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Nonlinear dynamics of rays in periodically inhomogeneous waveguide channels is investigated. Two 
fundamentally new effects that appear as a result of nonlinear interaction of the rays with the periodic 
inhomogeneity of the medium are considered. The first, modulation localization of the beam, is the analog of 
nonlinear resonance in classical mechanics. The second effect constitutes formation of a stochastic region of 
the waveguide channel on account of the stochastic instability of the beam. This phenomenon decreases the 
effective transverse dimension of the waveguide. The widths of the regions of the ray modulation localization 
and of the stochastic layer are calculated for a waveguide channel with a solitonlike refractive-index profile. 
The possibility of ray stochastization in three-dimensional waveguide channels in the absence of 
inhomogeneity along the ray propagation axis is demonstrated. 

PACS numbers: 42.65.Bp, 84.40.Ed 

1. INTRODUCTION the representative point of the ray in a plane perpen- 
dicular to the propagation direction. This phenomenon 

Sound waves in the ocean and in the atmosphere and 
is  analogous to stochastic instability in nonlinear me- 

radio waves in the ionosphere can propagate over very chanics.' It disturbs a certain region of the waveguide 
large The reason i s  that the wave phase 

channel. The rays a r e  radiated out of this region, and 
velocity in the corresponding medium has a nonmono- 

the effective length of the waveguide channel is de- tonic dependence on a certain coordinate (e.g., on the 
creased. depth in the ocean). The result i s  a natural waveguide 

channel in which the wave propagates. Many effects We note that the method developed below for the anal- 
influence the propagation distance of a wave in a wave- ysis of ray dynamics is  one of the new applications of 
guide channel. An important factor that limits this dis-  the stochastic-instability phenomenon first  observed in 
tance is the inhomogeneity of the waveguide channel cyclic accelerators. The phase-focusing mechanism 
along its axis. proposed by Veksler and McMillan i s  an example of 

trapping of an accelerated-particle beam into a nonlin- We present an example of a regular and moreover 
periodic large-scale inhomogeneity in the ionosphere. e a r  resonance, The interaction of such resonances, 

which result from any kind of cyclic inhomogeneity, It is  known that electro-magnetic waves propagate with dif- 
can lead to a stochastic departure of the particles from ferent velocities in the region illuminated by the sun and 
the v01ume.~ Despite, however, the close analogy be- 

in the shadow region. Thus, a wave propagating around 
tween stochastic instability of particles in cyclic accel- the earth encounters a periodic inhomogeneity with a 
erators and the corresponding ray instability in say, period of the order of the earth's radius. 
cyclic resonators, there is  also a fundamental differ- 

If the wave propagation time is long, even small in- ence between these problems, owing to the wave nature 
homogeneities can lead to cumulative effects, which of the field, for which ray dynamics is only a certain 
manifest themselves in changes of the wave intensity approximation. 

- - 

and of the wavefront structure. It is  clear that calcu- 
It i s  helpful to point out one more analogy between the 

lation of effects of this kind is  beyond the scope of or-  
problem considered below and other quantum objects to 

dinary (in a certain sense) perturbation theory. The which considerable attention i s  being paid of late. We 
purpose of the present paper is  to analyze cumulative 

have in mind the analysis of the quantum dynamics of effects of wave propagation in a periodically inhomo- 
a system that has in the classical limit a stochastic 

geneous medium. The real  parameters of the medium motion (with displacements in phase space).12 
a re  here such that geometric-optics approximation can 

2. EQUATIONS OF RAY TRAJECTORY 
The problem of wave propagation in natural media We describe the ray trajectory using the Hamilton- 

can thus be reduced to a corresponding ray -dynamics ian f o r m a l i ~ m . ~  Let the z axis coincide with that of 
- problem, o r  to the equivalent problem of the motion of the waveguide channel and let the coordinate p = ( x , y )  

a nonlinear oscillator under the influence of aperiodic lie in a plane transverse to the Then the ray 
perturbation. We consider in this paper two fundamen- coordinates (%, y ,  z) satisfy the Hamilton equations 
tally new effects. The first  can be called modulation 
localization of the ray a s  a result of a unique nonlinear dp/dz=-alI/ar, dr/dz=dff/ap, 

interaction of the ray with the periodic inhomogeneity where H is the Hamilton function 
of the medium. This is  the analog of nonlinear reso- 
nance in classical mechanics. The second effect can H = - [ n z ( r ,  ~ ) - p ~ ] ' / ~  , 

be called stochastic instability of the ray." Its gist is 
p is  the momentum and equals 

that under certain conditions the action of a periodic 
(not random!) inhomogeneity stochastizes the motion of p=ni / ( i+ i2) ' /z ;  &dr/dz. 
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Here n = n(r, z )  is  the refractive index. 

We represent n in the form 
n2(r ,  z )=n2( r )+ev ( r ,  z ) ,  

where n(r) corresponds to the regular case (homogene- 
ous in z), and the perturbation cv takes into account the 
influence of the inhomogeneity. The quantity c << 1 is  a 
dimensionless parameter of the perturbation. Taking 
its smallness into account, we can write (2.2) in the 
form 

H=Ho(r,  p) -+eV(r ,  p, z), 
Ho (r ,  p) = - [ n Z ( r )  -P' ]%,  

V ( r ,  p, z) -v(r, z ) / 2Ho .  

The unperturbed motion of the ray is determined by 
the Hamiltonian H,. The problem of the ray trajectory 
is thus reduced in the inhomogeneous case to the equiv- 
alent problem of the action of a nonstationary perturba- 
tion on a particle that executes finite motion described 
by the Hamiltonian H,. The role of the time is assumed 
in this case by the variable z ,  and it is  the inhomogen- 
eity along this variable which produces the perturba- 
tion. 

We begin the investigation of the problem with the 
simplest planar case, when n is independent of y. 
Equations (2.1) and (2.5) then become 

We describe first  the unperturbed motion of the ray. 
A typical plot of n(x) vs. the transverse coordinate x i s  
shown in Fig. 1. The values of n, determine the cor- 
responding asymptotic forms of n ( ~ )  a s  x - rt m. We as- 
sume next for simplicity 

n+=n-=n,. (2.7) 

It i s  easy to show that the unperturbed phase trajec- 
tories, defined by Eqs. (2.6) and (2.7) a t  V =  0, take the 
form shown in Fig. 2. Trajectories of type 1 corre- 
spond to finite motions of the ray along the x axis. 
These a re  in fact the rays propagating in the natural 
waveguide channel. Trajectories of type 3 correspond 
to infinite motion of the ray along x. The two trajec- 
tory types a re  demarcated by the separatrix 2. 

Let E be the energy of the equivalent particle corre- 
sponding to the value of the integral of motion H,(x,p) 
= E. It follows then from (2.5) and (2.7) that on the 
separatrix we have 

E--n,.  (2.8) 

In the finite-motion region 
-no<EC-n,,  (2.9) 

and in the region of infinite motion 
-n,<E<O. (2.10) 

FIG. 1. Typical dependence of the refractive index nb) on%. 

FIG. 2. Trajectory of rays in the phase plane ( p , x )  in the un- 
perturbed case: 1-wave rays, 2-separatrix, 3-radiated 
rays. 

We introduce in the region (2.9), where the motion is 
not periodic, the action and angle variables (1,9): 

In terms of the new variables Ho=Ho(l), and 

o ( I )  =dHo ( I )  / d l  (2.12) 
is  the nonlinear frequency of oscillations of the ray 
along x relative to the z axis of the waveguide channel. 
In addition, we can write the Fourier expansion 

Using the variables I and 9, we rewrite according to 
(2.11) the equations of motion in the form 

As already noted, we a r e  interested in the case of a 
perturbation potential that is  periodic in V. Then 

where n is  the "frequency" of the perturbation (2n/n is 
the spatial period of the perturbation), and c.c. stands 
for terms that a r e  the complex conjugates of the pre- 
ceding ones. 

It is  seen from (2.14) and (2.15) that the strongest in- 
fluence of the perturbation takes place in the resonant 
case, i.e., upon satisfaction of the condition 

mw ( I )  + s x = ~ .  (2.16) 

This case i s  called nonlinear resonance and was de- 
scribed in detail earlier.5 We present directly the re -  
sult for the motion of a ray in the vicinity of one reso- 
nance. Let I ,  be that value of I a t  which the condition 
(2.16) is  satisfied for definite values of rn and s. It fol- 
lows then from (2.14) (Ref. 5) that 3 satisfies the equa- 
tion 

8+Q2 sin 8=0, 

This is the pendulum equation and describes nonlinear 
periodic modulation of the phase 9 of the ray with fre- 
quency 51. The principal condition for the validity of 
(2.17) is of the form 
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3. RAY TRAJECTORY FOR SOLITONLIKE n ( x )  
PROFILE 

i.e., a sufficiently strong nonlinearity. 

From (2.17) and (2.14) we get the region of localiza- 
tion of the nonlinear resonance5: 

The physical meaning of the foregoing results was the 
following. As already noted, in the absence of pertur- 
bation the ray trajectory oscillates along the x axis a t  
a frequency w(I). In the vicinity of the resonant f re-  
quency ~ ( 1 , )  there i s  superimposed on this motion an 
additional ray modulation along z.  The modulation am- 
plitude is determined by expressions in (2.19). The am- 
plitude in turn determines also the region of ray local- 
ization in the plane perpendicular to z. An additional 
waveguide channel is thus produced along the trajectory 
of the unperturbed ray that corresponds to the action of 
I,, and has an effective dimension &I. The rays 
trapped in this channel oscillate in it, with frequency a, 
about the unperturbed trajectory. This leads in turn to 
a periodic modulation of the group velocity of the wave 
field. To verify this, we consider the connection be- 
tween the frequency w(I) and the group velocity of the 
corresponding wave of the unperturbed problem. 

In the employed notation 
k = k  k,=v!c, 

where is the cyclic frequency of the wave field in vac- 
uum, and k ,  is  the wave number of the field along the z 
axis. From (2.20) we have 

1 dk, IHol dlN,l dl - -=--- f ko--. 
u, dv c d l  dv 

The quantization conditions in the waveguide yield 

We get therefore, taking (2.12) into account, 
u , = c ~ [  I ~ , ~ + ~ O ( I ) [ I .  (2.21) 

In the unperturbed case I = 0 and the action I, hence 
also v,, does not depend on z. In the presence of a per- 
turbation we have from (2.21) and (2.14), on account of 
the inhomogeneities, 

It follows from (2.22) that in the inhomogeneous case 
v, is also periodically modulated in z with a modulation 
period 51 and with a modulation amplitude 

dv, 4 
A L , ~ = - A I = - -  u 

d l  dl 
. (2.23) 

A similar appearance of modulation oscillations can 
be postulated also for the phase velocity v,= C/H, I of 
the wave. In the general case, the number of regions 
in which modulation localization of the beam takes 
place is connected with the number of possible reso- 
nances of type (2.16). We shall discuss this in greater 
detail in Sec. 4. 

We consider by way of example a waveguide channel 
with the following refractive-index profile: 

where p =  (ni -nf)'I2 characterizes the depth of the cor- 
responding potential well, and a its effective width. 
Substituting (3.1) in (2.11) and (2.12) we have 

I-Zr(1-p), p=[HdL(Z) -n,']'"/p, 
H o ( I )  =-[n,2+p'( l -I /I , ) ' ] '" ,  Z,=ap. 

w(I)=(Zs- l )I [azI  Ho(I)  I I ,  

x=a arcsh [p-'(1-pz)'" cos 01, 
p=p$(1-pz)'" s i n 6 / ( c o ~ ~ 6 + ~ ~ s i n ' 6 ) " ,  

.6=w ( I )  zf.60. 

It follows from (3.2) that the separatrix corresponds to 
the action I,, with 

Ho(I , )  =-n, ,  @(I . )  =0, 

H,[O) =-no, w ( 0 )  =wo=plano. 
(3.3) 

At I I, - I / <<I, we obtain from (3.2) the behavior of the 
frequency near the separatrix: 

1 
~ ( 1 )  = -(I,-I)= 

azn, a'n, 

The expansion of the momentum p in a Fourier series 
(see the Appendix) is  of the form 

From (3.1) 43.4) we obtain asymptotic expressions for 
the spectrum: 

According to the second equation of (3.6), the ray-os- 
cillation spectrum is cut off exponentially near the 
separatrix a t  numbers m 2 N, where 

We take the perturbation to be periodic deviations of 
the waveguide axis from the straight z axis. In this 
case 

n ( x ,  z )  = n ( x - f ( z )  ), 

where f(z) describes the deviation of the axis from the 
coordinate x in the plane z = const. At small deviations 
( c =  If I /a<<1) we have 

Retaining the f i rs t  two terms, we obtain for the per- 
turbation the expression 

Using the expansion (3.5), we represent the perturba- 
tion in the form 
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, 
~ V ( Z ,  z ) -  -p0$(1-$')"f ( z )  ( m + l / z ) A ,  e"'m+il*z+ C.C .  

m-0 

Let f ( z )  = f ,cosxz, where 2n/x is the spatial period of 
the perturbation For the matrix elements in (2.15) we 
then obtain 

~,,=-~.w~(l-~~)'~(rn+~/,) A,, e=fo/a. (3.8) 

The resonance condition takes in this case the form 

The distance between the newest resonances i s  

In particular, near the separatrix, where large val- 
ues of rn are  possible, we have 

80-2oVx. (3.11) 

We estimate now the width of the m;;dulation localiza- 
tion of the ray in two limiting cases: near the region of 
small ray oscillations and near the separatrix. At 
small oscillations, the greatest influence on the behav- 
ior of the ray i s  exerted according to (3.9) by the reso- 
nance with m = 0, i. e, , w ( I )  = x. Taking into account the 
asymptotic form (3.6) for the spectrum A, a s  8-  1, as 
well as (2.18), we obtain 

xan, % ' I4  A' ' @ ( I )  -483~1- . WE--- 

0, so d l  P 

We note that nonlinear resonance sets  in under condi- 
tion (2.18) when the nonlinearity is  large enough. This 
means according to (3.2) and (2.18) that 

a m i - 0  ( I )  l o s = i - x / o o > e .  (3.13) 

If the values of x a r e  so  close to w, that condition (3.13) 
does not hold, then the main resonance must be con- 
sidered in a different manner. It follows thus from 
(3.12) and (3.13) that the regions of modulation localiza- 
tion of the ray have a certain lower bound on the order 
of a3f4. 

Near the separatrix it i s  possible also for high har- 
monics of the ray oscillations t o  enter into resonance. 
For a resonance rn >> 1 we can obtain the following es -  
timates of AI and A w 

We shall use these expressions in the next section. 

4. FORMATION OF STOCHASTIC LAYER NEAR THE 
SEPARATRIX 

It was shown that the perturbation pro- 
duces in the vicinity of the separatrix a so-called sto- 
chastic layer, in which the particle trajectories a re  
random. The main feature of this phenomenon is that 
the stochastic layer is  produced under periodic pertur- 
bations of arbitrary form and magnitude, and only the 
width of the layer is  determined by the character of the 
perturbation. No analogous property was observed up 
to now for ray trajectories. At the same time, forma- 
tion of a stochastic layer in which random motion of 
the rays takes place can have, a s  will be made clear 

FIG. 3. Stochastic layer in phase plane of rays (shaded re- 
gion). 

below, important physical consequences. 

It was already noted in Sec. 3 that the analysis of 
modulation localization of a ray is valid when other 
resonances a r e  fa r  enough from the considered one. 
Near the separatrix, the distance 6w between the reso- 
nances is  determined by (3.11). As the separatrix is  
approached W- 0 and 6 w decreases rapidly. In this 
case the regions of the nonlinear resonances can over- 
lap. It is  known (the Chirikov c r i t e r i ~ n ~ * ~ - ' ~ )  that over- 
lap of resonances causes the trajectories to become 
stochastic. This condition is written in the form 

Let us consider inequality (4.11, using formulas (3.14) 
and (3.11). We have 

It follows therefore that a t  all  c and x the value of K  in- 
creases a s  the separatrix i s  approached, w- 0. There- 
fore, starting with a certain value ib, K  reaches unity 
and the criterion (4.1) begins to be satisfied. Thus, a 
stochastic layer (shaded region in Fig. 3) is  produced 
in the vicinity of the separatrix and its boundary i s  de- 
termined from the condition K =  1. Hence 

With the aid of (4.3) and (3.4) we obtain the width of 
the stochastic layer in terms of variables I and H 

If the initial state of the ray i s  such that its action I 
lies in the region (4.4), this means that its motion in 
space along z is  of the diffusion type. The diffusion 
causes the ray to reach the region near the unperturbed 
separatrix and to be "radiated" out of the waveguide 
region. The described phenomenon is similar to the 
existence of a "loss cone" of particles in magnetic 
traps. Thus, the action of an inhomogeneity a s  a per- 
turbation leads to a decrease of the effective width of 
the waveguide channel. We note also that field modes 
with higher numbers end up in the region of the sto- 
chastic layer. Radiation of the field from the stochastic 
layer means therefore also the filtering of the high 
waveguide-channel modes. 

It was shown earlier7*' that the particle traverses the 
stochastic-layer width within a short characteristic 
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time of the order of the period of the small oscillations. 
In our case it means that the emission of the ray from 
the stochastic layer of the waveguide region takes place 
over a length 

1-2nloo=2nano/p=2nano/ (noz-n,2)". (4.5) 

In real  situation, p reaches values -10-'no, and the 
emission length exceeds by an order of magnitude the 
width a of the waveguide channel. It must also be noted 
that over the length I defined by (4.5), information is 
lost concerning that part  of the initial wave front which 
i s  produced by rays that a r e  fa r  enough from the axis. 

5. STOCHASTIZATION OF RAYS IN A 
THREE-DIMENSIONAL WAVEGUIDE CHANNEL 

We consider now a waveguide channel in which the r e -  
fractive index depends on both transverse coordinates 
x and y. The ray motion is then analogous to the mo- 
tion of a particle with two degrees of freedom in a po- 
tential well. In the presence of periodic perturbations 
along the z axis, just a s  in the case of a flat waveguide 
channel, modulation localization of the beam will be ob- 
served, a s  well a s  stochastization of the rays near the 
separatrix. In contrast to the planar case, the pres- 
ence of two degrees of freedom in the considered wave- 
guide channel can give r ise  to another ray -stochastiza- 
tion mechanism, which i s  possible even in the absence 
of perturbations along the z axis. The last phenomenon 
is connected with the stochastic disturbance of one of 
the integrals of motion of the ray because of interaction 
of different degrees of freedom" (see also the review1'). 
Interaction of two degrees of freedom i s  possible a t  
certain dependences of the refractive index n(r) on the 
transverse coordinates x and y. 

We consider by way of example a waveguide channel 
with a refractive index of the form 

where a has the dimension of length and i s  of the order 
of the width of the waveguide channel. The profile (5.1) 
can be used to approximate the refractive index near 
the waveguide axis, where n(x, y) is  a maximum. For 
rays propagating near the waveguide axis and a t  small 
angles to this axis, the following conditions a r e  satis- 
fied: 

When the conditions (5.2) a r e  satisfied, the Hamil- 
tonian (2.2) can be expressed in the form (the paraxial 
approximation) 

H=-no+ H', 
H'=' / ,no(bzfy2)  + ' / 1 [ (xZ+yz ) / a2+2  (xay - ' / , yS ) /a s ] .  (5.3) 

At no= 1 and a = 1, H' coincides with the Hamiltonian of 
the Henon-Heiles model." A numerical analysis of the 
model motion in that paper shows that a t  values E' = H' 
smaller than a certain critical E', the particle trajec- 
tories correspond to a periodic stable motion. Starting 
with energy values E'> E', the trajectories become sto- 
chastic, owing to the absence of a second integral of 
the motion. 

The latter means that the trajectories of the rays 

corresponding to high modes with wave numbers 

k.=k,(H l<k , '=k , (n , -E l l ,  (5.4) 

a r e  stochastic, while trajectories of rays for which 

ko I no-E.'I <k.<kono, 

a r e  periodic functions of the longitudinal coordinate z.  

The region of stochastization of the waveguide rays 
with respect to  H a r e  determined by the condition 

Just a s  in the case of a planar waveguide channel with 
periodic inhomogeneities, the stochastization causes 
the rays to be diffusively "radiated" out of the wave- 
guide-channel stochastization region, and decreases 
the effective width of the latter. 

6. CONCLUSION 

The presented results were obtained within the frame- 
work of geometric optics, so  that we must discuss the 
question of the restrictions imposed by wave effects. 
The main condition for the applicability of geometric 
optics i s  a smooth variation of the refractive index n(r) 
over distances of the order of the wavelength. An addi- 
tional restriction i s  imposed by the nonlinearity of the 
ray oscillations about the waveguide-channel axis. 

We note that the system considered by i s  equivalent 
(from the wave viewpoint) to a quantum nonlinear sys- 
tem. The coordinate z of the waveguide channel corre- 
sponds to the time of the quantum system. The simplest 
effect of violation of the quasiclassical description of a 
nonlinear system i s  connected with the spreading of the 
wave packet a s  a result of the nonlinearity. The time 
of this spreading is 

t , - 2n / [ f i do (Z) /dZ] .  

For wave optics this means that the geometric-optics 
approximation ceases to be valid starting with the dis- 
tance 

For the example considered in Sec. 3 we have 

The minimum value of z, i s  of the order of the dif- 
fraction length for a beam with a radius of the order of 
the effective width of the waveguide channel. The wave- 
lengths considered by us  a r e  much shorter than the 
waveguide-channel width: a >> X = 2?/k0, therefore z,  
> > I .  Thus, the stochastization of the rays se ts  in over 
distances shorter than z,. However, the question of 
the range of applicability of the quasiclassical approxi- 
mation in quantum mechanics, or  of geometric optics 
in wave optics, in those cases when a stochastic insta- 
bility develops, is  a t  present quite complicated1' and 
will not be discussed here. 

Let us  also touch upon certain questions encountered 
in very-long-distance wave propagation in the iono- 
sphere. Under certain conditions, around-the-world 
signals can propagate in the E and F layers.' The ion 
density gradient on the illuminated and obscured sides 
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i s  an elementary example of periodic inhomogeneity. 
If the stochasticity conditions a re  satisfied, the ray 
should depart from the channel by diffusion, and the 
characteristic departure length can equal one or two 
p e r i ~ d s . ~  A ray instability (and attenuation) of this 
type can fully compete with ray scattering by large- 
scale (200-1000 m) random inhomogeneities. In fact, 
the diffusion coefficient is in the latter case2 

The relative diurnal oscillation of the density ranges 
from 0.01 at a height of 200 km to 2 a t  450 km. Recog- 
nizing that the ionosphere channel passes over a height 
200-300 km, it i s  easy to obtain a diffusion coefficient 
D- 10'11-10'14 cm", i.e., a value of the same order a s  
(6.1). 

Another possibility of stochastic instability of rays 
with rebounding trajectories is  connected with their 
periodic transitions from the E to the F channel and 
back. The fact that a nonlinearity, even a small one, 
can substantially influence in this case the divergence 
of a wave beam was already noted by Gurevich and 
Tsedilina. 

The mechanism of formation and suppression of the 
conditions for very -long-distance and around-the-world 
wave propagation in the ionosphere is  at  present a rath- 
e r  complicated research object. The arguments ad- 
vanced above show that the onset of stochastic dynamics 
of rays in regularly inhomogeneous media may turn out 
to be significant alongside the other factors that limit 
the distance over which waves can propagate. 

The authors thank Y u  A. Kravtsov for an interesting 
discussion of the work. 

APPENDIX 

Using the expansion 

we write 
sin z - 2 ""+"'I (I-p'). - - 2. U(Z) 

[coaZ z+ 8' sinz zltiZ 
"-0 

n! r ('I2) 

Next, using the expansion 

we obtain 

We investigate the asymptotic form of A, a s  0-  0. 
We use for this purpose the integral representation of 
the hypergeometric function 

F ( a ,  B, y ,z )= .  '(') f U ~ - ' ( ~ - U ) ~ - ' - '  (I-uz)-- du. 
r ( p ) r ( ~ - p )  : 

Then 

At ,3= 0 the integral diverges. We calculate the integral 
in A, by the saddle-point method in the assymptotic 
limit p- 0. We write it in the form 

1 

e*'"' du; 
0 

At m >> 1 and mS << 1 we get 

j e*=) du = ( n i 2~1~ img .  
0 

Thus 
A m ~ ( 2 / n ) " ' ( 1 - ~ ) " ' l m ~  

Starting with certain m 2 N, the spectrum of A, de- 
creases exponentially. For the characteristic number 
N we have 

N% IIn-'(1-pt) I =p-'. 
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