
4 ~ .  Cucloy, IEEE J. Q u a n t u ~  Electron. QE-8, 560 (1972). 'L. D. Landau and E. M. Lifshitz, Kvantovaya Mekhanika 
'N. B. Delone and V. P. Krainov, Atom v sil '  nom svetovom (Quantum Mechanics), Nauk, Moscow, 1974, (i 134 (Eng. 

pole (An Atom in a Strong Light Field), Atomizdat, Moscow, Transl. ,  Pergamon, Elmsford, New York, 1977). 
1978, Chap. 3. Translated by A. K. Agyei 

Two-photon excitation of a quantum system 
B. A. Zon and 8. G. Katsnel'son 

State University. Voronezh 
(Submitted 1 April 1980) 
Zh. Eksp. Teor. Fiz. 80,474-486 (February 1981) 

To analyze the crossing of the quasienergy levels of a system interacting with an intense alternating field 
under conditions of two-photon resonance, we propose an exactly solvabk model of a field whose envelope is 
of the characteristic interaction switching-on type. The kinetics of the system in the fkId is analyzed. From 
the obtained general relation for the probability of two-photon excitation there follow as limits instantaneous 
switching-on of the field and the adiabatic limit (the Landau-Zener formulas). The dependence of the 
excitation probability on the field intensity and the detuning of the two-photon resonance is analyzed for 
different interaction switching-on regimes and with allowance for possible ionization of the system from the 
upper state. 

PACS numbers: 42.50. + q, 32.80.Kf, 33.80.Kn 

1. INTRODUCTION. FORMULATION OF 
THE PROBLEM 

Two-photon excitation i s  one of the first  experimental- 
ly observed effects of nonlinear optics.' A large number 
of studies have now been made in which two-photon ex- 
citation has been observed in both condensed media and 
in gases. The theoretical description of the probability 
of two-photon excitation of state 2 from state 1  i s  usual- 
ly based on the Weisskopf-Wigner formula, which also 
describes single-photon excitation2: 

r 
W=l V,,I2 

(E, -E2+20) '+r2/4  . ( 1 )  

Here, V , ,  i s  the matrix element of the two-photon tran- 
sition, El and E ,  a r e  the energies of the levels, r is 
the homogeneous line width, R = 1 ,  and absence of sat- 
uration is also assumed: 1 V, ,  1 << IE, - El - 2w + ir/2 I. 
In the presence of inhomogeneous broadening, expres- 
sion ( 1 )  must be appropriately averaged. 

is  stationary, for otherwise the mass operator, which 
is a function of two four-points, becomes dependent on 
t and t' separately and not merely on the difference t 
- t ' ,  and a s  a result Eq. ( 1 )  cannot be proved. 

Since there cannot be strictly stationary laser fields 
(if only because of the existence of the switching-on 
period), formula ( 1 )  is by no means always valid. In- 
deed, in recent studies5-" it was shown that in a number 
of cases two-photon excitation bears a greater similar- 
ity to the transitions between molecular terms in slow 
collisions of atoms o r  adiabatic spin inversion in mag- 
netic resonance than to the resonant absorption of a 
single photon. 

Figure 1  explains the physical situation. Suppose, 
for simplicity, that the time dependence of the radia- 
tion intensity i s  due solely to the switching-on of the 
field. Then the energy levels E,, , ( t )  vary from E;,,  to 
certain stationary values determined by the steady- 
state field intensity, a s  shown in Fig. 1.  At definite 

In the absence of intermediate single-photon reson- 
values of the detuning from resonance in the absence ance, which will be assumed in what follows, the ma- 
of radiation, of the difference between the level polar- trix element V,, depends linearly on the radiation inten- 
izabilities, and of the intensity in the steady state, it i s  sity I. The energy levels E l , ,  also depend linearly on 
possible for the levels E ,  + 2w and E, to cross a t  a cer- the intensity because of the quadratic dynamical Stark 

effect. '' This fact can be taken into account by setting tain time to. As i s  well the presence of even 
weak interaction between states 1 and 2 leads to quasi- in formula (1) 

where E::: a r e  the energy levels in the absence of r a -  E,/C)+ZU 
E:" 

diation, and a,,, a r e  the polarizahilities of the levels a t  
the field frequency w . 

l o )  + zW ' I><.,.r) E2(f)  

Equations (1) and (2) can be proved by means of 
Low's equations, which describe the natural width of 
atomic levels if one takes into account the contribution "y 

f : . t  

to the mass operator of not only the photon vacuum but --I__ * 
to L 

also the field of the laser r a d i a t i ~ n . ~  For this, however, 
it i s  necessary to assume that the electromagnetic field FIG. 1. 
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crossing of the energy levels, a s  is  shown in Fig. 1 
by the dashed curves. In the given case, V,, is  such an 
interaction. If at the same time the motion through the 
terms occurs sufficiently slowly, then a system in state 
1 prior to the switching-on of the field will be in state 
2 at t > to, i. e. , the excitation probability is  equal to 
unity. Thus, the possibility of crossing of the energy 
(or rather quasienergy) levels leads to results that dif- 
fer strongly from those obtained in accordance with Eq. 
(1). 

The quantitative theory of the phenomenon must make 
it possible to calculate the probability of adiabatic tran- 
sitions between states a s  a function of the ra te  of change 
of the radiation intensity and the other parameters of 
the problem. In a number of studies:-' the Landau- 
Zener model: which i s  widely used in the theory of 
atomic collisions, was used to calculate the probabil- 
ities. In this model, it i s  assumed that in the region 
of crossing the terms can be approximated by a linear 
function of the time and-which is more important in 
the given case -the probability of an adiabatic transition 
i s  determined by the immediate neighborhood of the 
point of crossing. However, it i s  readily seen that this 
last condition i s  not satisfied in the problem of two- 
photon excitation. Indeed, after the crossing of the 
terms, the distance between them increases in propor - 
tion to the intensity, but the interaction V,, also in- 
creases in accordance with such a law. Therefore, if 
there a re  no special circumstances leading to anom- 
alously small matrix elements of V,,, the values of 
(a, - a,)I and V,, a re  of the same order. In the frame- 
work of the adiabatic approximation, this situation was 
considered in Ref. 5 (see also Ref. 10). 

It i s  clear that the solution of the problem when there 
a r e  in fact no literal small parameters i s  possible to 
describe a particular form of the laser pulse by con- 
structing for the time dependence of the intensity an 
exactly solvable model containing a sufficient number 
of parameters. In the present paper, we propose a 
general method for constructing such models and con- 
sider in detail the case of a change in intensity of the 
"field switching-on" type. 

2. GENERAL RELATIONS 

In what follows, we shall for brevity call the quantum 
system an "atom. " In the alternating field, the ampli- 
tudes of the probabilities for finding the atom in the 
states 1 and 2, between which there i s  resonance at the 
frequency 2w, satisfy the equations1' 

Here,I(t) is  the envelope of the intensity, b =E:') -~!')-2w 
is the initial detuning from resonance corresponding to 
I - 0, and vI/4 = V,, i s  the excitation matrix element. 

Explicit expressions for a,,, and v can be readily ob- 
tained by the usual methods of perturbation theory. For 
example, in the dipole approximation in the case of lin- 
ear polarization of the field along the z axis, 

where d i s  the operator of the dipole moment, on, 
=E,'"- E:), and the summation in (4) i s  over the com- 
plete spectrum of the atom. 

By choosing the phases of the wave functions, the ma- 
tr ix element v can be made real,  a s  i s  in fact assumed 
in (3). Equations (3) a re  obtained under the condition 
that the field i s  quasimonochromatic, I ~ / I  l <<w, which 
i s  usually the case. 

Since spontaneous decay of the atom from the states 
1 and 2 i s  possible, a s  well a s  ionization from these 
states under the influence of another stationary field, 
6 i s  complex: Im6 = ( r ,  - r,)/2, where r,,, are  the 
reciprocal lifetimes of the levels; but if single-photon 
ionization from state 2 by a field of frequency w i s  pos- 
sible, then a, i s  also complex. 

Equations (3) a r e  formally analogous to the equations 
of the theory of slow c~l l is ions , '~  in which the part of 
the distance between the terms i s  played by the detuning 
A(t) = 6 - (a, - a1)I/2, and vI/4 i s  the interaction be- 
tween them, or to the equations that describe the inter- 
action of a resonant field of variable amplitude and fre- 
quency with a two-level system in single-photon reson- 
ance.13 In our case, the detuning and interaction vary 
in time in accordance with the same law. 

At 6 = 0, Eqs. (3) can be solved for any function I(t). 
For the ra te  of excitation, we obtain in this case 

However, this expression cannot be directly compared 
with the expression (11, since the derivation of (1) pre- 
supposes that the width of the radiation spectrum i s  
small compared with the width of the atomic line. The 
expression (5) i s  derived under the opposite assump- 
tion, 6 = 0. Therefore, to find the limits of applicabil- 
ity of the expression (I) ,  and also to analyze the case 
of level crossing it i s  necessary to consider nonzero 
initial detunings. 

In Eqs. (3), we replace the time by the new indepen- 
dent variable 

Here, I, i s  some characteristic intensity which ensures 
that x has the dimensions of time. The value of x i s  
proportional to the a rea  of the intensity. When t varies 
in the interval ( - - , + 0 0 ) ,  x varies in the interval (O,x,), 
and xo- -, if the field is not switched off a t  large t ;  
if the field i s  pulsed, then xo i s  bounded. The transfor- 
mation which i s  the inverse of (6), 

is a transcendental equation for the function x ( t ) .  
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Substituting (6) in (3), we obtain 
da, i  -=- {a lIoa ,+vIoa~e- 'o '~' ) ) ,  
dx 4 
da, i  
- = - { a ~ I o a z + u I ~ a , e ' o ' ~ x ~ ) .  
dx 4 

The initial conditions for this system have the form 
!_ I I I I I I !  

-5 0 j t, rel. units 

Expressing a ,  in the second of Eqs. (8) in terms of 
a, and substituting the result in the first equation, we 
obtain 

FIG. 2. Dependence Z(t) for different values of the parameter 
7: 1) 7 = 0.1, 2) 7= 1. 

T i s  shown in Fig. 2. It can be seen that in the limit 
7- 0 the I(t) dependence becomes ever more pronounced 
in the neighborhood of the point t=O. The limit 7 -  0 
corresponds to sudden switching-on of the field, and 
7 - m to adiabatic switching-on. It i s  readily seen that a behavior I(t) of the interaction 

switching-on type In what follows, we also need the x(t) dependence, 
which can be determined from (5): 

dz - I ( x )  x  x  
---=- C = X + T  ln-. 
dt I ,  X + T '  T corresponds to the limits 

The solution of Eq. (14) with the initial conditions 
( 3 )  can be written in the form 

a, ( x )  =el"@ ['IziE ( I f  A I Q ) ,  iE, i Q x ] .  A simple case of such a dependence that ensures analy- 
tic solution of Eq. (10) i s  given by the function 

I ( x )  = I , x / ( x + t ) ,  (13) 

which makes Eq. (10) hypergeometric: 

da, 1 
- + - I O  - ( v 2 - a l a d I U  I d ,  4 [:. 

Here is the confluent hypergeometric fun~t ion, '~  the 
parameter 5 plays the part  of Massey's parameter in the 
theory of atomic collisions, A i s  the distance between 
the adiabatic terms after establishment of the stationary 
value of the field, and the x(t) dependence is deter- 
mined by (16). Thus, the parameters of the problem 
a r e  the dimensionless interaction switching-on time 
5 ,  the detuning A, and the Rabi frequency SZ after the 
field has been switched on. 

The parameters I, and T in (13) determine the nature 
of the growth of the field: I, i s  the limiting value of the 
intensity, and T is  the switching-on time. Note that the 
solution of Eq. (10) can also be expressed in terms of 
hypergeometric functions in the more general case 
when 

I (z) =(ax+ b )  I  ( c x f  d )  . 

3. KINETICS OF THE SYSTEM IN THE FIELD The case a = c = 0 o r  b = d  = 0 corresponds to a mono- 
chromatic field. For c = 0,d = 1 we obtain Nikitin's 
model1': 

I ( t )  =b  esp ( a t l l d .  

Using Eq. (I?'), we now consider some features of the 
behavior of the level populations n,,,(t) of the system 
and also the total excitation probability: 

q z ( t )  = l a , , z ( t )  lZ, W= lim n , ( t ) .  
I-... 

(18) 

The results  of numerical calculations in accordance 
with the relations (17) and (18) a r e  given in Fig. 3 for 
different values of the parameters of the problem cor- 
responding to different field switching-on regimes. At 
small values of 6 ,  the time dependence of n, corre- 
sponds to Rabi oscillations of the populations, and the 
mean value &(t)) cannot exceed a, i. e. , inversion i s  
impossible. At larger values of 5,  a s  can be seen in 
the figure, the amplitude of the oscillation decreases, 
and the mean value 6z,(t)) can become greater than 8 
because of the possibility, noted in the Introduction, of 
adiabatic inversion when the levels cross.  This i s  con- 
firmed by the different values of the population of level 
2 for different signs of A: crossing occurs for A< 0 
but not for A> 0, since the sign of 6 is  chosen to be 

Using (71, we can readily find the form of I(t) corre- 
sponding to Eq. (13). For this, we express x in (13) in 
terms of I: 

x = I ~ / { r ~ - r )  

and using (5) we obtain a differential equation for I ( t ) :  
l I o T ( I o - I )  -2=IlIo.  

The solution of this equation gives implicity the depen- 
dence I(t): 

This solution i s  determined up to a constant term that 
determines the instant of switching-on of the interac- 
tion in the limit 7 -  0. In (15), this instant i s  taken at 
t=O. 

The function I(t) for different values of the parameter 
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FIG. 3 .  Time dependence of the population of the upper level 
for different interaction switching-on regimes whenv/laz- 
- ( Y ~ ~ A  = 0.1: a) i ~ t  = 1, b) n5 = 10. In both figures, curve 1 cor- 
responds to A CO and curve 2 to A > 0 .  

positive. 

It is obvious that these features in the behavior of 
the system a r i se  if the Stark shift of the levels can 
compensate for the initial detuning: (a, - a1)IO/42 6. 
The quantity 

i s ,  thus, the threshold intensity for excitation of the 
system. For example, for atoms of alkali metals in 
the optical range of frequencies the polarizabilities of 
the lower levels have a value -lo3 atomic units. l1 In 
this case, the threshold intensity of the electric field 
of the wave corresponding to I, i s  -lo5 ~ / c m  for 6 - 0.1 cm". This order of magnitude of 6 i s  charac- 
teristic of the Doppler frequency detuning of the atoms 
of a gas at temperature "105 OK. 

4. THE LIMITS OF INSTANTANEOUS 
AND ADIABATIC SWITCHING-ON 

These limiting cases can be obtained from the general 
relations (17). For simplicity, we assume here, a s  in 
the previous section, that 6 and A a r e  real. In the limit 
5 - 0, which corresponds to mstaneous switching-on of 
the interaction, we use the equation 

lim Q, (as, cs, z) = (I+a/c) ( e z - I ) ,  
.-0 

which can be readily obtained from the expansion of the 
confluent hypergeometric function in a power series.14 
Noting also that in the limit T -0  the relation x(t)-t 
follows from (16), we obtain 

a, ( t )  =exp (llZi[-6+'ll (ai+a2) I,] t )  
X [COS (Qt/2)+i(A/Q) sin (Qt /2)  1, 

a* ( t )  -i(vI,/2Q) exp {'l,i[8+i/, (a i+a , )  I,] t )  sin f Qt/2) ,  (20) 
(n, , , ( t )  )- ( I f  A'/Qa)/2. 

The dependence of (nJ on I, is shown in Fig. 4 by the 
dashed curve. The nonmonotonic dependence of the 
population of the upper level on the intensity i s  due to 
the possibility of tuning the levels to resonance for cor- 
responding parameters of the problem.2) The maximum 
on the curve at the point I ,  =I, will be sharper the more 
important the resonance for the excitation of the sys- 
tem, i.e., the smaller the nondiagonal element v of the 
interaction compared with the diagonal a, -al. In the 
opposite case a1 = a,, 6 = A  and the dependence of (n& on 
I, determines the usual monotonic saturation curve.16 

If the interaction switching-on time T is appreciably 
longer than the other characteristic times of the prob- 
lem, the amplitudes al,,(t) go over into the well-known 
expressions for a monochromatic field corresponding 

FIG. 4. Dependence of the population of the upper level on the 
field intensity for v/1 f f 2 - f f I I =  0 and 1 .  The dashed curve is 
the dependence correspondiffg to instantaneous switching-on of 
the interaction. Curve 1 is the result of calculation in accord- 
ance with Eq. (22 (adiabatic limit), curve 2 corresponds to the 
exact expression (24), and curve 3 to the Landau-Zener a p  
proximation ( 2 7 ) .  For curves 2 and 3 ,  5 = 10,  [d/(ff2-ff1)2 
= 0.1.  The result of the calculation in accordance with the ex- 
pressionfor [= 500, ~ v ~ / ( ( r ~ - a ~ ) ~ =  5 agrees with the resultof 
the adiabatic limit (curve 1) and is approximated well by the 
step function (30) .  

to adiabatic switching-on of the i n t e r a ~ t i o n . ~ " ~  The 
wave function of the atom describes in this case a state 
with definite quasienergy: 

where $ i s  the quasienergy, which depends adiabatical- 
ly on the time, and A and 52 a r e  determined by Eqs. 
(17), in which it i s  necessary to replace I, by Z(t). For 
6 <  0, it is  necessary to reverse the sign of 52 in (21). 

The populations of the upper and lower levels change 
adiabatically in time in this case in accordance with 
the expressions 

< n , , ( t )  > = ( I f  A/Q) /2 .  (22) 

The dependence of b,) on the intensity determined by 
Eq. (22) i s  now different from the case of instantaneous 
switching-on, and i s  shown by curve 1 in Fig. 4. The 
threshold nature of the dependence of h,) on I,, i s  due to 
the possibility of crossing of the quasienergy levels. 
It corresponds to the possibility of complete population 
of state 2 when the field i s  switched on and i s  analogous 
to spin inversion in the case of a slow passage through 
resonance.17 As in the case of instantaneous switch- 
on of the interaction, the curve i s  steeper the smaller 
21. 

5. ASYMPTOTIC POPULATION OF THE LEVELS 

We now consider the total probability of excitation of 
the system without any assumption about the value of the 
parameter 5 .  This can be done using the asymptotic be- 
havior of the confluent hypergeometric function? since 
a s t - m a n d x - -  

I A exp (-nEA/Q) -ch n t  lim la, ( t )  1 2 =  - 
I-m 2 +E' sh n t  

2n A = -  exp (-nEA/2Q) ( S ~ T ) ' ~ ~ "  
E shng r[i~(l+~lP)l2]r[i~(l-~/~)/2] ' 

It can be seen that the population i s  a sum of two 
terms: one constant in time and another that oscillates 
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with a frequency equal up to a logarithmic term to the 
Rabi frequency. The amplitude of the oscillating term 
A i s  rapidly damped with increasing 5. Averaging over 
these oscillations, we obtain finally 

This formula gives the exact value (in the framework 
of the chosen model) of the probability of two-photon 
excitation. Let us  consider i ts  limiting cases,  assum- 
ing, a s  before, 6 > 0. 

In the case of instantaneous switching on of the in- 
teraction, ( - 0, we obtain 

which agrees with formula (20). 

In the case of slow switching-on, 5 --, retaining in 
(24) only the increasing exponentials, we obtain 

The exponential retained in (25) can take arbitrary 
values irrespective of the value of 5. The expression 
(25) thus gives the probability of excitation of the upper 
level in the case of slow switching-on of the field. Com- 
paring (25) with (221, we see that the latter holds only 
when 

which signifies either the absence of level crossing o r  
that vI, i s  not small compared with 1 A I .  

But if the inequality (26) i s  not satisfied, i. e. , A 
J - 0, which can occur in the case of level crossing and, 
in addition, for small value of uIo/A, then 

Equation (27) corresponds to the Landau-Zener ap- 
proximation for the given problem. Thus, the Landau- 
Zener approximation i s  valid in the region of param- 
eters values determined by the inequalities (sign A 
= -sign 6) 

Let us  consider in more detail the dependence of the 
excitation probability on the field intensity in the case 
of smooth switching-on, f>> 1. The regions of I, values 
in which the different approximations a r e  valid a r e  de- 
termined by the ratio u/ I a, - a, I .  

Suppose u << la, - a, I .  Then in the region Io<Ic  the 
inequality (26) is  satisfied; therefore, the relation (22) 
holds. With further increase in the field, the param- 
eter UIJA decreases rapidly, and if .$v2 S (0, - (u,)', 

then the probability of excitation is  determined by Eq. 
(27). The limiting value of the population of the upper 
level for I, >> Zc is  

and does not depend on I,. 

But if (v2>> (a2 - a,)', then the excitation probability 
i s  determined by (22), and since u<< la, - a, I, (W) is  
a step function in I,: 

where Al is  small compared with Ic. 

We estimate AI: 
an, vIc US AI u 

A - 1 1 ) /  ------- ---- , -  la2-a,l (an-a,)' I. la,-a,l 

Thus, if the conditions 

a r e  simultaneously satisfied, AZ can be omitted in (30) 
and (W(I,)) can be assumed to be a step function. 

Now suppose v 2 la, - a, 1. Then the inequality (26) 
is  satisfied; therefore Eq. (22) holds for all  I,. How- 
ever, the approximation (30) for the excitation probabil- 
ity i s  now invalid. Graphs of (W(Zo)) corresponding to 
the above cases a r e  shown in Fig. 4. Curves 2 and 3 
describe the excitation for fv2 < (a, - a,)'. It can be 
seen that for I, >I, the Landau-Zener approximation 
(curve 3) i s  virtually identical with the exact result 
(curve 2). The result of calculations in accordance 
with the exact formula for [u2 > (a, - a,)' i s  close to 
the adiabatic approximation and i s  well described by 
a step function. 

We now consider the dispersion dependence of the ex- 
citation probability. This dependence is  determined 
by the expression (24), in which the independent var- 
iable i s  the dimensionless detuning 5. As the indepen- 
dent variable, it takes values from -m to +a and, 
therefore, for the same switching-on time 7 there a r e  
corresponding field switching-on regimes for the dif- 
ferent regions of 6 values. 

It is  obvious that the singularities in the dispersion 
dependence associated with the crossing of the levels 
a r e  in the region of 6 values where 6 and A have op- 
posite signs. In accordance with the previously adopted 
notation, A= 6 + 6,, where 6, = (a1 - a,)10/4 i s  the re- 
sulting Stark shift (@,< 0). Then the region of crossing 
is  O s 6 s  16,I. 

We consider slow switching-on 5 ,  = 1 6,17>> 1. Then 
there is  a region of 6 values such that 67>> 1, namely, 
7 - l ~  6 s ]o,j, for which the expression (25) i s  valid. 
If in addition the inequality (26) i s  satisfied in this re- 
gion, then the formula of the adiabatic approximation 
(24) i s  valid for the excitation probability. The graph 
of this function is  shown in Fig. 5a by the dashed curve. 
It can be seen that the maximal population holds in the 
limit 6 - 0. Curves 2 and 1 of this figure, which have 
a similar nature to the one mentioned above, a r e  con- 
structed in accordance with the general expression 
(24) for vIdA 2 1. One can say that these curves de- 
scribe the dispersion curve in the adiabatic inversion 
regime (see Ref. 10). 

But if the inequality (26) is  not satisfied (for vI,,/A 
<< I ) ,  then in the region 6 < 16,l the Landau-Zener 
relation (27) holds. If 6 i s  sufficiently close to 16, 1, 
A decreases so much that the conditions (26) a r e  satis- 
fied and inversion occurs in this region, too. Graphs 
of the excitation probability corresponding to this case 
a r e  shown in Fig. 5b. It can be seen that the maximal 
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FIG. 5. Dispersion curves for probability of excitation (ioni- 
zation). a) Adiabatic inversion regime (v/l m z - a i l  = 1): curve 
1 corresponds to 5, = 5, &,v2 / (~z- f f1 )2  = 5, curve 2 to 5, = 10, 
5,v2/(ffa -ff1)2= 10; thedashed curves showthe limits of instan- 
eous (5, = 0) and adiabatic (5, -*) switching-on of the inter- 
action. b) Landau-Zener regime (v/I f f 2 - f f I I  = 0.1): curve 1 
corresponds to 5, = 5, 5,v2/(ffz-~i)2= 0.05, curve 2 to I ,  
= 10,  5 , ~ ~ / ( f f ~ - f f ~ ) ~ =  0.1; the dashed curve, to 5,=0. 

value of the population i s  in the region3' 6 - -6,. It i s  
natural to call this regime the Landau-Zener inversion 
regime. 

For sufficiently large I,>> 5, the nature of the excita- 
tion regime i s  determined by the ratio v/ I a, - a, I ,  
namely, for 5, zP/(a, - a,)'>> 1 we have the adiabatic 
regime and for 5, S ( a Z  - 01,)' 5; 1 the Landau- Zener re-  
gime, but if Io21,, then the nature of the regime i s  
determined by the ratio ~I,/A. 

6. DISPERSION DEPENDENCE OF THE PROBABILITY 
OF THREE-PHOTON RESONANCE IONIZATION 

Now suppose that ionization can take place from the 
upper state of the atom under the influence of the con- 
sidered field. This possibility can be taken into account 
by assuming a, in Eqs. (3) i s  complex. Then the width 
of the upper level i s  determined by 

We determine the frequency dependence of the ra te  of 
ionization w ,  of the atom under conditions of two-photon 
resonance in the time interval T<< t<< y;', which cor- 
responds to a stationary regime: 

In addition, we shall assume that t>> 1 A I-', 1 51 I-'. 
These inequalities make it possible to average the ion- 
ization probability over the Rabi oscillations. In fact, 
there a r e  often many reasons leading to the averaging 
of such oscillations without the assumptions we have 
made; a s  examples, we may mention transverse relaxa- 
tion pr.ocesses and spatial inhomogeneity of the field. 

For the considered time interval, the asymptotic 
population of the upper level with allowance for the 
possibility of i ts  decay plays the main part in the ex- 
pression (31). In the theory of atomic collisions, the 
problem of nonadiabatic transitions between decaying 
levels has been considered on a number of occasions." 
Formally, our formulation of the problem i s  similar 
to the problem of taking into account coherent interac- 
tion in charge exchange processes in atomic collisions. 

To calculate the ionization probability (31), we use the 
relations (17), assuming now that A and 51 a r e  complex. 
If the obtained states a r e  to describe states of decay 
type, it i s  necessary that Im(A, a) < 0. Using the 
asymptotic behavior of the confluent hypergeometric 
function, we obtain for I 51 Ix>> 1 

In the region yil>> t>> 7 ,  we have x ( t ) = t ,  and we 
therefore finally obtain 

If in this formula we set  4 = 0 (instantaneous switch- 
ing-on of the interaction), we obtain the formula 

which can a lso  be obtained directly from (31) and the 
expression (20), which determines the mean population 
of the upper level with allowance for the fact that 52 i s  
now complex. 

In the case of adiabatic switching-on of the interac- 
tion, 5 - a, we consider, a s  before, two cases.  If the 
values of 1 *Re(A, 51) a r e  not small, then from (33) we 
obtain relations analogous to (22): 

To obtain this expression, one must use Stirling's for- 
mula for the r function and note that in the formulation 
of the problem considered here Im(A, 51) << Re(A, G ) ,  
since the opposite inequality corresponds to a trivial 
case  of perturbation theory. Therefore, we can assume 
that 

A R e A  A ImA Re A 
Re--- Im---<I, - 

Q R e Q '  52 R e Q  Re Q 

If lvId/4A 1 <<I, then the Weisskopf-Wigner formula 
follows from (34). 4 '  

The case of crossing of the levels whenRe(A/a) 
= -1 leads to the following expression for the ioniza- 
tion probability of the atom: 

From this expression for ImA = Im 51 = 0 we obtain the 
expression (27) and the Landau-Zener formulas, which 
a r e ,  thus, a special case of the relation (37) without 
allowance for the width of the level. 

The form of the dispersion curves under conditions of 
not too large ionization width i s  close to that shown in 
Fig. 5. As in the case of excitation, fulfillment of the 
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inequal i t ies  p e r m i t s  o n e  to  d is t inguish  t h e  ad iaba t i c  
r e g i m e  wi th  m a x i m u m  at 6 - 0 a n d  t h e  Landau-Zener  
r e g i m e ,  when ( ?'/(a2 - al)' 2 1, with  n a r r o w  m a x i m u m  
at 6 -  l6,l. 

') The linear Stark effect in an alternating field can occur in 
some cases in systems which a r e  not centrally symmetric, 
but this possibility i s  not taken into account here. 

2 ) N ~ n m ~ n ~ t o n i c i t y  of the saturation curve in the case of single- 
-photon resonance due to rearrangement of the multiplet 
structure of the atomic levels in a monochromatic field was 
considered in Ref. 15. 

3, The possibility of a maximum of the dispersion curve a t  a 
point other than 6 = 0 was noted by ~ e d o r o v . ' ~  

4 ) T ~  obtain Eq. (1) in the case of instantaneous switching-on 
of the interaction, i t  is  necessary to use the smallness of 
(v&/4A1 already in Eq. (32) and then s e t  t >>y,l; this is  the 
usual procedure when one considers decay with instantaneous 
switching-on of the interaction (cf. Ref. 19). 
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Self-focusing of laser beams at various spatial profiles of 
the incident radiation 

Yu. K. Danilelko, T. P. Lebedeva, A. A. Manenkov, and A. M. Prokhorov 

P.N. Lebedev Physics Institute, USSR Academy of Sciences 
(Submitted 17 April 1980; resubmitted 2 October 1980) 
Zh. Eksp. Teor. Fiz. 80,487-495 (February 1981) 

The character of formation of a nonlinear focus was investigated for a media with a Kerr type nonlinearity, 
under subthreshold conditions as well as in the regime of developed self-focusing at various spatial profiles of 
the inc~dent radiation. A numerical experiment was used to determine the influence of the profile of the 
incident radiation and of its intensity on the character of the field distribution in the region of the nonlinear 
focus and on the power flowing into the first nonlinear focus in the case of beams of the supergaussian type. 
The dependence of the self-focusing threshold on the initial beam divergence is obtained for both bounded and 
unbounded media. 

PACS numbers: 42.65.J~. 42.60.He 

INTRODUCTION de ta i l  w a s  se l f - focusing of l ight  b e a m s  with Gauss i an  
in tens i ty  p ro f i l e s ,  which w e r e  found to have  a mul t i -  

Even  though the  m a i n  l a w s  governing t h e  se l f - focusing focus  s t r u c t u r e .  ' T h e  quest ion of devia t ion of the  inci- 
of laser radia t ion have  by now been  suff ic ient ly  wel l -  den t  radia t ion f r o m  gauss i an  as it a f f ec t s  t he  m a i n  

invest igated,  m a n y  aspects of th i s  phenomenon r e m a i n  c h a r a c t e r i s t i c s  of wave propagat ion in  a med ium with 

unclear. T h u s ,  t he  p r o c e s s  inves t igated in greatest K e r r  type of nonl inear i ty  r e m a i n s  open. Thus ,  f o r  
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