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A theory of the Hanle effect in a strong electromagnetic field, when perturbation theory is inapplicable, is 
developed. A two-level system with terms of which one has zero and the other unity angular momentum is 
considered. The probability for transition to a third level with zero angular momentum under conditions 
when the first two terms are at resonance w~th the strong field is computed. It is shown that the dependence 
of the probability changes from quadratic to linear as the field intensity is increased. The limits of very weak 
and very strong fields and the case of a very strong constant magnetic field that splits the term with unity 
angular momentum are analytically investigated. The intermediate cases are investigated with the aid of a 
computer calculation. The self-similar character of the problem is pointed out. It is concluded that the 
resonant character of the probability as a function of the magnetic field vanishes as the electric-field intensity 
increases. 

PACS numbers: 32.80.B~ 

5 1. FORMULATION OF THE PROBLEM of e m i s s i o n  of r ad ia t ion  wi th  s o m e  def in i te  polar iza t ion 

T h e  opt ica l  phenomena connected wi th  in t e r f e rence ,  
due t o  t h e  p r e s e n c e  of adjacent  l eve l s ,  i n  t h e  r ad ia t ion  
of a t o m s  are c u r r e n t l y  being in tens ively  investigated. '  
One  of t h e s e  e f f ec t s  is the  Hanle  effect,  wh ich  c o n s i s t s  
i n  the  f ac t  that  in a magnet ic  f i e ld  the  in tens i ty  of 
spontaneous  radia t ion wi th  a given p o l a r i z a t i ~ n  depends  

f o r  a n  a t o m i c  state that  is a supe rpos i t ion  of ene rge t i -  
ca l ly  close states is d e t e r m i n e d  by t h e  s q u a r e  of t h e  
modu lus  of t h e  s u m  of the  occupat ion ampl i tudes  of 
t h e s e  s t a t e s .  T h e  dependence of t h e  probabi l i ty  on the  
level s p a c i n g  is due  t o  t h e  p r e s e n c e  of a n  in t e r f e rence  
t e r m  in  t h e  s q u a r e  of t h e  modulus  of t h e  s u m .  

on  the  dis tance ,  de t e rmined  by the  magnet ic- f ie ld  T h e  Hanle  ef fect  is normal ly  o b s e r v e d  in  r e sonance  
s t r eng th ,  between the  adjacent  Z e e m a n  sub leve l s .  T h e  exc i t a t ions  by r ad ia t ion  wi th  a b r o a d  s p e c t r a l  l ine .  
Hanle effect is explained by t h e  f ac t  that  t h e  probabi l i ty  F u r t h e r m o r e ,  i t  o c c u r s  in r e s o n a n c e  exci ta t ions  by 
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monochromatic light.' In this case the Hanle signal 
depends not only on the distance between the adjacent 
levels, but also on the detunings of the resonances with 
the field frequency. But, a s  a rule, an ensemble of ab- 
sorbing atoms has, a s  a result of the Doppler effect, a 
fairly broad resonance-detuning distribution function. 
For this reason, the averaged shape of the Hanle signal 
does not depend on the resonance detunings, and is 
equivalent to the shape that i s  attained in excitations by 
radiation with a broad spectral line. This assertion i s  
valid only for low intensities of the monochromatic 
light, when perturbation theory is applicable.' 

In the present paper we consider the Hanle effect in a 
strong electromagnetic field. The process proceeds a s  
follows (see Fig. 1). The initial atomic state a (having 
a radiative width y,) is  populated with the aid of some 
external field, V,,  of a high-power pulsed laser.  The 
time during which the field V, acts is assumed to be 
short compared to all  the characteristic times of the 
problem. The population of the adjacent levels b and 6' 
from the state a is attained a s  a result of the action of 
a strong resonance monochromatic external field, 
2u cos wt, of a cw laser.  The states b and b' possess 
radiative widths of yb and yy, which, following Chaikal 
and Series,' we shall assume below to be equal: f b  

= yb.=y. The main difference between the present paper 
and Series's paper2 i s  that we do not use perturbation 
theory in terms of 0. 

The level diagram shown in Fig. 1 actually implies 
that we a r e  considering the case in which the state a 
has zero and the state b unity angular momentum. In a 
magnetic field, the state b splits into three states, 6, b', 
and b", with magnetic quantum numbers rn , i.e., with 
angular-momentum components along the direction of 
the magnetic field equal respectively to + 1, - 1, and 0. 
If the incident radiation is  linearly polarized along a 
direction perpendicular to the direction of the magnetic 
field (say along the x axis if the magnetic field is di- 
rected along the 2 axis), then the matrix elements for 
the transitions 0 - + 1 and 0 - - 1 a r e  nonzero, i.e., the 
state b" does not participate in the process under con- 
sideration. For other angular-momenta of the levels 
a large number of states is  drawn into the problem and 
complicates it quantitatively. It is easy to see  that, for 
incident radiation polarized along the x axis, the ma- 
trix elements of the a -- b and d - b' transitions will be 
equal, i.e., u ab= u V while in the case of polariza- 

FIG. 1. Level diagram for the investigation of the Hanle ef- 
fect. The levels b and b' are close to each other. The level 
a is  populated upon excitation by a pulsed field Vo. The level 
a and the levels b and b' are mixed by an external resonant 
field of frequency w .  

tion along the y axis uab= - vabr  = i V .  

We compute the probability for the population of some 
zero-angular-momentum level, c, a s  a result of spon- 
taneous transitions to it from the adjacent terms b and 
b', which a r e  mixed by the field V. This is accompanied 
by emission of a photon with some frequency v .  The 
distribution over the frequencies v i s  normally of no 
interest in measurements, and therefore the computed 
probability should be integrated over v .  The result de- 
pends on the distance between the adjacent levels b 
and b' and on the resonance detunings w, - w and 
wbaa - w. But, a s  in Ref. 2, we assume that an ensemble 
of absorbing atoms has, on account of the Doppler 
effect, a sufficiently broad detuning distribution. The 
width of this distribution is assumed to be large com- 
pared to both the distance between the adjacent levels 
and the spontaneous widths y and y,,. Since the motions 
of the individual atoms in the gas a r e  not correlated, 
the probability for a spontaneous transition to the level 
c should be further averaged over the atomic velocities. 

For a strong 2v coswt field, the method that allows 
us to go outside the framework of perturbation theory 
is the resonance-approximation method. Thus, we 
assume that the field frequency w is close to w, and 
a,.,,. In this case it is possible for V to be greater o r  
smaller than wbeb, but we should, of course, have V<< w. 

The case of the Hanle effect in a strong electromag- 
netic field, 2u coswt, has been considered also by 
D u ~ l o y . ~ . ~  In contrast to our present formulation of the 
problem, DucloySs4 assumed that the action time of the 
field V, that populates the initial state a is  long com- 
pared to all the characteristic t imes of the problem. 
This allowed him to limit himself to the investigation 
of the ordinary steady state in the equations describing 
the Hanle effect. But in this regime the population of 
the level a is small, on account of the spontaneous 
decay of the level, and this sharply decreases the Hanle 
signal. Unlike ~ u c l o ~ , ~ ' ~  we consider the case in which 
the level a is pumped by ultrashort high-power laser 
pulses. 

Section 2 contains the equations of the theory and the 
method of solution. In 93 we present the results of a 
numerical computer solution of these equations, a s  
well a s  various analytical limiting cases. 

52. THE EQUATIONS AND THEIR GENERAL 
SOLUTION 

Let us write down, in accordance with the notation 
introduced in Fig. 1, the system of equations describing 
the transitions between the states 3 ,  6 ,  and 6' in the 
resonance approximation. We shall, on the basis of 
the Breit-Wigner procedure, take the level widths into 
account by adding imaginary corrections to the cor- 
responding energies. 

Let us denote by a(t) ,  b(t), and bl(t) the amplitudes for 
the population of the respective states. The levels b 
and b' a r e  close to each other. They a re ,  from the ex- 
perimental point of view, states with magnetic quantum 
numbers + 1  and - 1 respectively, and upon the applica- 
tion of a constant magnetic field the distance between 
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them changes a s  a result of the Zeeman effect. 

At the initial moment of time t =0,  an electron occu- 
pies the state LZ a s  a result of the action of a high- 
power pulsed laser field IT,. A continuously acting 
resonance laser field, 2u coswt, is  applied to the 
system. 

The equations for the amplitudes a(t) ,  b(t), and b f ( t )  
have the form 

ifi=uab e x ~ ( - i 6 ~ . t )  b+uob. e ~ p ( - i S ~ , ~ t )  br, 
i6=ub. exp  (iha.t) a, 

i6'=ub.. exp ( i sbrat )  a. 

Here the quantities 

dba=ob.-~-'l2i (7-7.) .  
6brn=Ubra-W-'/,i(7-7.) 

a re  the detunings of the respective resonances with al- 
lowance for the spontaneous level widths. 

We seek the basis solutions to the system of equations 
(1) in the standard form 

a=A exp ( i Q t ) ,  
b = B  ~ x p [ i ( S 2 + 6 ~ , ) t ] ,  

bl=B' e s p  [ i  (S2+bb..) t ] .  

The quantity 52 can be called the Rabi frequency for the 
problem under c~ns ide ra t ion ,~  o r  a quasienergy. For 
SZ we obtain from (1) and (2) the cubic equation 

Equation (3) has three roots, SZ ,, 52 ,, and a,, and de- 
termines three corresponding se ts  of coefficients, A i, 
B i ,  and Bi (i = 1, 2,3). Thus, we find that the general 
solution to the problem is a superposition of the three 
indicated basis solutions. The three constants in this 
superposition a r e  found from the initial conditions 
~ ( 0 )  = 1 and b(0) = b'(0) = O .  By the same token the prob- 
lem of finding the wave function of the system is, in 
principle, solved completely. It is  easy to verify from 
the system (1) that the law of particle-number conser- 
vation, - - 

7.I l a ( t )  I' o ~ p ( - y . t ) d t + ~ {  [ I  b ( t )  lZ+l b ' ( t )  1 2 ] e x p ( - y t ) d t = l ,  
0 0 

which manifests itself in the fact that the particle is 
totally absent from the system in question during the 
entire action time of the perturbation, is  satisfied. 
Here it is assumed that the spontaneous-decay channels 
for the a ,  b, and b' states a r e  different and independent 
of each other; only then will the Breit-Wigner proced- 
ure be valid.6 

The probability for radiative transition from the 
states b and b', which a r e  mixed by the field V ,  to a 
final state c with a definite polarization takes, after 
being integrated over the frequencies v of the emitted 
photons, the following form: 

In Eq. (4) the plus sign corresponds to a photon emitted 
with polarization along the x axis; the minus sign, to a 
photon emitted with polarization along the y axis. 
Further, y, is the probability per unit time for spon- 

taneous transition from the state b to the state c with 
polarization along the x o r  y axis (and is  equal to the 
quantity y,',). 

Equation (4) i s  applicable when the condition c # a  i s  
fulfilled. In the opposite case the Breit-Wigner pro- 
cedure used above to write down the system of equa- 
tions (1) is incorrect, since the channel c exerts con- 
siderable reaction on the pcpulation of the levels b 

and b',  a s  a result of which the problem becomes 
quite complicated. 

Notice that in the case of a weak field the Hanle effect 
is  due to the interference term of the probability w(w) 
given by Eq. (4). 

Because of the Doppler effect, the quantity w(w) de- 
pends on the atomic velocity v through the combination 
w - w + k v ,  where k is the wave vector. The averaging 
of the probability w over the velocity v amounts to in- 
tegration over the values of w. Thus, we have 

-m 

The integration limits can be extended here to infinity 
because of the large Doppler width, since the integrand 
is concentrated in the narrow region w =  w,, w,,,,, and 
a narrow s t r ip  is actually cut out from the Doppler con- 
tour. 

53. LIMITING CASES AND NUMERICAL RESULTS 

The quantity has an analytical form only in the 
various limiting cases, since in the general case the 
solutions to Eq. (3) a r e  given by unwieldy Cardano 
formulas, a s  a result of which the integration in the 
formula (5) can be performed only by numerical methods. 

Let us first  consider the well-known case of pertur- 
bation theory. It is  realized in weak fields, namely, 
when the conditions 

V K Y ,  7 .  

a r e  fulfilled. Then we obtain for the probability w 
from (4) and (5) the following e x p r e ~ s i o n " ~  

The plus sign in this formula corresponds to the case in 
which the polarizations of the incident and scattered 
radiations a r e  the same (and perpendicular to the po- 
larization of the magnetic field), while the minus sign 
corresponds to the case in which the polarization of 
the emitted photons is perpendicular to that of the in- 
cident radiation (and both of them a r e  also perpendicu- 
lar  to the polarization of the magnetic field). 

The first  term in Eq. (6) stems from the squares of 
the moduli of the amplitudes b(t) and bf(t) in (4), while 
the second term is connected with the interference 
term in (4). It has a resonance structure, and de- 
scribes the Hanle effect proper. As we can see; the 
resonance width is determined by the b- and b'-level 
widths. The nonresonant terms do not depend on this 
width, which is natural, since b and b' a r e  intermediate 
levels. 

239 Sov. Phys. JETP 53(2), Feb. 1981 



Let us now consider another limiting case, which 
corresponds to the case in which the levels b and b' a r e  
very close to each other. In this case the expression 
(5) can be analytically integrated only when the levels 
b, b', and a have the same width, i.e., when y, =y. 
Assuming that this condition is fulfilled, we find from 
(4) and (5) that when the incident and observed radia- 
tions have the same polarization 

G=wnst V/(7'+8V)": (7) 

while in the case in which the polarizations a r e  perpen- 
dicular to each other the probability i s  equal to zero. 
The expression (7) is applicable if 

It is easy to see that in the parameter region where 
V<< y the expression (7) has the same form a s  the ex- 
pression (6) in the parameter region where wbnb<<y, 
as expected on the basis of the simulataneous applica- 
bility of the solutions in this region. 

Finally, the following analytical solution is obtained 
upon the fulfillment of the conditions 

These conditions correspond to the situation in which 
there is no interference between the levels because of 
the great distance between them. In this case the two- 
step transitions from a to c via the states b and b' 
occur independently of each other. Then from Eqs. (4) 
and (5) we find 

Notice that the expressions (6) and (8) coincide when ' 

the conditions 

a r e  fulfilled, a s  expected from the conditions for their 
simulataneous applicability. 

In Fig. 2 we show the regions defined by the variables 
V/y and wb.,/y where the solution is given by one of 
the analytical formulas (6), (7), and (8). We see that 
these regions overlap partially. 

Numerical computations a r e  necessary for  the inter- 

FIG. 2. The plane of the variables V/y  and y /y, in which 
analytical solutions to the Hanle problem exist. The obliquely 
hatched area  corresponds to the region in which perturbation 
theory is applicable [Eq. (6)]; the vertically hatched area cor- 
responds to the region of very close terms [Eq. (7)l; the hori- 
zontally hatched a rea  corresponds to the region in which the 
t e rms  a re  far  apart  [ ~ q .  (g)]. 

FIG. 3. a) Dependence of the radiative-transition probability 
on the distance wbtb between the adjacent terms, in units of y ,  
for a fixed value of the perturbation amplitude V expressed in 
units of Y (the value is  indicated near each curve). b) Depen- 
dence of the radiative-transition probability on the perturba- 
tion amplitude V for a fixed distance wbq, between the levels 
(this distance i s  indicated near each curve); all the quantities 
a r e  expressed in units of y. 

mediate parameter values. Figure 3 shows the results  
of such computations for the case in which the incident 
and observed radiations a r e  identically polarized in a 
direction perpendicular to the polarization of the mag- 
netic field and y, = y .  The ordinate in this figure is the 
probability w in units of w, = 2nV2y,/y. 

It can be seen from Fig. 3a that the resonant struc- 
ture of the probability gets gradually smoothed out a s  
the field strength V is  increased. The locations of the 
peaks in this figure a r e  given by the formula (7); a s  
the quantity wbob/y increases, the curves approach 
asymptotic values that a r e  independent of obo, and a r e  
given by Eq. (8). This smoothing can be attributed to 
the mutual repulsion of the levels b and b' in a strong 
field. As a result of this repulsion, the overlap of 
these levels decreases, on account of their broadening 
of y, which implies the weakening of the interference, 
i.e., of the Hanle effect. 

Let us note that for strong fields we should expect a 
linear dependence of the probability on the incident- 
radiation intensity, while in weak fields this dependence 
is, according to ( 6 ) ,  quadratic. This result can be seen 
from the formulas (7) and (8) if we set  V>> y. 

In the present paper we have considered the case of 
two adjacent levels. We have found that a strong field 
alters significantly the shape of the Hanle signal. 
Similar effects, which can be analyzed by a similar 
method, a r e  to be expected when the number of adjacent 
levels is increased, i.e., when we go over to states 
with other angular momenta. 

In conclusion, the authors express their sincere 
gratitude to N. B. Delone, M. V. Fedorov, and M. P. 
~ h a i k a  for valuable comments on the substance of the 
work. 
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To analyze the crossing of the quasienergy levels of a system interacting with an intense alternating field 
under conditions of two-photon resonance, we propose an exactly solvabk model of a field whose envelope is 
of the characteristic interaction switching-on type. The kinetics of the system in the fkId is analyzed. From 
the obtained general relation for the probability of two-photon excitation there follow as limits instantaneous 
switching-on of the field and the adiabatic limit (the Landau-Zener formulas). The dependence of the 
excitation probability on the field intensity and the detuning of the two-photon resonance is analyzed for 
different interaction switching-on regimes and with allowance for possible ionization of the system from the 
upper state. 

PACS numbers: 42.50. + q, 32.80.Kf, 33.80.Kn 

1. INTRODUCTION. FORMULATION OF 
THE PROBLEM 

Two-photon excitation i s  one of the first  experimental- 
ly observed effects of nonlinear optics.' A large number 
of studies have now been made in which two-photon ex- 
citation has been observed in both condensed media and 
in gases. The theoretical description of the probability 
of two-photon excitation of state 2 from state 1  i s  usual- 
ly based on the Weisskopf-Wigner formula, which also 
describes single-photon excitation2: 

r 
W=l V,,I2 

(E, -E2+20) '+r2/4  . ( 1 )  

Here, V , ,  i s  the matrix element of the two-photon tran- 
sition, El and E ,  a r e  the energies of the levels, r is 
the homogeneous line width, R = 1 ,  and absence of sat- 
uration is also assumed: 1 V, ,  1 << IE, - El - 2w + ir/2 I. 
In the presence of inhomogeneous broadening, expres- 
sion ( 1 )  must be appropriately averaged. 

is  stationary, for otherwise the mass operator, which 
is a function of two four-points, becomes dependent on 
t and t' separately and not merely on the difference t 
- t ' ,  and a s  a result Eq. ( 1 )  cannot be proved. 

Since there cannot be strictly stationary laser fields 
(if only because of the existence of the switching-on 
period), formula ( 1 )  is by no means always valid. In- 
deed, in recent studies5-" it was shown that in a number 
of cases two-photon excitation bears a greater similar- 
ity to the transitions between molecular terms in slow 
collisions of atoms o r  adiabatic spin inversion in mag- 
netic resonance than to the resonant absorption of a 
single photon. 

Figure 1  explains the physical situation. Suppose, 
for simplicity, that the time dependence of the radia- 
tion intensity i s  due solely to the switching-on of the 
field. Then the energy levels E,, , ( t )  vary from E;,,  to 
certain stationary values determined by the steady- 
state field intensity, a s  shown in Fig. 1.  At definite 

In the absence of intermediate single-photon reson- 
values of the detuning from resonance in the absence ance, which will be assumed in what follows, the ma- 
of radiation, of the difference between the level polar- trix element V,, depends linearly on the radiation inten- 
izabilities, and of the intensity in the steady state, it i s  sity I. The energy levels E l , ,  also depend linearly on 
possible for the levels E ,  + 2w and E, to cross a t  a cer- the intensity because of the quadratic dynamical Stark 

effect. '' This fact can be taken into account by setting tain time to. As i s  well the presence of even 
weak interaction between states 1 and 2 leads to quasi- in formula (1) 

where E::: a r e  the energy levels in the absence of r a -  E,/C)+ZU 
E:" 

diation, and a,,, a r e  the polarizahilities of the levels a t  
the field frequency w . 

l o )  + zW ' I><.,.r) E2(f)  

Equations (1) and (2) can be proved by means of 
Low's equations, which describe the natural width of 
atomic levels if one takes into account the contribution "y 

f : . t  

to the mass operator of not only the photon vacuum but --I__ * 
to L 

also the field of the laser r a d i a t i ~ n . ~  For this, however, 
it i s  necessary to assume that the electromagnetic field FIG. 1. 
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