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A lattice gauge model is considered which exhibits a phase transition related to spontaneous symmetry 
breakdown of the center of the gauge group. It is shown that the phase diagram obtained in the large N 
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continuum Lorentz-invariant limit in the confined phase is discussed. Consequences of our discussion for the 
standard lattice gauge theory are listed. 
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1. INTRODUCTION The most important characteristic of the mechanism 
which guarantees quark confinement in lattice gauge 

At present quantum chromodynamics (QCD) is re- theory is the following. It makes sense to talk about 
garded as  a consistent theory of strong interactions. confinement only for objects with nonzero triality, i.e., 
The interaction of quarks, which under the action of the transforming according to a nontrivial representation 
color gauge group SrJ(3) transform according to the of the group Z(3)-the center of the gauge group 
fundamental (triplet) representation, is mediated in 

SU(~)."-l4 For example, for the quark fields, such a 
QCD by the octet of gluon fields. It is expected that in iransformation is defined by addition to  the huge number of experimentally verified 
consequences, QCD will allow one to explain quark con- 
finemeut. 

The brightest successes of attempts to explain quark 
confinement by means of QCD have been achieved in 
lattice gauge theories.Is2 It was shown that in each 
order of the strong coupling expansion the Wilson "area 
law" is verified and the quarks a re  confined. The cen- 
t r a l  problem which remains unsolved in this approach 
is to show that the only phase transition occurs at zero 
"temperature" g2. If this is a phase transition of 
second order, then the lattice gauge theory has a Lor- 
entz-invariant continuum limit: a s  the lattice constant 
decreases, the bare coupling constant must approach the 
critical value g: = O  according to the asymptotic freedom 
formula, whereas the correlation length-the radius 
of quark confinement-remains finite. 

By means ofhis approximate recurrence relation 
A. A. Migda13 has shown that such a situation may in- 
deed by realized in QCD, and the stipulation "may" 
refers to the fact that it is not clear how "crude" the 
approximations that a r e  used are.  More "refined" in- 
vestigations have shown that the approximate recurrence 
relation works sufficiently well for a number of prob- 
lems, but in some cases,4 such a s  the Z(N)-lattice gauge 
theories for N =2,  3, 4, it leads to a qualitatively false 
result (a phase transition of the second instead of first 
order). 

The latter models have been investigated by various 
both theoretically, and "experimentally," 

i.e., by computer integration. Similar investigations 
of S U ( 2 )  gauge theories bear witness8-" in favor of the 
nonexistence of a "finite-temperature" phase transition, 
although so  far a computer "experiment" for the group 
SU(3) has not been carried out. 

where n i s  an integer. If one considers a test charge 
with zero triality, e.g., transforming according to the 
octet representation, then in place of Wilson's "area 
law" criterionwe always obtaina6'perimeter law, "which 
signals the absence of forcesrising linearly with the dis- 
tance. The meaning of this is quite simple. An object 
without triality can be screened by gluon excitations 
which exist in the system. This cannot be done with a 
quark, of course. The triality of a quark cannot be 
screened by gluons, if, a s  is  the case in strong coupling 
expansions, the symmetry of the center of the gauge 
group is not broken. 

Thus it makes sense to talk only of triality confine- 
ment, in contradistinction of the screening of the 
colm charge. This approach differs essentially from 
those approaches1) in which "color confinement" (in- 
dependently of triality) is related only to  the growth of 
the effective coupling constant in the infrared region, 
independently of the properties of the gauge group itself. 
In the symmetry mechanism of quark confinement, a 
decisive role is played exactly by the properties of the 
gauge group (and its representations), and the infrared 
growth of the coupling constant is not directly related t o  
the problem of quark confinement, although it compli- 
cates the problem considerably. 

The symmetry mechanism of quark confinement can be 
f o r m ~ l a t e d ~ . ' ~  without reference to the lattice model. 
Polyakov has shownE that if the symmetry of the center 
of the gauge group is not broken, then the "area law" is 
valid, and the quarks a r e  confined. The problem 
whether the symmetry of the center of the gauge group 
is broken and which field fluctuations maintain this sym- 
metry [such a s  the monopoles in 2 + 1-dimensional 
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SU(N) gauge theoryr3] is dynamical problem and i s  
solved individually for each particular model. Based 
on the natural assumption of the absence of mass less  
particles in the QCD spectrum, 't Hooft came to  the 
conclusion13 that if the symmetry of the center of the 
gauge group is broken in such a manner that the "area 
law" is valid for  a quantity that plays the role of a dis-  
order parameter ,  then the "perimeter law" must be 
satisfied for the Wilson criterion. 

In the present paper, which is a detailed version of 
Ref. 17, we continue the study initiated by Polyakov and 
't Hooft of the relation between the center of the gauge 
group and the quark confinement problem. 

In Sec. 2 we define a two-charge model (similar  models 
have been investigated in Refs. 18 and 19) and investigate 
it by perturbative methods. In Sec. 3 we derive a chain 
of loop equations of motion2025 for  the two-charge 
model, and with i ts  aid prove the factorizability of loop 
averages. In Sec. 4 we calculate the dependence of the 
free energy on the external field (the dependence of 
the energy on the external field allows one to determine 
whether the symmetry of the center of the gauge group 
holds or  whether it is spontaneously broken). It is shown 
that for  a large-N two-charge model the energy depends 
on the external field in the s ame  manner a s  for  the U(1) 
gauge theory. In Sec. 5 we discuss the connection of 
the spontaneous breakdown of the symmetry of the ten- 
t e r  in two-chargeWD with the quark-confinement 
problem and the consequences which one can derive 
from our model for  standard QCD on a lattice. In 
Sec. 6 we construct the phase diagram for two-charge 
QCD and discuss briefly how to pass to the continuum 
limit in a phase with confined quarks. And finally, in 
Sec. 7, we give a brief summary of the resul t s  of this 
paper. 

2. TWO-CHARGE QCD AND PERTURBATION THEORY 

A systematic method of construction of a quantum theory 
of gauge f ields consists, a s  i s  well known, in the following. 
One f i r s t  constructs a lattice version of the theory, then 
one determines the critical points (points of second- 
order phase transitions). Finally, the last  s tep  consists 
in passing to  the continuum limit: the s ize  of the lat- 
tice i s  made to  go to  ze ro  and at  the same t ime the bare 
parameters (coupling constants) must approach the 
appropriate critical values in such a manner that di- 
mensional physical quantities remain finite. 

The lattice gauge theory is constructed in the following 
manner.' Into a four-dimensional Euclidean space one 
builds a hypercubic lattice the s i tes  of which, x=n,e,, 
a r e  determined by the se t  of integers n, and e, denotes 
the vectors of a n  orthogonal f rame (e,. e, = a26,,). The 
variables which correspond to  the gauge fields a r e  
localized on the links (bonds, edges) of the lattice and 
a r e  denoted by the symbol U, (the subscript I denotes 
the link joining the s i tes  x and x + I ) .  Under the action 
of the gauge group G the matrices U, t ransform a s  
U, - s,u,s;:, . One obtains gauge-invariant quantities 
if one takes the t race  of the product of factors ordered 
along a closed contour (loop) C in the lattice2) 

Everywhere in the sequel we shall consider theories 
with the gauge group SU(N), and U, will be the matrices 
of i t s  fundamental representation. 

The most general form of the action S(UBp) which is 
invariant under gauge transformations, assuming 
nearest-neighbor interactions, is: 

P " 
where 8p denotes the boundary of a n  elementary plaquette 
(square) p in the lattice; X, (U,,) i s  the character  of the 
matr ix  Uap in the le-th representation (n is a comprehen- 
sive index of the representation), and pn a r e  the bare 
coupling constants of the theory. 

The characters  Xn(U) a r e  representations of the group 
Z ( N ) ,  the center of the group SU(N). Under transla-  
tions U- ZU of the group element U E  SU(N) by an ele- 
ment of the center Z E  z (N)  the characters  x,(U) under- 
go the transformation 

Here e[nJ is an integer equal, e.g., t o  one for the fun- 
damental representation ( e [  f ] = 1), and t o  zero  for the 
adjoint representation ( e [  a] =O). 

Leaving aside the analysis of the general situation 
(2.2) we shall investigate the case  when only the coef- 
ficients of the characters  of the fundamental and the 
adjoint representations a r e  nonvanishing3): 

P 

We recall  that the characters  a r e  given by the t races :  
x/(u) =Sp U, xa(U) = ISp U l 2  - 1, and the summation is 
over al l  the links of the lattice. The f i r s t  te rm coin- 
cides with the action of the standard lattice gauge 
theory.' 

The second term,4) which was added fo r  reasons which 
will become clear  from the sequel, is invariant with 
respect  t o  a larger group than the group of gauge t rans-  
formations of the second kind. On each of the links of 
the lattice the matrices U can be transformed accord- 
ing to  the law 

where n, is an  integer. Such gauge transformations, 
which depend not only on the point but also on the direc- 
t ion in space, have been named gauge transformations 
of the third kind. The symmetry (2.5) plays an  impor- 
tant ro le  in the computation of expectation values in 
lattice gauge theories. Thus, it is clear  that for B=0 
the only nonvanishing expectation values a r e  those of 
quantities invariant with respect t o  the transformations 
(2.5). 

We shall  f i r s t  study the two-charge lattice gauge 
theory (2.4) by means of perturbation theory. It is easy 
t o  verify that the matrices 
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a r e  extremals of the action. Indeed, substitution of 
the matrix 

u,-z~s.u~s~~: (2.7) 

into the action shows that it is quadratic with respect 
t o  deviations from the unit m a t r i x  For the extremals 
(2.6) the action (2.4) takes the form 

and agrees apart from a constant with the action for  the 
Z(N) gaugetheory. 

The extremals we have found, and which we shall call 
central instantons, play an  important role in quantum 
theory. We shall verify th is  for  the case when the bare 
parameters 8- 1 and A<< 1 a r e  such that one may use 
perturbation theory with respect t o  A. 

We consider the Wilson loop average 

where d p ( ~ , )  is the  Haar measure on the group SU(N). 
When one computes Wl(C) t o  zeroth order in X one needs 
simply to sum over the central instantons. This yields 

w:" (c) = r ( c ;  p), (2.10) 

where I? is the loop average of the z(N) gauge theory: 

In order  t o  calculate the corrections in X we note that 
for  A << 1 fields U, of the form (2.7) a r e  important in the 
functional integral (2.7), where u, changes a s  one goes 
from link t o  link, i.e., 

where Sp l$ << 1. For such smooth distributions the 
second te rm in the action (2.4) can be expanded in pow- 
e r s  of the field strength F,, retaining only the f i r s t  
nonvanishing t e rm,  which equals A " N S ~  F t .  This yields 
for  W,(C) the expression 

where we have introduced the notation 

Thus,  for  1 the loop average IY:"(C) is obtained by 
multiplying w(C), which is determined to  order O(AZ) by 
two t e rms  of the perturbation s e r i e s  with coupling 
constant gZ =x/N, by r(C)-the loop average in a Z(N)- 
gauge theory with "renormalized" charge pw(ap). 

In  calculating the next o rde r s  in X there  appear cor-  
rections t o  Eq. (2.14) from higher powers of F,, in the 
expansion of the second t e r m  in the action (2.4). It is 
easy t o  s e e  that if one takes them into account, this 
leads simply to the result  that after a "renormalization" 
of the constant h[h - h=X/w(ap)] the above formulas r e -  
main valid if one only calculates the expectation values 
according t o  the formula 

which coincides with the expectation value in standard 
gauge theory with a coupling constant x. Thus,  the fac- 
torized expression (2.14) is replaced, when a l l  orders  
of X a r e  taken into account, by 

On the basis  of a perturbative analysis the expression 
(2.16) for the expectation value should be taken to  mean 
only an abbreviated form of the s e r i e s  in powers of A. 
However, in the next section we shall  show, using the 
loop equations of motion, that the factorized expres-  
sion (2.17) with w(C) defined by the expectation value 
(2.16) with Q =N-'Spu, is valid not merely in each order  
of perturbation theory with respect  t o  A, but exactly. 

T o  conclude this  section we r emark  that the factoriza- 
tion occurs only for the expectation values (2.16) and 
does not extend to the loop functionals 

where S(U) is  the action (2.4). In the limit of a large 
number of colors (N- .o) we have 

- 
z P W-IC ...... C J = r ( C . +  ...+ C.: Brn(ao)l I I otc,: X). (2.19) .. . . , , - , . . .-. , 

' &"I1 . - '  ' '  
. . 

x [ Z (  ~ ~ P ( B C  ~ e ( ~ a ~ ~ u a ~ ) ) ) ] - ' .  (2.13) 1-1 

I P where r(C) coincides with the loop average in the U(1) 
gauge theory [which is the limit of :(N) gauge theory a s  

Here (. . . ) denotes averaging with the action x - ' N s ~ ~ + ' ~ ,  
N- a], which, of course, does not factor into a product over the fluctuations of the gauge field in the sense  of 
of averages of individual loops. 

perturbation theory. When one calculates the f i r s t  order 
of perturbation theory in A using th is  formula one must, 
of course, substitute the expansion (2.12) into it. 

3. THE LOOP EQUATIONS OF MOTION IN TWO- 
CHARGE QCD 

The computation of the average (2.13) simplifies con- 
In this  section we give a derivation of Eq. (2.19) which siderably in the limit of a large number of colorsz6: 

is not based on perturbation theory, and consequently 
N -  .o for fixed ,9 and A. In this limit the averages (. . . ) we prove its validity for loops of a rb i t ra ry  s ize  (we 
of gauge-invariant products factorize into products of 

remind the reader that in QCD perturbation theory is 
averages. Making use of this property, we obtain valid for calculating the loop averages for smal l  s ize  - 

w!" (c) = w ;  go (dp)) o (c; A), (2.14) loops, since the renormalized coupling constant in- 
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creases with increasing distance). Our derivation is  
based on an analysis of the chain of equations for the 
loop averages W,(C,, . . . , C,). For the model with a 
single coupling constant these equations were derived 
in Refs. 23-25. Here we derive the chain of equations 
in the case of two-charge QCD of interest to  us, and 
show that the factorized expression (2.19) is indeed a 
solution of this chain of equations. 

In order to derive the loop equations of motion we 
utilize the standard method of shifting the variable in 
the functional integral (2.18): 

where 6, is an infinitesimal traceless hermitean ma- 
trix. Proceeding a s  in Refs. 23-25, we obtain the 
following chain of coupled equations: 

These equations a r e  derived in the following manner. 
We open up the loop C, at the point XEC,, i.e., we con- 
sider the average containing the ordered product U,, 
(the contour C, is traversed starting at the point x), 
rather than its trace. In the integral s o  obtained we 
shift the integration variable U, on some link of the 
lattice according to Eq. (3.1) and equate to  zero the 
variation of the integral (the coefficient of c , ) .  Taking 
into account the fact that only averages of gauge- 
invariant quantities a r e  different from zero, we arrive 
by straight-forward but rather tedious calculations at 
the equations (3.2). All this was done in Refs. 23-25, 
and for this reason we give no details here. The only 
distinction is that the variation of the action in the stan- 
dard model is different from the case of the two-charge 
QCD considered here,  and this has been taken into 
account. 

The left-hand side of Eq. (3.2) comes from the 
variation of the action (2.4). The contour C, +ap 
comes from the loop C, by adding to  it a t  the point x 
the boundary ap of the plaquette p; -ap denotes that the 
same boundary is traversed in the opposite direction. 
The loop C, - a p  is also pictured in Fig. 1. The link I 
on which the shift (3.1) is effected s tar ts  at the point x 
in the direction v, and the summation over f i  i s  over a l l  
the directions orthogonal to  v. The first  summand in the 
left-hand side of Eq. (3.2) comes from the variation of 
the first term in the action (2.4) and coincides with the 
left-hand side of the equation in the standard lattice 
gauge model. It is convenient to introduce the notation 

I z  (w.(ca+ap.. . . ,cm)-w.(c.-ap.. . . .C.)I-L~G))W.,(C, .... , c.). 
2 

? 

(3.3) 
The second term appeared from the variation of the 
second term, which is quadratic in Sp Ua,, of the action 

FIG. 1. The loops C1 + ap and C1-ap. 

(2.4). It is for just this reason that Sp Ua, is added to 
the product of n t races  Sp U,, after the variation, and 
in place of the n-loop average we obtain the (n + 1)-loop 
average. 

The right-hand side of the equation comes from the 
variation of the expression which is to  be averaged. It 
does not depend on the form of the action and therefore 
coincides with the right-hand side of the equation in 
the standard lattice model. The term involving the 
sum over I' EC, comes from the variation of Ucl and the 
term with the sum over I' EC, ( j >  1) comes from the 
other loops. The point x' is defined a s  the origin5' of 
the link l ' ,  and ~ ~ ( 1 ' )  = 0 , 1  is  its projection on the 
basis vector e,. The notation in the form of a sum 
of the Kronecker delta 6& over the loop is convenient 
for loops with arbitrarily many self-intersections. If a 
loop has at the point x a self-intersection of k-th order, 
the summation over this loop is easily done and one ob- 
tains a sum of k different t e rms  (cf. Ref. 25). The 
loops C,,,, C,., and C, +C, a re  shown in Fig. 2, where 
the double line joining the points x and _x' represents 
the Kronecker delta 6,,,. The symbol Cj  signifies that 
the corresponding loop is absent. One should keep in 
mind that the loop C, was selected arbitrarily. This 
means that we have a row of n equations which come 
from opening up each of the loops C,. 

In the limit of a large number of colors (N- for p 
and A fixed) one may neglect t e rms  of the order o(N*):) 
and the equation (3.2) simplifies : 

- 6 " + c , c , .  . . ,c")+oN-z. (3.4) 
1.-a, 

It is easy to note that this equation has a factorized 
solution of the form (2.19). To see  this we substitute 
the Ansatz (2.19) into Eq. (3.4). It will be satisfied for 
any r(C, +. . . +C,) if and only if  W(C) satisfies the equa- 
t ion 

L. (s) o ( C )  = X  6, ,z . ( l f)  o (CP*) 0 (c=,=) 9 (3.5) 
I , -C 

where 

Strictly speaking this proof is incomplete, since we 
have not shown so  far that Eq. (3.4) has no other fac- 

FIG. 2. The loops C,I, C,r,, and Ci+ Cj. The doubIe line 
designates 6,,. . 
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torized solutions. In order to complete the proof it is 
necessary to derive an equation for the difference 

G(C1... c - w  . - r +  . C w c .  (3.7) 

Such an equation is easily derived from Eq. (3.2), ac- 
count being taken of (3.5), and is an inhomogeneous equa- 
tion. Therefore it fixes the order of magnitude of the 
quantity G ,  for N- .o. The inhomogeneous term is pro- 
portional to N*, yielding G, = O(NZ). Thus, the factor- 
ized solution is valid up to terms of order O(N-'). 

As was already noted, r(C) is not determined by the 
equation (3.4). This ambiguity7' reflects the fact that 
the second term in the action (2.4) is invariant with 
respect to the transformations (2.5). The equation which 
determines r ( ~ )  is obtained by shifting the integration 
variable by an element from the center of the group. 
We consider directly the large-N limit, when the dis- 
crete group Z(N) goes over into the continuous group 
U(l), i.e., the transformation (2.5) becomes 

where q, is an infinitesimal rea l  number. Noting that 
only the first  term in the action (2.4) changes under the 
transformations (3.8), we obtain the equation 

Substituting into this equation the factorized Ansatz 
(2.19) it is easy to see that it is a solution if r(C) satis- 
fies the equation 

L, (z) r (C) -ez z 6 d r v  ( 2 ' )  r (c), 
I'EC 

where 

The equations (3.5) and (3.10) coincide, respectively, 
with the equations for the loop averages in the standard 
SU(N) and U(1) gauge theories. Consequently, to  order 
O(N-I),  Eq. (3.5) has a solution in the form of the func- 
tional integral: 

where the integration is over the group SU(N), and the 
equation (3.10) has the solution 

which coincides with the expression of the loop average 
in a compact abelian gauge theory. 

In the limit a- 0 the expression (3.13) differs from 
zero only for a loop of zero minimal area8): 

This result has a natural explanation from the point of 
view of the symmetry (2.5). As was discussed in Sec. 2 ,  
the average (2.18) at p = 0  is different from zero only in 
the case when the expression to  be averaged is  invariant 
with respect to the transformations (2.5). This is so, 
for  instance, for n = 2 if C, = - C,, i.e., under theaverage 
sign there appears 1 N-' Sp U,, 1'. The loop C, + C, has a 
zero minimal surface. One should also note that at 8 =0 
the equation (3.9) is simply the condition of invariance 
relative to  the transformqtions (2.5), which is guaran- 
teed by the fact that the equation (3.10) has the unique 
solution (3.14). 

The expressions (3.12) and (3.13) generalize the cor- 
responding formulas of Sec. 2 to the case of loops of 
arbitrary size and for values of A which a re  not small, 
when it is impossible to use perturbation theory. These 
formulas a r e  exact in accord with their derivation. In 
the following sections they will be used to determine the 
phase equilibrium curve in the A ,  B plane corresponding 
to spontaneous breakdown of the symmetry of the center 
of the gauge group. 

To conclude this section we show that the Bianchi 
identity, which W,(C,,. . . , C,) must satisfyz3 in addition 
to  the equations of motion and the boundary conditions, 
is satisfied for the factorized expression (2.19). In the 
lattice theory it is convenient to use Bianchi identities 
of the following form: 

The identity (3.15) is satisfied for the factorized 
expression (2.19), since both w(C) and r (C) ,  defined 
respectively by expressions (3.12) and (3.13), satisfy 
the identity (3.15) separately. 

4. THE PHASE TRANSITION WITH RESPECT TO THE 
CENTER OF THE GAUGE GROUP 

In the preceding section we have shown that for a 
large number of colorsQ) the factorized formula (2.19) 
becomes valid for the loop average (2.18), with r (C)  
and w(C) defined by Eqs. (3.13) and (3.12), respectively, 
and 8 and given by the expressions (3.11) and (3.6). 
It is  knownz8 (for a mathematically rigorous proof, cf. 
Ref. 29), that in an abelian theory with gauge group 
~ ( 1 )  there is a phase transition, and the asym@otic 
behaviors of r(C; e*) in the two phases a re  different. 
On the basis of this information one can reach the con- 
clusion that there exists a phase transition in two- 
charge QCD with the action (2.4). To verify that this 
is indeed so  it suffices to  consider the irreducible cor- 
relation function 

which expresses the van der Waals forces between 
colorless objects formed by a quark and antiquark. 
Substituting the expression (2.19) into (4.1) we obtain 

i.e., K,(C,, C,) is proportional to the irreducible corre- 
lation function for the ~ ( 1 )  gauge theory. Considering 
the case when the distance between the loops C ,  and C, 
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is large compared t o  their  s izes ,  we verify that in our 
theory, a s  well a s  in the U(1) gauge theory,  there  a r e  
long-range van der Waals forces for j3>> 1,  and conse- 
quently there  exist mass less  excitations (Goldstone 
particles) which a r e  absent at  j3<< 

Another method of checking that a phase transition 
occurs in two-charge QCD a s  p increases,  and at  the 
same t ime of determining the symmetry breaking rela-  
ted t o  th is  phase transition, is  t o  study the correlation 
functions of the disorder parameter.13 However, in the 
case under consideration it is more  convenient not t o  
use the disorder parameter ,  but the closely related 
criterion based on a phenomenon10' s imi lar  t o  the Higgs 
effect in abelian chiral theories.") We reca l l  that in 
abelian chiral  theories one studies the spontaneous 
breakdown of the global symmetry group of a Lagrangian. 
One of the ways of answering the question whether a 
symmetry i s  broken o r  not is t o  include in the Lagrang- 
ian an  external guage field that makes this  symmetry 
local, and then calculate the dependence of the free 
energy on the external field. Depending on the phase 
in which the system i s  situated, the f r ee  energy depends 
differently on the slowly-varying weak external field. 

In the case of a gauge theory we shall  proceed com- 
pletely similarly and switch on an external field which 
reduces t o  the symmetry of the second kind of the center 
of the gauge group to  a symmetry of the third kind, i.e., 
we switch on a field which is capable of absorbing the 
change of the action under the transformation (2.5) of 
the fields: 

The field G, is attached to  the oriented plaquettes of the 
lattice and changes sign when the orientation is changed. 
The action (4.3) is invariant under gauge transformation 
of the third kind: 

The dependence of the f ree  energy on the external field 
G, is given by 

where 

From the definitions (4.5) and (4.6) it is obvious that the 
f ree  energy F(G,) remains unchanged under a shift 

The f ree  energy we have introduced can serve  a s  a 
"litmus paper" for the identification of the phase in 
which the system finds itself. The dependence of F(G,) 
on the slowly varying field G ,  i s  different in a phase 
with broken symmetry of the center of the gauge group 
than in the symmetric phase. In the symmetric phase 
the expansion of the f ree  energy density in powers of G, 
s t a r t s  with a t e rm proportional t o  (V JG,,,,,, )', where 
*G ,,,,, , is the field dual t o  G,,. ,,,, V, is the covariant 
difference operator, and [x, @ o r  denotes the plaquette P. 
In the phase with spontaneously broken symmetry of the 

center of the gauge group the expansion s t a r t s  with 
((;iX,,,,,)2 (here G:,,,,, denotes the t ransverse  part of the 
field G: v,G~,,,,, =O). 

The f ree  energy F(G,) can be calculated in our case 
of two-charge QCD. In order to determine Q(G,) we 
expand the exponential of S(G,, U3, )  in powers of p: 

where ({. . .I),,, denotes averaging with the action (2.4) 
a t  p =O. Calculating the loop averages in  the expression 
(4.7) according to Eq. (2.19) we obtain 

where J?(apl +. . . +a&;@ = 0 )  is the loop average in the 
U(1) gauge theory at  j3 =0, and is given by Eq. (3.14). 
The s e r i e s  (4.8) is easily summed: 

and this agrees ,  apart  from a constant, with the energy 
in the ~ ( 1 )  gauge theory with the coupling constant 
e Z  =po(ap). Returning to  the definition (4.5) we obtain 
the result  that the dependence of the f ree  energy on the 
external field G, i s  the same for the two-charge QCD 
with an infinite number of colors a s  for the U(1) gauge 
theory: 

Since in the ~ ( 1 )  gauge theory the phase transition 
occurs for  a value of the charge e:, it follows from this 
equation that in two-charge QCD a phase transition 
occurs for  

Since in U(1) gauge theory the dependence of the f ree  
energy on the external field below and above the critical 
point s t a r t s  respectively with the t e r m s  (V, *G,,,,,,)2 
and (G:,, the s ame  dependence is valid in two- 
charge QCD above and below the phase transition point, 
respectively. Consequently, at the phase transition 
point there occurs a spontaneous breakdourn of the sym- 
metry of the center of the gauge group. 

5. THE PROBLEM OF QUARK CONFINEMENT 

In the preceding section we have made it clear  that in 
two-charge QCD there  exists  a phase transition, such 
that  in the "low-temperature" (p> pc(h)) phase the sym- 
metry of the center of the gauge group is spontaneously 
broken. In this section we discuss the consequences one 
can draw from the information already available t o  us 
with regards t o  the problem of confinement of quarks 
within hadrons. 

F i rs t  of a l l  we note that in the symmetric phase ( p  
< pc(X)) the quarks a r e  no doubt confined, since the Wil- 
son criterion1 is satisfied. Indeed, the loop average con- 
tains the factor r(C; e*) which in the symmetric phase 
has the asymptotic behavior 
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r (C; e - ' ) a  exp (-r.-' ( e 2 )  Amin), 

where A* is the area of a minimal surface spanned by 
the loop C and e ( e 2 )  is the correlation length. The "area 
law" is valid in the symmetric phase independently of the 
asymptotic behavior of the factor w(C) in the factorized 
expression (2.17). 

In the "low-temperature" phase the asymptotic behav- 
ior of r(C, e*) is different (r ccexp{-length}), and the 
"area law7' could be valid only on account of w(C). How- 
ever, we cannot calculate w(C) for a loop of large size,  
and symmetry considerations do not play a role in the 
case of the Wilson criterion. Therefore this criterion 
does not allow one to decide whether the quarks are  o r  
a re  not confined in the "low-temperature" phase. 

PolyakovU has proposed for quark confinement another 
criterion that relates the problem with that of the break- 
ing of the symmetry of the center of the gauge group. 
This criterion is based on the study of loop correlation 
functions in a system with boundary conditions which 
a re  periodic in "time." Topologically such a system is 
homeomorphic t o  a cylinder, and consequently one may 
consider the loop averages for loops which surround the 
cylinder and cannot be contracted to a point (see Fig. 3). 
As was shown in Ref. 12, such averages a r e  directly 
related t o  the interaction energy of static quarks. 

The assertion that the symmetry of the center of the 
gauge group is related t o  the quark confinement problem 
comes about in the following way. The action (2.4) and 
the integration measure a re  invariant with respect to the 
transformations of the type (2.5) for which U, depends 
only on the "time" xo, i.e., '2) 

*n(z,) for r o ( l ) = * l  
0 for TO(Z) =0 ' 

Indeed, under such a transformation only the fields 
U, localized on the links directed along the time direc- 
tion a r e  subjected to a shift by an element of z(N) ,  in 
such a manner that for a given spacelike leaf the shift 
is independent of the spatial coordinate. For such a 
shift the product Ua, [cf. (2.l)ldoes not change since in 
addition to the link having the direction ~ ~ ( 1 )  = 1 there 
must be for each loop ap a link having the opposite 
sense ~ ~ ( 1 ' )  =-1, SO that the shifts cancel mutually. 
Consequently the action (2.4) remains unchanged. 

Similarly, the loop product U, does not change when 
the loop C is contractible (to a point). If a loop 2: sur-  
rounds the cylinder then UE is shifted by an element of 
Z(N).  Thus, for the loop El in Fig. 3 

where xo is the "time" coordinate of the origin of the 

FIG. 3. A lattice with periodic boundary conditions in xo .  The 
loops PI and c2 surround the cylinder. 

link 1. As can be seen from this equation the symmetry 
with respect to  the transformations (2.5), (5.1) is  nothing 
but the symmetry of the center of the gauge group, dis- 
cussed in a slightly different presentation. 

The existence of this symmetry leads, according to  
Eq. (5.21, to the result w,(E,) =O. If the symmetry of 
the center is spontaneously broken one must expectA3' 
the order parameter not t o  vanish: W1(el) #O. As was 
shown in Ref. 12, for nonvanishing W,(c,) the quarks 
a r e  liberated. Together with the results of the preceding 
section on the spontaneous breakdown of the symmetry 
of the center of the gauge group in two-charge QCD, 
these results lead to the conclusion that in the "low- 
temperature" phase the quarks can b e  emitted. 

Although this assertion is made for the case of two- 
charge QCD with the action (2.4), it also leads to conclu- 
sions for the standard Wilson lattice gauge theory. 
With this in mind we calculate in the two-charge QCD 
the order parameter wl(e,) which, a s  is usually done 
in the theory of phase transitions, must be determined 
from the two-loop average w,(E,, C,) (see Fig. 3) by 
moving the loops el and e2 apart. In order to calculate 
W, we make use of the factorized expression (2.19), the 
validity of which for the lattice gauge theory was proved 
in Sec. 3 for arbitrary boundary conditions in "time," 
and is valid in our case. Considering the limit of large 
distance between the loops El and c,, we find 

where w(E,; X) coincides with the order parameter in 
standard lattice gauge theory with coupling constant x. 
Since in the "low-temperature" phase the effective 
coupling constant of the ~ ( 1 )  gauge theory is smaller 
than its critical value, e2(h)< ez, and therefore r(C1; e") 
+0,  then we have w(el) # 0, because ~ ~ ( 6 , )  +O. This 
means that in the standard lattice gauge theory there 
exists a phase transition related to  quark liberation. 

6. THE PHASE DIAGRAM AND THE SELF- 
CONSISTENCY CONDITION 

As already noted in Sec. 2, to construct a Lorentz- 
invariant continuum limit of the lattice gauge theory 
it is first of all necessary to determine the positions 
of the second-order phase transition points (where the 
correlation lengths become large compared to  the 
lattice spacing a). In order to solve this problem we 
consider the Mase diagram defined by Eq. (4.11). 

The right-hand side of Eq. (4.11) contains the loop 
average w(ap;x) of the standard model with coupling 
constant X defined by the expression (3.12). The coup- 
ling constant X itself depends on w(ap;X) according to 
Eq. (3.6); thus, there ar ises  the self-consistency re- 
quirement 

o (c; X) I c-a,=h/X. (6.1) 

If the functional dependence of w on 5 is known, i.e., 
w(ap;X)s f (TI), where f is a function determined by the 
dynamics of the standard model. It will be seen below 
that the self-consistency condition plays an important 
role in the dynamics of the two-charge model. 
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The function f (x) c a n  be calculated for  s m a l l  values 
of x by using perturbation theory,  and f o r  l a r g e  values 
of by using strong-coupling expansions, yielding 

~ ( X ) = I - A X  --o(x=) for Xa1, 

1 1  
f(X)=--+-+O(X-') for XBf 

2X 8X5 

In the intermediate region "thermodynamic" inequalities 
impose important res t r i c t ions  on the f o r m  of the func- 
tion f .  

We consider a sys tem for  which the  partition function 
z,(X) is defined by the  denominator of Eq. (3.12). Then 
the mean energy density will be 

Here  V denotes the "volume" of the  sys tem,  equal t o  the 
total  number of plaquettes of the  lattice. The  stability 
condition consis ts  in requir ing t h e  "heat capacity," which 
is the derivative of ( ~ ( h ) )  with respec t  t o  the "tempera- 
ture"  x, t o  be nonnegative. T h i s  yields 

i.e., f (x) i s  a monotonically nondecreasing function of 
[ in  agreement  with Eq. (6.2)]. 

Another inequality comes f rom considering a sys tem 
for which the  partition function Z,(X) is given by the 
denominator of Eq. (2.18). In analogy with (6.3) we ob- 
ta in 

where the factor ized express ion  (2.19) h a s  been used, 
which is  valid f o r  l a rge  N. The condition of nonnega- 
tivity of the "heat capacity" d(&(h))/dX, with account 
taken of Eq. (6.4), yields the  stability condition: 

dX(h)ldh>O. (6.6) 

This ,  in tu rn ,  means that if h(h)  is a decreasing func- 
tion, the  corresponding phase i s  absolutely unstable. 

Substituting t h e  asymptotic f o r m s  (6.2) into the  self-  
consistency condition (6.1) we obtain 

X=h+Ahz+. . . for h e f ,  (6.7a) 

X =  [4(2A-1) J- '"f . . . for h-'/,<l. (6.7b) 

Finally, fo r  a rb i t ra ry  X t h e r e  is yet another solution, 
namely 

X(h) -m for arbitrary A. ( 6 . 7 ~ )  

The  solutions (6.7a) and (6.7b) a r e  computable l imi t s  
of the fundion  X(A) determined by t h e  function f (X). How- 
ever ,  the s igR of the  derivative iT'(X) and t h e  monotonic- 
ity o f f  (x) allow one to reach  the conclusion that f o r  
$ < A <  A,, where kc is s o m e  number of o r d e r  unity, 
t h e r e  a r e  at  l eas t  two solutions, with t h e  solution (6.7b) 
having X'(X)< 0 and consequently unstable. 

The  solution (6.7a) has  xl(A) 30 f o r  O <  A< A,,  i.e., is 
stable. In this  region t h e r e  exis ts  another s tab le  solu-  
tion ( 6 . 7 ~ ) .  It i s  c lea r  that  physically the  solution with 
the  largest  f r e e  energy density F(h)= - N - ~  V-' lnZ,(;h) 
f o r  given h is realized. From (6.5) we find that F ( h )  

t akes  on a maximal value if f o r  0 < A <  A ,  one chooses the 
solution (6.7a), and f o r  A > A ,  one chooses the solution 
( 6 . 7 ~ ) :  

'' dl for o a < i . ,  FO-)=- jm 
& 

F 0.) -0 for h>l ... 
The  genera l  ru le  is such  that  fo r  a given X t h e  solution 
with the  leas t  X(h) is real ized.  

F igure  4 shows the two-charge QCD phase diagram 
determined by the  equation p,' = e: A/;@). The solid 
line represen ts  the  solution which is real ized,  and the 
hatched line represen ts  the  unstable branch (6.7b). Ac- 
cording t o  Sec. 5, below the c r i t i ca l  point, where t h e  
symmetry  of the  center  of the gauge group is spon- 
taneously broken, the quarks  a r e  not confined. The 
region above t h e  c r i t i ca l  point corresponds t o  t h e  phase 
with unbroken symmetry ,  and the  quarks  a r e  confined. 
However, f o r  X > A, t h e  effective "temperature" of the 
U(1)-model vanishes: e2(X) =O. Therefore  the  fac tor  
r ( C )  which e n t e r s  into the  loop averages  is nonzero 
only f o r  loops of vanishing minimal sur face  a r e a  [cf. 
Eq. (3.14)]. T h i s  means that  not only a r e  the  quarks 
confined, but that  they do not propagate a t  a l l  inside 
the  hadrons,  i.e., only such field configurations a r e  
possible, fo r  which t h e  quark and t h e  antiquark a r e  
localized at  the s a m e  lattice s i te .  I n  other  words, the 
correlat ion length vanishes for  A> h,. The  phase t ran-  
s i t ion,  which is denoted by the ver t i ca l  dotted line, is 
fictitious, s i m i l a r  t o  the  phase t ransi t ion discussed by 
G r o s s  and Witten.31 If we  had considered the case  of finite 
values of IV, we would have convinced ourse lves  that the 
correlat ion length s imply becomes N-dependent f o r  A >  A,, 

andvanishes in the  l imit  N - m  . T h i s  situation has  been 
called the absence of quarks.  

As was discussed in Sec. 5, the  exis tence of a "low- 
temperature" phase in  two-charge QCD implies that in  
the  s tandard Wilson lattice gauge theory  t h e r e  must be 
a phase t ransi t ion,  with a cr i t ical  value y , * h ( ~ , ) .  
We note that  the  position of y ,  is bounded f rom the right 
by t h e  point y, of the  Gross-Witten phase t ransi t ion in 
the  s tandard model: X(X,) s y  * sy, . 

It follows f rom the  obtained phase diagram that  f o r  
the  existence of a Lorentz-invariant continuum limit 
in the  phase with confined quarks it is necessary t o  l e t  
x go t o  z e r o  a s  a- 0 according t o  the a s y m g o t i c  f ree -  
dom formula,  and t o  le t  @ approach its cr i t ical  value 

FIG. 4. The phase diagram corresponding to spontaneous 
breakdown of the symmetry of the center of the gauge group 
SHN)  for large N. The region I corresponds to confined 
quarks, the region I1 corresponds to liberated quarks, and in 
the region 111 the quarks are absent. 
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< in such a manner that the  correlation lengths in r (C)  
and w(C) remain fixed. The Lorentz invariance of the 
limit is  guaranteed by the fact that in the U(1)-lattice 
theory the phase transition is  of second The 
rat io of the correlation lengths in r (C)  and w(C) is an 
arbitrary quantity. As was discussed in Sec. 1, the 
meaning of this is that in the center confinement mech- 
anism the confinement radius of the quarks and the 
screening radius of the color charge a r e ,  in general, 
not related to  one another. 

With this limiting procedure the Lorentz invariance 
of the continuum limit is guaranteed both for T'(C) and 
for w(C) [in contradistinction from the case  P-'- $(A) 
for  finite A< A,, when a continuum limit exists  for  r (C)  
but there is no reason to expect the existence of a 
Lorentz-invariant continuum limit for  w(c)] . More- 
over, with respect  to A there  will be asymptotic free- 
dom in the confined-quark phase. 

At f i r s t  glance one might think that there  exists  
another method of obtaining asymptotic freedom in 
the confined phase, by considering the case  y =N2P-' - 0 for  X< X (we fix y ra ther  than B-' in the N -  * 
limit in order that the correlation length be nonvanish- 
ing). However, according to  footnote7), a t  y<< A the 
two-charge model reduces t o  the standard model, where, 
a s  we have shown above, there  is a phase transition in 
y at  the point y, + 0. Therefore, if we choose the bare 
value y - 0, which is required for  asymptotic freedom, 
we end up in the "low-temperature" phase, where 
quarks a r e  not confined. Consequently, the only pos- 
sibility of obtaining a Lorentz-invariant continuum 
theory with confined quarks and asymptotic freedom (in 
h ) i s t o l e t X g o t o z e r o a n d ~ g o t o ~ - O a s a - 0 .  

7. CONCLUSION 

In conclusion we discuss once again the adopted hypo- 
theses and the  consequences stemming from them. 

We have assumed that in guage theory there  exists 
a n  only reason for quark confinement, namely the 
breakdown of the symmetry of the center of the gauge 
group. It was assumed that in the symmetric phase the 
quarks a r e  confined within the hadron, and in the phase 
with spontaneously broken symmetry of the center they 
a r e  liberated, and therefore the order parameter wl(El) 
is different from zero. 

We have shown that in the large-N limit the order 
parameter in a guage theory with the standard action1 
is related t o  the order parameter of the two-charge 
model by Eq. (5.5), and that for  $(A)< < the proportion- 
ality factor i s  different from zero. In  Sec. 4 it was made 
clear  that this  parameter region corresponds to a phase 
with spontaneously broken symmetry of the center of 
the gauge group, and consequently the order parameter 
of the two-charge QCD must be different from zero,  
implying a nonvanishing value of that parameter for 
the standard theory also. Thus, in the standard model 
there must be a phase transition related t o  the liberation 
of the quarks. 

It was shown that for the two-charge QCD which con- 
tains a s  a limiting case the standard model, there  

exists a unique possibility of combining the confinement 
of quarks in the lattice approach with the requirement 
that the continuum theory which is obtained in the limit 
a- 0 be Lorentz invariant. For this it is necessary to 
let h go to ze ro  according to  the asymptotic freedom 
formula, simultaneously with a- 0, while ,3 approaches 
the critical value e: - 0, a l l  in such a manner that the 
correlation lengths remain fixed. 

The continuum theory resulting from this limiting pro- 
cedure will be asymptotically f ree  with respect t o  A. 
Unfortunately, until now the renormalization properties ' 

of the Z(N)  lattice gauge theory have not been studied for  
0- ei2 - 0. However, there  a r e  reasons t o  believe that 
they a r e  such that the nonperturbative effects contained 
in r (C)  at  sma l l  distances a r e  unimportant. There is no 
doubt that this  question is of great  interest  and deserves 
a detailed investigation. 
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sions. 

'1 Recent reviews on lattice gauge theoriesi5 and on quark 
confinement16 contain additional references to original papers. 

2, We note that in the continuum limit a -0, the operator Uc 
goes over into the well-known holonomy operator 

3, In the cases where N is  a prime number the action (2.4) i s  
practically the most general, since then the group Z ( N )  has 
no subgroups. 

4, In the formal local limit ( a d 0  a t  fixedA,B) both t e rms  go 
over into the usual continuum actinn of tho Yang-Mills field: 

This limit i s  easily derived if one utilizes the formula Uas 
-exp(iF,,n,,a2), wheren, is  the unit orientation 2-form 
of the plaquette P [cf. (2.12)l. 

5, We recall that if the link 1 has negative orientation then its 
endpoint is  to be considered a s  its origin. 
The fact that W, (C1, . . . , C,) - 1 follows from the boundary 
condition W,,(O, . . . , 0) = 1 and from equation (3.2) where C 
= 0 denotes a loop contracted to a point. 
This ambiguity is, of course, absent in the standard model, 

which is obtained from our action (2.4) a t  p = NZ/-I and A 
--. In this case there i s  no additional "almost symmetry" 
relative to the transformations (2.5), and a s  a consequence 
of this only r= 1 is  possible. 

')A loop with zero  area  minimal surface contracts to a point 
with the help of the Bianchi identity (3.15). 
In this section we consider the limiting theory with N-m 

for fixed /3 and A,  and speaking of the center of the gauge 
group we always have in mind the limit Z(N- ") = U(1). 

lo) This phenomenon was f i r s t  studied in superconductivity 
theory and is  known there as the Meissner effect. 

")The idea of such an approach was f i r s t  proposed by A. M. 
Polyakov (1976, private communication) in connection with 
the investigation of the phase transition in a U(1) gauge 
theory. 

12) We recall that ToU) denotes the projection of the direction of 
the link 2 onto the basis vector eo. 

I3ht  i s  assumed, essentially, that in addition to the symmet_ry 
of the center there a re  no other dynamical reasons for W1(C1) 
= 0, and hence for quark confinement (see Section 1). 
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A theory of the Hanle effect in a strong electromagnetic field, when perturbation theory is inapplicable, is 
developed. A two-level system with terms of which one has zero and the other unity angular momentum is 
considered. The probability for transition to a third level with zero angular momentum under conditions 
when the first two terms are at resonance w~th the strong field is computed. It is shown that the dependence 
of the probability changes from quadratic to linear as the field intensity is increased. The limits of very weak 
and very strong fields and the case of a very strong constant magnetic field that splits the term with unity 
angular momentum are analytically investigated. The intermediate cases are investigated with the aid of a 
computer calculation. The self-similar character of the problem is pointed out. It is concluded that the 
resonant character of the probability as a function of the magnetic field vanishes as the electric-field intensity 
increases. 

PACS numbers: 32.80.B~ 

5 1. FORMULATION OF THE PROBLEM of e m i s s i o n  of r ad ia t ion  wi th  s o m e  def in i te  polar iza t ion 

T h e  opt ica l  phenomena connected wi th  in t e r f e rence ,  
due t o  t h e  p r e s e n c e  of adjacent  l eve l s ,  i n  t h e  r ad ia t ion  
of a t o m s  are c u r r e n t l y  being in tens ively  investigated. '  
One  of t h e s e  e f f ec t s  is the  Hanle  effect,  wh ich  c o n s i s t s  
i n  the  f ac t  that  in a magnet ic  f i e ld  the  in tens i ty  of 
spontaneous  radia t ion wi th  a given p o l a r i z a t i ~ n  depends  

f o r  a n  a t o m i c  state that  is a supe rpos i t ion  of ene rge t i -  
ca l ly  close states is d e t e r m i n e d  by t h e  s q u a r e  of t h e  
modu lus  of t h e  s u m  of the  occupat ion ampl i tudes  of 
t h e s e  s t a t e s .  T h e  dependence of t h e  probabi l i ty  on the  
level s p a c i n g  is due  t o  t h e  p r e s e n c e  of a n  in t e r f e rence  
t e r m  in  t h e  s q u a r e  of t h e  modulus  of t h e  s u m .  

on  the  dis tance ,  de t e rmined  by the  magnet ic- f ie ld  T h e  Hanle  ef fect  is normal ly  o b s e r v e d  in  r e sonance  
s t r eng th ,  between the  adjacent  Z e e m a n  sub leve l s .  T h e  exc i t a t ions  by r ad ia t ion  wi th  a b r o a d  s p e c t r a l  l ine .  
Hanle effect is explained by t h e  f ac t  that  t h e  probabi l i ty  F u r t h e r m o r e ,  i t  o c c u r s  in r e s o n a n c e  exci ta t ions  by 
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