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The two-quantum excitation of a two-level system by broad-band radiation is investigated theoretically and 
experimentally. It is shown that the character and efficiency of the radiation's action can differ very greatly 
for fields that have different statistics. It is found that correlation between the harmonics of the spectrum can 
give an excitation efficiency not inferior to that of a monochromatic field at any level of excitation. 
Intraspectral correlation was produced experimentally by heterodyning, and it was shown that an originally 
inefficient signal having the statistics of complex Gaussian noise can be converted into an efficient correlated 
signal without any essential change of the spectrum, power, and intensity of the fluctuations as compared with 
the original signal. The action of the correlated field has special features combining those of monochromatic 
and broad-band nonrnonochromatic excitation. In particular, the excitation spectrum of the correlated field is 
sharply resonant. The resonance part of the spectrum shows a paradoxical behavior: It becomes narrower and 
narrower as the width of the spectrum of the exciting field is increased. 

PACS numbers: 42.50. + q 

The study of the behavior of resonance sys tems in 
stochastic fields i s  of interest  in various branches of 
physics. Such research  i s  particularly significant fo r  
quantum radiation physics and nonlinear optics, because 
often the nonmonochromaticity of the field acting on r e s -  
onant atomic-molecular and spin sys tems cannot be  el- 
iminated under actual conditions. 

Experience in research  on one-quantum and stepwise 
processes in classical  resonant sys tems characterized 
by a single natural frequency has  brought about a cer-  
tain inertia in our ideas, with the supposition that under 
conditions close to resonance sys tems will be the more  
strongly excited, the narrower the spectrum of the ap- 
plied radiation for a given intensity. I t  i s  intuitively 
assumed that the behavior of sys tems in stochastic 
fields becomes more and more  like that found with mon- 
ochromatic excitation, the narrower the spectrum of the 
nonrnonochromatic field i s  made. 

It i s  not hard to give examples of phenomena that do 
not f i t  into the framework of these ideas. I t  is well 
known' that under certain conditions nonrnonochromatic 
fields can excite a resonance system k! t imes  more in- 
tensely than monochromatic fields of the s ame  power 
(here k is the multiplicity of the many-photon reso- 
nance). Another example2: The broadening of the trans-  
ition line in the quadratic dynamic Stark effect i s  great- 
e r  the narrower the spectrum of the nonrnonochromatic 
excitation. Both of these phenomena a r e  caused by the 
fluctuations of the excitation's intensity and occur when 
the perturbation of the system i s  weak and the saturation 
effects a r e  negligible. Moreover, these phenomena a r e  
brought about by the action of radiation with a narrow 
spectral band with an upper limit on its width imposed 
by definite ~ond i t i ons . "~  

Although these examples do correc t  the usual ideas 
about resonance phenomena in nonrnonochromatic fields, 
it is still  hard to expect monochromatic and broad-band 
stochastic radiations t o  be closely similar  in their  eff- 
iciencies and the nature of their effects on a system, a t  
comparable intensities and without limitations in princi- 
ple on the width of the excitation spectrum. In fact, if 

we consider, for  example, a two-quantum process of 
resonance excitation of a two-level system by broad- 
band radiation (see Fig. I),  i t  can b e  seen that the main 
effect is given by the spectral  region w, + wl= w2, * y,, 
where y2 i s  the line width of the transition, and w, and 
d, a r e  the frequencies of the harmonics of the excita- 
tion, which run through a l l  values in the spectrum. But 
since the main par t  of the radiation's intensity i s  con- 
centrated in a band of width - A ,  i t  i s  evident that for  a 
given intensity the larger A, the smaller  the excitation 
efficiency will be. Therefore it would seem that in any 
many-quantum resonance process  broad-band radiation 
could not achieve the efficiency of a monochromatic 
field. This so r t  of argument leads t o  the conclusion that 
a l so  the spectrum of the excitation in the process in 
question cannot be noticeably narrower than the pumping 
spectrum when A >> 2. 

Nevertheless these conclusions a r e  not absolutely cor-  
rect. In this  two-quantum process  the action of broad- 
band radiation can be made no l e s s  efficient than mono- 
chromatic radiation. Furthermore there will then be a 
sharp resonance with a width considerably smaller  than 
A. It will be shown later  that  the broad-band effect be- 
comes  both efficient and selective when i t s  statistics 
satisfy definite requirements. 

FIG. 1. Scheme of two-quantum excitation of a resonant system 
by nonmonochromatic radiation. To the right is shown the 
position of pai rs  of mutually complementary harmonics in the 
spectrum of the exciting radiation. 
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The effect of the stat is t ics  of the radiation (both clas-  
s ical  and quantum) on the two-quantum excitation pro- 
c e s s  in a two-level system has been discussed repeat- 
edly. The actions of classical fields having the statis- 
t ics  of complex Gaussian and of Gauss-Markov process- 
e s  a r e  nearly equally efficienL3 Quantum fluctuations 
can cause a marked difference between the effects of 
thermal and laser  The essential influence 
of the quantum stat is t ics  of the radiation on the two- 
quantum excitation process  was made apparent in Ref. 
6. For  weak perturbation of the system i t  was shown 
that the radiation resulting from spontaneous two-quan- 
tum processes in atoms can, under certain conditions, 
excite a resonant system much more  effectively than the 
radiation of ordinary one-photon sources.  This pheno- 
menon was explained by the extremal strong quantum 
fluctuations of the intensity of the radiation, which a r e  
caused by the simultaneous emission of the two photons 
in two-quantum decays. The level of the intensity fluc- 
tuations in this case  can be  much higher than the mean 
intensity. 

As a rule, classical  fields from ordinary sources of 
broad-band radiation have an  ordinary level of intensity 
fluctuations. Nevertheless the excitation of a resonance 
system by such a field can b e  made anomalously effi- 
cient without resort ing to extremely sophisticated de- 
vices to strengthen the fluctuations. 

It will be  shown in the present paper that an increase 
of the excitation efficiency of the radiation can be  pro- 
duced by pairwise correlation of a l l  the harmonics of 
its spectrum. The frequencies w, and w, of mutually 
correlated harmonics must be  connected by the condition 
w, + w, = w,, where w, is a frequency close to w,,, such 
that lw, - w,,l <<A. This possibility i s  demonstrated ex- 
perimentally in the present  paper with the example of 
the conversion of low-efficiency complex Gaussian noise 
into an efficiently acting correlated signal with nearly 
the same spectrum and intensity. The required corre-  
lation between the harmonics was accomplished by het- 
erodyning of the original signal. 

The role of correlation of the harmonics in the pro- 
c e s s  of twoquantum excitation can b e  made clear  a s  
follows. The amplitude of the two-quantum transition is 
proportional to the prorluct of the complex amplitudes 
a, and a, of the harmonics with frequencies w, and w,. 
If there i s  no correlation between the harmonics, the 
phases of a, and a, a r e  statistically independent and the 
ensemble average value i s  (ag,) = 0. A correlation en- 
su re s  that the average (a,a,) i s  not zero,  a s  is also the 
case  for  a monochromatic field. Accordingly, i t  i s  for- 
mally to be expected that the action of radiation with 
pairwise correlation of the harmonics will have features 
of the action of a monochromatic field. This analysis 
is of course not exhaustive, primarily because i t  leaves 
aside the question of the role of interferences between 
different corresponding pairs ,  say w,, w, and w;, w; 
(see Fig. 1). The effect of the correlation between the 
harmonics on the two-quantum excitation characteris- 
t ics  can be explained in detail only in the framework of 
an adequate theory, one version of which is now to be  
expounded . 

THEORY 

Let u s  study the two-quantum excitation of a two-level 
system by nonmonochromatic radiation with the field 
strength 

T ( t )  = ~ ( t )  e-lat+P ( t )  e'"', (1) 

where F ( t )  is a stationary random function of the t ime 
with a bell-shaped spectrum, whose width A i s  much 
smaller  than the frequency w,, of the transition, but a t  
the same t ime is larger  than a l l  other parameters  of 
the problem that have the dimensions of frequency. It 
i s  assumed that (F(t)) = 0. The other correlation char-  
ac ter i s t ics  of the field F ( t )  will be indicated later. The 
excitation is close to resonance in the sense that w i s  
close to half of the transition frequency: (2w - w,, 1 << 
w,,. The actual value of w is chosen so  that the center  
of the spectrum of the signal F(t)  will be a t  z e r o  f re-  
quenc y . 

In the resonance approximation the dynamics of the 
two-level system in the field F( t )  i s  described by equa- 
tions for  the density matrix in the interaction represen- 
tation: 

Here the following notations have been introduced: y;' 

is the lifetime of the excited state; 22 = p,, - p,,; W2 is 
the Rabi frequency of the two-quantum excitation, a 
complex quantity proportional to F(t),  W*'a  F*'(t); 
c = w,, - 2 0  -iy, + cu WW* i s  the complex resonance de- 
fect, in which expression the meaning of the f i r s t  two 
t e r m s  is obvious, y, i s  the phase relaxation frequency, 
and the last  te rm determines the dynamic Stark (field) 
shift of the transition frequency and is a dimensionless 
rea l  coefficient determined by the rat io between the 
field shift and the absolute value of the Rabi frequency. 

The equations (2) describe the dynamics of the system 
in the rapidly varying fields F(t)  and F*(t). Our practi- 
ca l  interest  i s  in the quantities (p,,), (&,), and (z), 
which a r e  averages over the random realizations of the 
field. In the case  when the width of the spectrum of the 
field that perturbs the system i s  much larger than a l l  
the frequencies characterizing the problem, the kinetic 
equations can be derived rigorously either by the me- 
thod of functional derivatives, in the so-called diffu- 
sional-random-process a p p r ~ x i m a t i o n , ~  o r  by summa- 
tion of the main sequence of the perturbation-theory 
series,  which leads to the Dyson equation.' For sim- 
plicity in this exposition we shall give a formal deriva- 
tion of the kinetic equation, decoupling the correlation 
between the dynamics of the system and the field fluc- 
tuations. The system of equations so  derived ag rees  
with the resul t s  of the rigorous methods, and it i s  this  
which justifies some lack of r igor in the derivation. 

To shorten the formulas we introduce a column vec- 
tor  x with the components (p,,, p,,, z ) ,  the matrix 

t O 2w- 
(3 ) 

v - 1  - 1 7 ,  ' 

and a column vector q with the components (O,0, y 1 / 2 ) .  
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We write the system (2) in th is  notation 

and average th is  equation over the ensemble of realiza- 
tions of the field: 

~ ( ~ ) = ( B ~ ~ + ~ ~ = B ( X ) + < B - ~ ) +  ig. (5) 

Here B s  (B) is independent of the time, and B -B. 
It can b e  seen that x in Eq. (5) i s  determined by the 
quantity ( 5 ~ ) ;  an equation for  th is  quantity can b e  ob- 
tained in the following way. We integrate Eq. (4), then 
multiply by E, and average. The result  is 

Here the indices of al l  quantities re fer  t o  the t ime argu- 
ment. The quantities x p  and B,, taken a t  different 
times, a r e  statistically independent, since x cannot fol- 
low the rapid variations of 8. This fact  makes i t  possi- 
ble to uncouple the corre la tors  and put Eq. (6) in the 
form 

(B ,+ , )= - i  J ( f i , ~ , . ) ( x , . > d / '  
- 

(7) 

for  al l  t >  --. Substituting (7) in Eq. (5), we get  the de- 
sired kinetic equation 

( P , ) = - i B ( x , ) -  ( B , B , . > ( x , , ) d t ' + q .  i 
.. = 

(8) 

Hereafter we shall b e  intere'sted only in the stationary 
state of the system. I t s  description is given by the sol- 
ution of Eq. (8) for t - -=: 

where 3 5 (x,,,) and 

The quantities B and Q that appear in Eq. (9) a r e  the av- 
e rages  of binary and tetradic fo rms  in the amplitudes 
F and F *, and therefore to find the explicit form of the 
solution x we must take a specific form of the stat is t ics  
of the field Y(1). 

Let u s  consider the case  in which W ( t ) ,  a quantity pro- 
portional to F( t ) ,  i s  a signal of the form 

~ ( t ) = v ( t )  c o s ~ + ~ ' ( t )  5in0. (11) 

where V(t) and V*(t) have the stat is t ics  of a complex 
Gaussian process, defined by the corre la tors  

and the coefficients cose  and s ine  a r e  introduced s o  that 
the quantity (W(t)W*(t)), which i s  proportional t o  the in- 
tensity of the excitation, will remain unchanged for  var-  
ious relations between the t e r m s  in Eq. (11). 

We point out an important difference between the sta- 
t is t ics  of the signal and those of the Gaussian signal 
V(t). To do  so we represent  W ( t )  in the spectral  form 

W  ( t )  = x w , , e - " ' =  (u,, cos B+u-,'sin 0 )  e-'''I. 
" P 

As i s  well known, the different harmonics of the signal 

V ( t )  a r e  not correlated: 

whereas distinct, but adjacent harmonics of W ( 1 )  a r e  
correlated: 

(w, ,w,~)=q,6 , , ,  -,. sin 21). (15) 

I t  is obvious that the angle 0 characterizes the degree 
of correlation, and the stat is t ics  of the field a r e  deter- 
mined by two correlators:  

< W ( t )  W ' ( t r )  ) = K ( t - t ' ) ,  ( W ( t )  W ( t f )  ) = K ( t - t ' )  sin 20, (16) 

the lat ter  of which directly determines the values of the 
transition amplitudes in the dynamical matrix g. The 
relaxation matrix Q depends to a l e s se r  degree on the 
correlation between adjacent harmonics. 

Further transformations involved in calculating B, Q, 
and Z a r e  obvious. Because of their cumbersomeness 
we omit them here. We present  only the final expres- 
sion for  the stationary population p2, = $ - Z : 

Here we have shortened the formula by introducing the 
abbreviations K = K(O), G = y, + r ( e 2 +  4)cos22B, G '  = G 
+ 2 r e 2  sin22 8, and 

The result  (17) i s  a cumbersome expression with many 
parameters.  I t  is difficult t o  analyze it in the general 
form. We confine ourselves here  to the consideration of 
two limiting cases,  completely uncorrelated (0  = 0) and 
maximally correlated (0  = n/4) excitations. Fo r  the case  
with 8 = 0 

The f i r s t  striking thing here  i s  that p2, does not depend 
on w. The absence of a frequency dependence of the 
population is a consequence of the insufficient accuracy 
of our theory, which does  not describe effects associat- 
ed with the shape and position of the center  of the broad- 
band excitation. In principle it i s  not difficult t o  perfect 
the theory so a s  to describe such effects, but we confine 
ourselves here  to the resul t s  of the crude theory. As 
can be seen from Eq. (IS), saturation in the case  of un- 
correlated excitation is characterized by an  intensity 
that i s  determined by the relation 8 r  = y,, o r ,  if we al- 
low for  the fact  that in order  of magnitude r - @ / A  [see 
Eq. (18)], the condition for  strong excitation takes the 
form K ~ > Y , A .  

Let u s  now discuss  the ca se  8 =  n/4, but f i r s t  point 
out that A is assumed to be  much la rger  than a l l  charac- 
ter is t ic  frequencies of the problem, including the Rabi 
frequency -K, and therefore l?<<K. Furthermore we 
confine ourselves to the discussion of very  low intensi- 
t ies ,  such that K'<<~,A. At such intensities r << y ,  2 y,, 
and therefore the uncorrelated field excites the system 
only weakly. Finally, assuming that cr i s  not la rger  than 
a few t imes  unity and neglecting small  quantities of the 
order  of y2/A and r/y,, we write the expression for  p, 
in th is  case: 
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In this expression we call attention to the dependence of 
- 
9, on w. At f i rs t  glance the very fact that pa depends 
on w disagrees with our earl ier  remark about the ac- 
curacy of the theory. The apparent contradiction is ex- 
plained by the fact that in the case now considered w has 
been given a double meaning. First ,  w is the average 
frequency of the signal F(t), and secondly, it is a t  the 
same time the frequency relative to which the harmonics 
that have been correlated were paired off in Eq. (15). In 
assigning the same value to two frequencies that in gen- 
era l  do not depend on each other, we avoided unneces- 
sary complication in the theory. It can be shown that in 
the general case, when the two frequencies a re  differ- 
ent, the reaction of the system depends weakly on the 
f i rs t  value and is essentially determined by the second 
value for correlated excitation. 

Let u s  examine in detail the frequency dependence in 
Eq. (20). With the restrictions on the parameters that 
have been stipulated i t  is not hard to show that near 
w= w2,/2 + &/2 the quantity pa takes a maximum value: 

I t  is obvious that in this case saturation corresponds to 
intensities fixed by the condition K2=yly2, i.e., to val- 
ues which characterize the saturation in a resonance 
monochromatic field,g and which a r e  much smaller, by 
a factor (y,/~)' '~, than a r e  necessary with an uncorre- 
lated excitation. 

In the neighborhood of the maximum the shape of the 
spectrum is approximately symmetric. I t s  width is 
characterized by the quantity ~(y,/y,) ,  which determines 
the width of the resonance in the case of monochromatic 
ex~ i t a t ion .~  The parallel between the actions of mono- 
chromatic and correlated nonmonochromatic fields can 
be taken further. In a certain region of the parameters 
the population has a nonmonotonic dependence on the in- 
tensity of the correlated field. The picture is like that 
in the monochromatic case, the maximum being reached 
a t  an intensity given by the relation 

Specific features of nonmonochromatic excitation that 
appear in this case a r e  a s  follows. As w- m the popu- 
lation does not go to zero, but comes to  a level given by 
Eq. (19). This means that the spectral excitation con- 
tour consists of a narrow resonance on a broad back- 
ground. The width of the latter is of the order of A. 
Besides this, the &(w) contour is not symmetrical. 
This asymmetry is nost marked in the neighborhood of 
values ( y , ~ ) " ~  and becomes stronger with increasing 
intensity and with decrease of the width A of the spec- 
trum. This las t  effect, like the asymmetry of the line 
in the dynamic Stark e f f e ~ t , ~  i s  an example of the fact 
that a narrowing of the spectrum of an applied field can 
strengthen the difference between the system's behav- 
iors  in monochromatic and nonmonochromatic fields. 

We now summarize the results  of our theoretical ex- 

amination of two-quantum excitation of a resonant sys- 
tem by a nonmonochrornatic field. The theory predicts 
a strong effect of the degree of correlation between the 
harmonics in the spectrum of the applied field on the 
efficiency and other characteristics of the excitation. 
For the case of the correlation considered here this in- 
fluence begins to show up a t  small values of 0, when 
[see Eq. (17)] K 2  sin2 20/2r becomes larger than G. 
This means that a small admixture of correlated signal 
in Eq. (11) strongly changes the nature of the action of a 
nonmonochromatic field. The theory also predicts that 
the behavior of the system will be the same in corre- 
lated nonmonochromatic and in monochromatic fields. 
We have carried out experimentally a test  of these con- 
clusions and of the details of the theory. 

EXPERIMENT 

Two-photon excitation by nonmonochromatic radiation 
with controlled statistics was investigated experiment- 
ally with the Zeeman transition in the ground state of 
the Cd113 atom. The method of observation with the Cd113 
oriented by optical pumping has been described in detail 
in Refs. 2 and 9; therefore we shall deal only briefly 
with the general scheme of the experiment. 

The ground state 'So of Cd113 has nuclear spin and 
splits in a constant magnetic field H, = 5G into two lev- 
els. The frequency of the transition between these lev- 
e l s  is w,, = 5 kHz. The absence of other transitions in a 
wide range of frequencies near this value allows us  to 
regard this atomic system a s  a two-level one a s  affect- 
ed by applied fields. A predominant population of one of 
the Zeeman levels was produced by the method of optical 
orientation. To do this, Cd113 vapor was i r r ad ia t~d  with 
circularly polarized resonance radiation a t  3261 A from 
a lamp filled with the isotope Cd114. The population dif- 
ference achieved in our experiments (" was suffi- 
cient for the observation of the absorption of radiofre- 
quency quanta. The initial signal-to-noise ratio 2 Id 
made it possible to make experiments with intense 
fields, capable of saturating the atomic transition. 

The arrangement of the experiment i s  shown in Fig. 2. 
A cell containing saturated Cd113 vapor a t  220°C was 
placed a t  the center of a system of three pai rs  of Helm- 
holtz coils, which produced a constant field Hz, a field 
Ho(t) = Ho(t) {e,cos[wot + cpo(t)] + e, sin[wot + cpo(t)# rota- 
ting around the z axis, and a field H,(t) = Hl(t)e, cos[wlt 
+ pl(t)] oscillating along the z axis. 

Because of the selection rule Am = 1 for the magnetic 
quantum number, two-quantum excitation is possible 
only through the combined action of the two fields H,(t) 
and Hl(t). 

FIG. 2.  Scheme of the experimental arrangement. l-synch- 
ronous detector and automatic recorder.  
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FIG. 3. Scheme for producing mutually complementary fields. 

Let  u s  consider in more detail the procedure for  pro- 
ducing the frequency-phase correlation of the fields 
H,(t) and H,(t). Two limiting c a s e s  were  realized in the 
experiment: 1) Maximal frequency-phase correlation of 
both fields, and 2) complete absence of correlation of 
both fields, although the method used to  produce corre-  
lation, heterodyne transformation of the noise field with 
a monochromatic heterodyning signal, allows one in 
principle t o  real ize intermediate situations. 

The noise field H,(t) was  produced by applying to the 
Helmholtz coils an R F  voltage Uo(t) produced by send- 
ing a broad-band, practically white, shot noise through 
narrow-band filters. I t  is well known that such a signal 
has  the stat is t ics  of a complex Gaussian process. 

The field Hl(t) was produced with a noise R F  voltage 
Ul(t), obtained by nonlinear mixing of the noise U,(t) and 
a monochromatic heterodyning signal U (t) and then fil- 
tering the resulting noise signal, In fact, the nonlinear 
mixing of the two signals U,(t) and U,(t) yields 

U ,  ( I )  U ( t )  ==UIfC' cos ( (oOt+rp ( t )  ) cos (cI)..I+(P) 

=u,' cos ( c ~ , t + ( p ,  ( t j  ) +u?' cos (ozt+cpz(t) ) .  (23 

Accordingly, the heterodyning produces two signals with 
spectra centered near the average frequencies w, and 
w,, and the spectral components of the original signal 
go over into the components of the new signals U, and U, 
in the following way: Uo(wo - 6w)- Ul(wl + 6w) and U, 
(w,+ 60)- U,(w, + 6w). Figure 3 shows the scheme of 
the nonlinear mixing process  described by the expres- 
sion (23). 

Although the fields H,(t), Hl(t), and H,(t) a r e  mutually 
correlated, each one considered separately i s  a random 
function of the t ime with the stat is t ics  of a complex 
Gaussian process. The correlated nature of these fields 
becomes visible only when they ac t  together, causing 
efficient two-quantum excitation of the system (Fig. 4). 
We point out here  that the correlated nature of the noise 
fields manifests itself only in specific schemes of ex- 
citation. Fo r  example, in the scheme of Fig. 4a the 

FIG. 4. Excitation scheme for two-photon transitions in which 
the correlation of fields manifests itself (w, >w,). 

FIG. 5. Scheme for shaping fields in control experiments, in 
which the correlation gives no effect (w, < wo). 

f ields H,(t) and H,(t) do  not reveal  their frequency-phase 
correlation, although i t s  presence is guaranteed by the 
manner in which H,(t) was  produced. The correlation 
appears  in the excitation scheme shown in Fig. 4b. Sim- 
i la r  r emarks  apply a l so  to the field Hl(t). 

The reverse  situation i s  also possible: With the same 
detection arrangement (Fig. 4), the frequency-phase 
correlation will be ruined if we change the way the fields 
H,(t) and H,(t) a r e  produced. Figure 5 shows a different 
heterodyning scheme (a,< w,) which avoids the correla- 
tion of the fields H,(t) and Hl(t) without shifting the av- 
e rage  frequency w, = w, - w,. 

To  allow a unique interpretation of the experiment in 
the cases of both correlated and uncorrelated fields we 
produced two-photon excitation of the atomic system 
only by the fields H,(t) and H,(t) witha transition according 
to the scheme in Fig. 4a. In this case the trans-  
formation according to the f i r s t  scheme of Fig. 3 always 
a s su re s  correlation of the fields, and the second (Fig. 
5) gives uncorrelated fields. 

The effect of correlation of the exciting fields on the 
efficiency of the two-photon process can in principle 
appear with any spectral  width of these fields. To make 
the effect very clear ,  however, and to show the possi- 
bility of s trong excitation of the system by broad-band 
radiation, the width of the spectrum for  the experiment 
was made large: A >-y,. This  also fixes clean condi- 
tions fo r  comparing the theory with the experiment. In 
fact, a s  has been shown in Ref. 2, a t  only moderate 
field intensities, when A -  y,, there  i s  s trong deforma- 
tion of the excitation spectrum owing to dynamic shift 
of the levels, and the expected effect i s  masked. 

The upper limit on the width of the spectrum, A << w,, 
has the obvious meaning of preventing one-photon exci- 
tation of the Zeeman transition by a wing of the spec- 
t rum of the noise field H,(t), s ince in our spin system 
one-photon transitions a r e  a l so  allowed by the selection 
rule. We chose the following two values for  the width 
of the noise spectrum: A = 30 Hz and A = 300 Hz, where- 
a s  total width of the absorption line was 2y, = 5.4 HZ. 
These values fit into the indicated range and at  the same 
t ime allow u s  to demonstrate the paradoxical narrowing 
of the excitation spectrum when the spectral  width of the 
exciting radiation is increased. 

It i s  simplest to investigate the population in two-pho- 
ton excitation of a spin system by means of the one-pho- 
ton absorption of a monochromatic probe field. Under 
conditions like these,g however, a nonlinear interference 
effect occurs which can complicate the interpretation of 
the observed phenomena. Therefore we chose a method 
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FIG. 6. Sequence of switching on of: (a) the noise fields H,(t) 
and Hi(t), (b) the 2r pulse of registering field, and (c) the 
detection of the response S ( t )  of the system to this pulse. 

of observation which i s  free of side effects and consists 
of direct registration of the populations of the Zeeman 
levels. In our experiment this was achieved by direct- 
in the constant magnetic field H ,  along the orienting op- 
tical beam (Fig. 2), which at the same time was the reg- 
istering beam. With this scheme the observed signals 
a r e  proportional to the deviation of the level population 
difference from the initial equilibrium value, and the 
maximum obtainable signals a r e  proportional to the or-  
iginal value of the population difference. 

To register the maximum signals, 2n pulses were ap- 
plied to the atomic vapor with frequency 1 Hz. The noise 
The noise fields H,(t) and H,(t), by exciting two-photon 
transitions, diminished the population difference of the 
levels and thus also reduced the maximum signal cor- 
responding to a b pulse. To lower the level of inter- 
ferences, the noise RF fields were turned off during the 
passage of the 2n pulses. This procedure did not affect 
the amplitude of the signal, since the duration of a 2n 
pulse, T = 5.10-3 sec, was much shorter than the relax- 
ation time T =0.09 sec  of the populations. The sequence 
of the applications of the fields i s  shown in Fig. 6. 

The optical signal produced in a photoelectric element 
(Fig. 6) went to a synchronous detector and an auto- 
matic recorder. As the heterodyning frequency w, = w, 
+ w, was varied in the neighborhood of the transition 
frequency w,, the value of the maximum signal (Fig. 6c) 
varied according to the law which governs the exita- 
tion spectrum of a spin system. 

Figure 7 shows traces of the excitation spectra which 
a r e  plots of the population difference N = N ,  - N, vs. the 
heterodyning frequency w,. In the comparison with the 
theoretical data we used not a curve averaged over sev- 
era l  recordings, but a typical trace of the excitation 
spectrum at K = y/2 and CY = 2. Here, according to the 
conditions of the experiment, y, = y, = y. The quantity 
A was regarded a s  a fixed characteristic of the filter. 
As is seen in Fig. 7, the theoretical and experimental 
results a r e  in good agreement. 

The experiment demonstrates the possibility in prin- 
ciple of transforming complex Gaussian noise into a 
signal whose efficiency in two-quantum excitation of a 

FIG. 7. Excitation spectra of the two-level system in mutually 
complementary fields at K=-y /2 .  a) A = 3 0  Hz; b) A = 3 0 0  Hz. 
The points are results of calculations with Eq. (17). The 
dashed line i n  Fig. 7b is the level of excitation without suit- 
able correlation of the fields (see Fig. 5). The solid line i n  
Fig. 7a is the excitation spectrum i n  a monochromatic field 
at the same power ( K = - y / 2 ) .  

resonant system is not inferior to that of a monochro- 
matic field of the same intensity. It is well to empha- 
size once again that the method used here to produce the 
intraspectral correlation, namely heterodyning, makes 
no substantial change in either the spectrum or  the lev- 
e l  of intensity fluctuations of the field, a s  compared with 
the original field. At the same time the contrast be- 
tween the effects of correlated and uncorrelated excita- 
tions a re  demonstrated not only by the shape of the spec- 
tra,  a s  shown in Fig. 7, but also by the fact that with 
excitation by an uncorrelated field with A = 300 Hz and 
with such a large intensity that K G  7~/2, the population 
effect was about lo-', and under the same conditions a 
correlated field gave an effect = (Fig. 7b). 

DISCUSSION OF THE RESULTS 

Theoretical and experimental investigation has shown 
that the character and efficiency of the process of two- 
quantum excitation of a two-level system by a stochas- 
tic field can depend radically on the statistics of the 
field. The action of a correlated field has interesting 
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interference, mentioned earlier ,  in the process of two- 
quantum excitation of a resonant system by correlated 
broad-band radiation. 

FIG. 8. Dependence of maximum population of upper level on 
K - I ~  ( I  is  the intensity of the exciting field); the black circles 
are experimental with A= 300 Hz; the dot-dash curve i s  theoret- 
ical for that case,  and the solid curve i s  calculated for a mono- 
chromatic field; the open circles are experimental for A = 30 
Hz, and dashed curve is  theoretical for the case. The horiz- 
ontal bars correspond to the errors in determinations of the 
quantity K. 

peculiarities, combining features of monochromatic and 
uncorrelated broad-band excitations. We shall single 
out and discuss some of these. 

1. The spectrum of the excitation consists of a nar- 
row resonance line and a broad background. The width 
of the latter is of the order of the width A of the spec- 
trum of the stochastic field. The contrast between the 
background and the resonance line depends on the degree 
of correlation between the harmonics, which i s  deter- 
mined by the value of 8. With broadband excitation the 
contrast is already significant with weak correlation 
(O<< 1). With maximum correlation ( 8  =n/4) the height 
of the resonance peak i s  the same a s  in a monochro- 
matic field, which corresponds to the same excitation 
intensity a s  with a monochromatic field. 

2. The width of the resonance line can be close to that 
found with monochromatic excitation of the same sys- 
tem. The resonance line is asymmetric, however, un- 
like that from monochromatic excitation. The degree of 
asymmetry increases with increasing intensity and with 
narrowing of the spectrum of the broadband radiation. 
This phenomenon i s  due to the dynamic shift of levels in 
stochastic fields, which has been discussed earl ier2 in 
connection with one-quantum excitation. 

3. The pattern of excitation by a correlated field un- 
dergoes a paradoxical change, approaching that for a 
monochromatic field a s  the width A of the spectrum is 
increased. The change i s  accompanied by a narrowing 
of the resonance line in the spectrum of the excitation 
although also the contrast between the effects of corre- 
lated and uncorrelated fields increases with A (Fig. 8). 
This dependence of the shape of the excitation spectrum 
on the width i s  caused by the stochastic amplitude mod- 
ulation which is always present in Gausian noise. The 
narrowing effect, like the asymmetry, appears also in 
one-photon excitation of resonant systems2*" and is due 
to the inertia of the field shift and splitting of levels. 
From the point of view of spectral representations the 
narrowing occurs because with broad spectra the inter- 
ference due to the action of individual harmonics is 
suppressed. This enables us to understand the role of 

4. For a given sign of the detuning of the heterodyn- 
ing frequency from the frequency for two-quantum res- 
onance, the population becomes a nonmonotonic function 
of the intensity of the correlated field. This effect, like 
that produced with monochromatic r a d i a t i ~ n , ~  i s  due to 
competition between the population and the field shift of 
the levels. Although the nature of this phenomenon is 
the same for correlated and for monochromatic fields, 
the dependence of the population on the intensity can be 
very different. This fact, like other differences between 
the actions of correlated and monochromatic fields, can 
be formally associated with the appearance of the field 
parameter r in the case of nonmonochromatic excita- 
tion. Variation of this parameter determines the vari- 
ous patterns of excitation in a correlated field. 

This paper deals with the case of the action of a cor- 
related stochastic field formed from complex Gaussian 
noise by a heterodyning method. It must be pointed out 
that the statistics of the original signal may be arbitrary 
and not hinder the conversion of the signal by heterodyn- 
ing into a signal with efficient two-quantum excitation of 
a resonant system. The heterodyning process produces 
a signal with phase shifts relative to the original signal. 
In a certain sense such a signal is reversed in time. 
When the original signal and the heterodyned signal act 
together their fluctuations balance each other and a reg- 
ular component appears. It must be kept in mind that 
the correlated property produced in this way can be ob- 
served only witha certain way of having themact together. 

In conclusion we wish to call attention to the fact that 
the radical dependence on the statistics of the radiation 
is not peculiar to two-quantum resonance processes 
only. This sort  of property is possessed by both reso- 
nant and nonresonant processes with an even number of 
quanta. This fact, and the peculiar features of the ac- 
tion of correlated fields on a resonant system that a re  
found in this present work allow us to think that the me- 
thod of intraspectral correlation will find wide applica- 
tion in various problems of nonlinear optics and quan- 
tum radiophysics. 
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