
where J ,  i s  a spherical Bessel  function. 

Let KO = (u~)'" be the critical value at  which the level 
with the given angular momentum appears.  The condi- 
tion for  the appearance of the level i s  

We set  U= Uo+ A and assume A<< U,. Then 
%%to+ (A-aZ)/2xo. (9) 

We form the expression 

Taking into account (8) and (9) and using the well-known 
properties of the Bessel functions, we obtain in the 
f i r s t  approximation 

F= (az-A) r0/2. (11) 

In the region outside the well, y z  r,, the wave function 
i s  

R, = ~ h : "  ( iar) ,  (12) 

where h(:' i s  a spherical Hankel function. The value of 
F when (12) is substituted in (10) under the condition 
oro<< 1 i s  

F=-azro/(21-1). (13) 

Equating (11) and (13), we find the connection between 
A and a,: 

A=a2(21+1)/ (21-1). (14) 
Note that the expression (13) i s  valid only for  1+ 0. 

In the case  1 = 0 we have F = - a, and therefore the con- 
nection between A and a, in the f i r s t  approximation in 
cur, has the form a, = ~7,/2.  We now consider the scat-  
tering problem in which we a r e  interested. 

Within the well for  Y yo the wave function has, a s  
before, the fo rm (7), but in the expression (9) we have 
k2 instead of -a2. Accordingly, instead of (11) we 
obtain F = - (k2 + h)yo/2. Substituting the expression (14) 
fo r  A, we find 

Outside the well, the wave function can be represented 
in the form 

(n, i s  a spherical Neumann function). 

Calculating F with the function (16) and using the 
condition ky<< 1, we obtain 

Equating (15) and (17), we find 

I am grateful to Yu. N. Demkov for  discussions and 
valuable comments. 
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The effect of resonant light pressure on the motion of atoms and molecules is investigated. A kinetic equation 
is obtained that describes the action exerted on the particles by both the average light-pressure forces and by 
their fluctuations. The forces due to spontaneous and induced transitions are considered, as well as those due 
to some combination of both. The kinetic equation is used to describe atom scattering under conditions close 
to those in experiment [A. Anmonodo, H. Lew, and T. Oka, Phys. Rev. Lett. 43, 753 (1979)l. Also obtained is 
the temperature of atoms cooled in a standing wave by a light-pressure force of mixed type. 

PACS numbers: 41.70. + t, 5 1.10. + y 

5 1. INTRODUCTION rate of scattering of the external-field photons. 

Resonant particles a r e  acted upon in the field of l a se r  In a traveling light wave, only spontaneous transitions 
emission by rather appreciable light-pressure forces.'-' can contribute to the pressure.  In non-uniform fields 
These forces depend on the intensity of the external (e. g., in a standing wave), a stimulated light-pressure 
field, on the proximity of i t s  frequency to resonance, force (gradient force) i s  also produced. Inasmuch a s  
and on i t s  spatial structure. The light pressure on an  the absorption and emission of external-field quanta 
individual particle is determined in final analysis by the a r e  correlated processes in stimulated transitions, the 
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gradient force is a regular quantity. Spontaneous emis- 
sion upsets the coherence of the interaction with the 
field and influences the motion of the atom in two ways. 
First ,  a certain average force is produced, which can 
cause acceleration o r  deceleration, depending on the 
d e t ~ n i n ~ . ~  Second, the atoms begin to diffuse in velo- 
city space. Depending on the field parameters and on 
the interaction time, under real  conditions the particles 
can either drift o r  diffuse. To determine these mo- 
tions, the kinetic equation must be used. 

This paper is  devoted to a derivation of a kinetic 
equation for the atoms and molecules in the quasiclas- 
sical limit. The motion of slow quasiclassical atoms is 
governed by an equation of the Fokker-Planck type ($3). 
We obtain the average force and the diffusion coefficient 
with allowance for the spontaneous and induced transi- 
tions. By way of example of the use of this equation, 
we consider the scattering of an atom beam (8 4) under 
conditions close to those of the experiment of Oka et 
The average scattering angle is calculated a s  a func- 
tion of the detuning and of the field intensity. In 8 5 is 
obtained the exact distribution function of atoms cooled 
by a standing light wave. If i t  is approximated by a 
Boltzmann distribution, then the particle temperature 
can be determined as a function of the field parameters. 

$2. INITIAL EQUATIONS 

We consider a model of two-level atoms with frequen- 
cy wo and transition dipole moment d. The lower level 
1 i s  the ground level, and the upper level 2 has a width 
r. The resonant field 

E ( r )  e-''wo+A)'+ c.c 

has a small detuning A. The Hamiltonian of an atom of 
mass M can be written in the resonance approximation 
in the form 

where q, a r e  spin matrices. 

To take consistent account of the recoil in spontane- 
ous and stimulated transitions, we must s tar t  from the 
quantum equation for the atom density matrix p ( r ~ r ~ t ) ~ " :  

The relaxation operator y is of the form 

Here W(n) is the probability of spontaneous photon 
emission in the direction n, and k = wo/c. 

Under ordinary conditions the momenta of the atoms 
greatly exceed the momentum of the resonant photon 

In this case Eq. (2) can be expanded, in the Wigner 
representation, in the quasiclassical parameter U ( ~ / U .  

We then have for the atom distribution function 

the population difference 

 rut) =pzz(rvt )  -p,, (rut )  , 
and the dipole moment p(rz1t) = plz(rr~t) (in units of d) the 
following system of equations8: 

Here d/dt = a/at + v . v is the total derivative with re- 
spect to time 

P ( r )  =dE(r ) lh ,  v = - i A + y / 2 .  

Equations (4) and (5) correspond to the known system of 
Bloch equations for two-level atoms. The difference 
lies only in the second t e rm in the right-hand side of 
(4), which takes into account the recoil in stimulated 
transitions. 

Equation (6) for the distribution function describes 
the change of the motion of the center of inertia of the 
atom both on account of the stimulated transitions 
(right-hand side) and on account of spontaneous ones. 
Equation (6) contains the spontaneous-relaxation opera- 
tor for an atomic dipole linearly polarized along the z 
axis, namely 

Substituting the solution of Bloch's equations (4) and (5) 
in Eq. (6), we obtain the kinetic equation for the dis- 
tribution function. For the case of slow atoms (§ 3) it 
takes the Fokker-Planck form, 

53. THE KINETIC EQUATION 

A. Traveling wave 

We consider f irst  the simpler case of a traveling 
wave 

E ( r )  =Eoerb, 

which admits of a spatially homogeneous solution of the 
Bloch equations. In the quasistationary limit (dq/dt 
<< yq, @/at<< u p )  Eqs. (4) and (5) reduce to algebraic 
equations for  p and q. As a result we obtain f o r  f the 
kinetic equation 

where F, = ygkw i s  the spontaneous light pressure force, 
D, = ~ U ~ ~ W / ~ O  is the reduced diffusion coefficient, and 

is the probability of populating the upper level. 

The difference between the transverse coefficients of 
diffusion along the y and z axes is connected with the 
orientation of the radiating dipole along the z axis. 
Since photon absorption from an external field via spon- 
taneous emission is a random process, the ensuing 
fluctuations of the atom momentum increase the longi- 
tudinal diffusion coefficient. The diffusion coefficient 
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in Eq. (7) differs numerically from the corresponding 
expressions obtained for a traveling wave?"' 

We note that the average force contains a correction 
that is small in terms of the parameter (3) and is due 
to the velocity dependence of the diffusion coefficient. 

B. Standing wave 

We consider now the motion of atoms in the standing 
wave 

E ( r )  =E, cos k z .  

In this case the spatial inhomogeneity of the field plays 
an important role and makes the solution of the equa- 
tions difficult. In many important applications, how- 
ever, the atom motion is slow: 

ku.aIvI .  (8) 

This allows us to expand the system (4) and (5) in the 
small gradients. In addition, the recoil effect can be 
taken into account in the Bloch equations by perturba- 
tion theory. We put p =Po + p l  and y = qo + q,, where P, 
<< PO and q, << q,. 

In the zeroth approximation the atoms a r e  assumed 
to be immobile and the recoil is disregarded. Then 

P O = - i Q ( z ) q d v ,  q o = - f l ( l + x ( x ) ) ,  (9) 

where ~ ( x )  = 2d(x)/  I v 1' is the saturation parameter 
in the standing wave, 

Q ( z )  =Qo cos kx; Qo=dEo/A. 

For  the first-order approximation we have the equa- 
tions 

-A a a ( z )  a f  ap ,  
vp ,+iQ(z)q , - - - - - -v , - ,  

261 a x  au, a x  

The zeroth approximation (9) yields the averaged in- 
duced atom dipole moment that depends on the local 
value of the field. This determines a t  the same time 
the gradient force acting on the particle. The first- 
order approximation determines the nonlocal part of 
the dipole moment, which is proportional to a d a x .  
This leads to the appearance of a nongradient force and 
to diffusion of the atoms in velocity. Substituting Re(po 
+PI) in (4), we arrive a t  the following kinetic equation: 

The logarithmic potential (12) was obtained earlier for 
slow atoms by one of us.' 

The terms proportional to G, A, and D, obtained by 
perturbation theory, a r e  small  compared with the gra- 
dient force a u / a x .  They must be taken into account, 

FIG. 1. Dependence of the averaged mixed-type force on the 
detuning. Curves 1 and2 correspond toweak andstrong fields, 
respectively. 

however, for these terms, unlike the average gradient 
force, do not average out to zero over the period of the 
field. The influence of these terms has therefore a 
systematic time-cumulative character. 

Gv, is  the friction force. Depending on the detuning, 
the friction can be positive o r  negative. Just a s  any other 
dissipative force, friction cannot be represented by a 
gradient of a potential. From the physical point of 
view, a nongradient force is the result of the entangle- 
ment of spontaneous and stimulated transitions. It is 
natural to call i t  a force of mixed Figure 1 
shows the detuning-dependent spatially averaged mixed- 
type force ( G ~ ) ) V ,  (the angle brackets denote averaging 
over the period of the field). 

In weak field the force is decelerating at A < 0 and 
accelerating at A -. 0 (curve 1). In a strong field, when 
S2 ; 7, G vanishes not only a t  zero detuning but also a t  

2 finite detunings and A,, where A, = ~ 2 ~ / y .  

The diffusion coefficient D contains a contribution Do 
from the spontaneous transitions and a contribution 
proportional to the square of the field gradient from the 
stimulated transitions. In weak fields the contributions 
from the spontaneous and stimulated transitions differ 
only by a numerical factor 

In a strong field, the stimulated diffusion coefficient is 
much larger than the spontaneous one 

Thus, owing to spontaneous emission, the diffusion 
coefficient saturates rapidly with increasing field, 
while the diffusion coefficient governed by the gradient 
force is proportional to the field intensity ( ~ i ~ .  2). 
The term with the mixed derivative, proportional to A, 
modifies somewhat the diffusion coefficient, a s  will be 
shown in O 5. 

FIG. 2. Dependence of the averaged coefficient of diffusion in 
a standing wave on the field intensity fo r  zero  detuning. The 
lower curve corresponds to the spontaneous diffusion coeffici- 
ent. 
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We shall use the kinetic equation to describe two con- 
crete physical examples, atom-beam scattering and 
cooling by a standing wave. 

54. ATOM-BEAM SCATTERING BY A STANDING 
LIGHT WAVE 

We consider scattering of a monokinetic beam of 
atoms moving with velocity z,, along the y axis by the 
field of a standing light wave directed along the x axis. 
There a r e  no transverse velocities 21, in the incident 
beam. The problem is to find the particle distribution 
in the transverse velocities after passing through the 
field region. The case of short times T of interaction 
with the field was previously studied by c la~s ica l ""~  
and q ~ a n t u m ' ~ " ~  methods without allowance for spon- 
taneous transitions. Scattering of atoms by a nonmono- 
chromatic field of a standing wave a t  large 7 was con- 
sidered in Ref. 15. 

It is of interest to investigate the case of long flight 
times, when the spontaneous emission becomes signi- 
ficant. Arimondo et a1.5 have recently observed scat- 
tering of a beam of Na atoms by the field of a mono- 
chromatic standing wave. The experimental conditions 
were such that v -10, and the finite transverse velo- 
cities of the atoms were low, kt,,<< y. Under these con- 
ditions the distribution function of the scattered atoms 
can be found by using the kinetic equation (11). In 
small-angle scattering, the longitudinal velocity 11, 

can be regarded a s  constant. A particle landing in the 
region of a periodic potential begins to oscillate a t  a 
characteristic frequency k(U/A4)'12 along the x axis. 
Superimposed on these oscillations is a certain diffu- 
sion motion. 

If we confine ourselves to the case 

T l i ( U / h f ) >  < I ,  

then the problem can be greatly simplified. The scat- 
tering-induced increment of the transverse momentum 
of the atom is proportional to 7, and the change of the 
coordinate along the x axis is of the order of 7'. The 
condition (18) allows us to neglect the change of the 
transverse coordinate. In this approximation, the 
problem reduces to finding the transverse momenta 
of particles moving in the light field along straight-line 
trajectories. This means that we can leave out of (22) 
u,af/ax, ~ a ~ f / a ~ a ~ , ,  a s  well a s  GU,, for in this case 
there is no self-averaging of the gradient force (the 
particle does not have enough time to move noticeably 
away from the initial entry coordinate along the x axis), 
and a ~ / a x  is larger than the mixed-type force a t  a l l  de- 
tunings. The diffusion term must be retained, since the 
gradient force is small  a t  small  detuning and the scat- 
tering is of the diffusion type. 

Thus, under the foregoing simplifications, the sta- 
tionary kinetic equation takes the form 

Let the light beam span along the y axis the region 0 
< y < I .  At the entrance into the field region, the dis- 
tribution function is of the form 

The aperture of the beam i s  usually large comparedwith 
the wavelength of the light, so that the particle distri- 
bution along the x axis in the incident beam can be re- 
garded a s  uniform. 

Solving (19), we obtain the distribution of the scatter- 
ed particles 

The angle brackets mean averaging over the spatial 
period of the field, since the detector registers the 
scattering pattern averaged over the coordinate. 

We calculate now the mean squared velocity of the 
scattered particles (v:). In a weak field Wo<< y we have 

The first  and second terms in the square brackets cor- 
respond to the contributions from the gradient force and 
from the diffusion scattering, respectively. In a very 
weak field no<< (Y/T)'/~ the principal role is played by 
diffusion. At (y/?)'/'<< Wo a more important role is as- 
sumed by scattering due to the gradient force, with the 
exception of the region of small  detunings / A  / < Al, 
where 

These cases correspond to curves 1 and 2 of Fig. 3, 
which shows the dependence of the average scattering 
angle ~ = ( U ~ ) ' ~ / U ,  on the detuning. 

In a strong field no>> y we obtain 

The contribution to the scattering from the gradient 
force (" 7') exceeds considerably the contribution from 
the diffusion (7) at  a l l  detunings, except fo r  a small  
vicinity 1 A / < Ao. At both / A I -Ao both terms in (24) 
become of the same order. The frequency A. then de- 
pends strongly on the field. In not too strong a field 
Y << no << y7' we have 

A~ = (a0/7)'12 << y. (25) 

In a very strong field, when W0 >> yr2, we get from (24) 

A ~ = R , / ~ T B ~ .  (25') 

Thus, in a strong field the plot of Z(A) (curve 3) has 
two characteristic frequencies, no and Ao. At large 

FIG. 3. Dependence of the average scattering angle on the 
detuning. 
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detunings I A / 2 Q0 the scattering picture coincides with 
the results of the theory of pure potential scattering 
(without allowance for  spontaneous emission). In par- 
ticular, the characteristic scattering angle obtained 
from (24) at / A /  -a0, is g-~kdE~/Mv,.  If we substitute 
here T from (18), in which we replace the inequality 
sign by equality, we obtain 

This agrees with the theoretical estimates'"" and with 
experimental results.' At A < SZo the spontaneous emis- 
sion alters the scattering picture substantially. Thus, 
in the absence of spontaneous emission the scattering 
peak is reached a t  the resonant frequency, and a dip is 
produced in this region a t  yr > 1. Unfortunately, no 
measurements of the frequency dependence of the scat- 
tering angle was made in Ref. 5. 

$5. COOLING OF ATOMS BY LIGHT 

The rate of cooling o r  heating of atoms (depending on 
the sign of the detuning) in a standing wave was esti- 
mated earl ier  for  the case of strong4 and weak1' satura- 
tion. Here we consider the final stage of cooling of 
atoms in a standing wave, obtain the stationary solution 
of the kinetic equation, and calculate the temperature 
of the cooled gas. We consider uniform motion along 
the x axis, assuming that the distribution function does 
not depend on u, and v,. This means actually that the 
energy of the transverse motion is considerably higher 
than that of the longitudinal motion. In the absence of 
collisions, such a strong anisotropy of the temperature 
is perfectly feasible. 

Thus, the one-dimensional stationary equation (1 1) 
for the distribution function takes the form (u, = u) 

We use hereafter the smallness of the t e rms  with G, 
A, and D compared with the gradient force. To this 
end we change from the variables x and v to the vari- 
ables x and &=Mu2/2 + Uh), where E is the total energy 
of the particle. Equation (27) then takes the form 

v(e, x)  =*(2(e-U)/M)": (28) 

We seek the solution of this equation by perturbation 
theory, representing the distribution function in the 
form f ( E ,  X )  = ~ o ( E )  +fl(&, x), with fl much smaller than 
fo by virtue of the smallness of the parameters A, G, 
and D. From (28) we have 

Since fl(&, x )  i s  a periodic function of the coordinate 
under stationary conditions, we obtain after averaging 
over the period 

The expression in the curly brackets must be set equal 
to zero, for otherwise the function f o  will not be nor- 
malizable. From this we get 

j, (6) = const exp - de' ( u  (e', z )  G (z) ) { I 
The exact distribution function (31) can be simplified 

by approximating the average of the products by the 
product of the averages. Then the distribution func- 
tion takes the standard form fo -exp(-&/T), where 

It is easy to verify that the numerator in (32) is nega- 
tive. A stationary distribution exists therefore if (G) 
< 0. 

We consider now some cases a t  limiting field inten- 
sities. In a weak field no<< y we have 

T=7hl~1~/20A. (33) 

The minimum temperature 7Ey/20=fiy/3 is reached a t  
A = y/2. This agrees in order of magnitude with re-  
sults by  other^.'"'^ The depth of modulation of the po- 
tential Uh) is small  in this case compared with the 
temperature, so that the fraction of particles trapped 
in the potential wells is small, 

At no>> Y and xo -1 we get f rom (32) 

Finally, in a strong field x o  >> 1 

The condition that the temperatures be positive leads 
to the following restriction on the detuning: - y / a  
< A <  0 o r  y / a <  A<< Go. It is understood that the de- 
tuning is not too close to the boundaries of the indi- 
cated region, for  otherwise the condition (8) that the 
atoms be slow may be violated. We have seen that in 
a strong field the atom temperature turns out to be of 
the order of the Rabi frequency and is comparable with 
the depth of the potential wells. Therefore the frac- 
tion of the bound atoms becomes of the order of unity. 
We note that cooling of sodium atoms with the aid of 
resonant light pressure has been recently observed.'' 

56. CONCLUSION 

To describe the drift of atoms in an optical field it 
suffices to take into account only the average light- 
pressure forces. In those cases, however, when the 
average effective force is small, account must be 
taken of the fluctuations of the light-pressure force, 
which lead to diffusion of the atoms in velocity. This 
situation takes place a s  a rule a t  small  detunings from 
resonance and for long t imes of interaction with the 
field, yr >> 1. To describe the motion of the atoms 
in the field in this case i t  is necessary to use the kin- 
etic equation. The kinetic equation for purely induced 
transitions in a nonmonochromatic field of a standing 
wave was considered earl ier  in Refs. 8 and 15 .  The 
atom diffusion due to spontaneous transitions in a 
traveling-wave field was estimated in Refs. 9, 10, 20, 
and 21. 

276 Sov. Phys. JETP 53(2), Feb. 1981 Kazantsev et a/. 276 



In the present paper we calculate the coefficient of 
diffusion in a monochromatic standing wave; this co- 
efficient is governed by a certain combination of spon- 
taneous and induced transitions. In addition, a more 
accurate spontaneous diffusion coefficient for a travel- 
ing wave is obtained. 

If the various types of diffusion a r e  considered from 
the point of view of the mechanism of the scattering of 
the external-field photons then, just as in the case of 
the average forces, there a r e  three types of diffusion: 
spontaneous, stimulated, and mixed.3 The greatest 
difference between these diffusion coefficients takes 
place in a strong saturating field. The spontaneous 
diffusion coefficient is then independent of the field, 
while the mixed-type diffusion coefficient, a s  well a s  
the induced-diffusion c o e f f i ~ i e n t , ~ " ~  increases in pro- 
portion to the field intensity. 

Next, the kinetic equation is used to find the distri- 
bution function of atoms scattered in a standing wave. 
It is shown that the dependence of the average scatter- 
ing angle on the detuning in a strong field has a non- 
monotonic character. It i s  of interest to  note that the 
frequency width of the dip (25) is less  than the natural 
line width of the atom. 

We have also obtained the temperature of the atoms 
cooled by a standing light wave, and investigated i t s  
dependence on the field parameters. 
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