s e t  Vkklk, 
" (kk, Ik - k11)1'2 without r i sk ing  contradiction. Then, 
integrating over  d cosO,,, with the help of a 6-function 
of w ,  we get the equation (x = k,/k) 

I 

(1-XI+') 'z--"1''+"z2dx(n,n,-n,n,-n,n,) 
0 (7) 

Here n, =nkl(ekkl) and n, =nk,(8kkZ) a r e  taken a t  

in the f i r s t  integral,  

in  the  second integral,  while Oh, = x2/(1 - x 2 ) .  The  
quantities O,, 8, a r e  the angles  of interaction in the 
p rocesses  k , + k , - k a n d k + k , - k , .  A s  is easy  t o s e e ,  
they a r e  determined by the deviation of the  dispersion 
f r o m  linearity. 

We now substitute (6) in (7), l inearize with respect  t o  
c and, dividing the second integral into two identical 
t e r m s ,  we c a r r y  out in one of which the transformation 
x - l /x  and in t h e  other  x - x ( 1 -  x ) - " ' " ~ )  (these a r e  in 
fact  the conformal t ransformations proposed by 
Zakharov3). Using the smal lness  of the angle of inter-  
action, we expand 

f (cos B.t,) =f (cos Oat) - (1' cos emt-f" sin2 0.r cost cpk.)f3:t,/2 

and f o r  f (cosOnk) = f(y) we obtain the equation (the fac tor  
of the converging integral in the kinetic equation) 

T h i s  i s  a Legendre equation. The analytic solution of 
the equation over  the interval  y E [- 1,11 h a s  the fo rm 

where  D,(y) a r e  the Legendre polynomials. In this  
case,  a, = -9/2 + cn(n + 1)/2 and we a r r i v e  a t  Eq. (3). 

2. ANISOTROPIC SPECTRA 

F o r  the scale-invariant dispersion law (4a) we seek 
anisotropic solutions of the kinetic equation in the scale-  
invariant fo rm 

Following the s a m e  procedures a s  in Sec.  1 (integration 
over  dk,, over  the angle, conformal mapping), we ob- 
tain in f i r s t  o r d e r  in E the following equation: 

A s  is easy t o  s e e ,  the integral  converges,  while the 
solution of the equation f o r  f(y),  which is finite a t  
y E [- 1,1], has  the f o r m  

In the derivation of Eq.  (9), we used a differential 
approximation, discarding the higher derivat ives o f f  
with respect  to  y. T h i s  can b e  done only if f(y) is a n  
analytic function. Requiring that f be  a n  analytic 
function of 9 ,  we obtain 

f(y)=(I--y)"(l+y)", n, m=O, 1 ,2 , .  . . . 
Thus,  the anisotropic  s p e c t r a  have the f o r m  

P l )  
nk - (1 - cos 8.t)m(I + cos emt) rk-"l+'(m+r)~'. (10) 

We note that s ince  the integrals  in the kinetic equation 
converge, the s p e c t r a  (3) and (10) a r e  local. 

We now consider  the c a s e  of the dispersion law (4b). 
The  spec t rum =AR-''~ now sa t i s f ies  the kinetic 
equation only in zeroth o r d e r  in u2k2. We seek  
the anisotropic solution in the f o r m  

nr-j(cos 0.t) k"ia(l+~agkz). 

Such a spec t rum is not local,  and the integrals  in the 
kinetic equation diverge. Therefore  it is necessary  to  
introduce the  cutoff k k,. T h e  equation f o r  f (cos bin,) 
is obtained in f i r s t  o r d e r  in a2kk by equating to z e r o  
the coefficient of the  most  diverging integral  (which 
behaves a s  k3/,2). T O  obtain this  equation, we must ex-  
pand 1 Vklk,/2 (nZnk - nlnk - nln,) up to t e r m s  propor-  
tional to  a 2 ,  expand the argument  of the 6-functions of 
the frequencies  up t o  t e r m s  proportional to a4, and then 
integrate (5) f i r s t  with respec t  t o  dk, and then with 
respect  to  d cos Onk. AS a resul t ,  we  obtain 

In the square  brackets  we again have a Legendre equa- 
tion. Since, by definition, f(y) 2 0 ,  the solution of (11) is 

and the turbulence spec t rum has  the f o r m  

The  spec t rum fa l l s  off m o r e  slowly f o r  l a r g e r  1. 
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