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The strictly reversible, thermodynamically equilibrium nature of the free rotation of a body makes it possible 
to obtain a number of bounds on the rotational characteristics within individual rotational bands of 
nonspherical nuclei. As a result, the bounds between which the possible values of the critical spin J ,  lie can be 
expressed exclusively in terms of a restricted number of the experimentally most accessible data on the lower 
phase J < J ,  for a given nuclide. The bounds are tested on the ground-state rotational bands (yrast lines) of 
even-even nuclei, in which the corresponding phase transition (backbending) has aIready been observed 
experimentally. For nuclei with pronounced nonsphericity, all the bonds are invariably confirmed. For the 
ground-state rotational bands for which the phase transition point J = J ,  has not yet been reached, 
predictions are made for the corresponding values of J,"'" and, especially, J,""". The specific features of excited 
rotational bands, and also the bands of odd nuclei are discussed. 

PACS numbers: 21.10.Hw, 2 1.1O.Re 

1. INTRODUCTION 

Among the possible collective motions in a nucleus, 
free rotation occupies a unique position. Since i t  i s  not 
accompanied by dissipative processes of frictional 
type, it is a thermodynamically equilibrium phenome- 
non. This means that, generally speaking, the strictly 
reversible interaction of the different degrees of free- 
dom of the system and the rotation does not lead degra- 
dation of the latter. As long a s  the shape of the nucleus 
is characterized by the presence of the dynamical vari- 
able n (the unit vector along the symmetry axis of the 
figure), the corresponding isentropic sequence of 
levels- the rotational band-will be continued. 

However, the interaction with the other degrees of - 

freedom does, despite being completely reversible, 
significantly complicate the situation in precisely the 
section of the rotational band hitherto most accessible 
to experimental study. The point is that with increas- 
ing rotational quantum number J there is an increased 
tendency for the mechanical angular momenta of the in- 
dividual quasiparticles to be aligned along the direction 
of the total angular momentum vector J. Ultimately, 
this phenomenon will be completely analogous to the 
alignment of the magnetic moments of fermions in a 
magnetic field, and then the rotation properties will be- 
come fairly simple (for more details, see  the previous 
Ref. 1). However, a t  low o r  moderate nuclear spins 
Js Jc (the notation i s  as before'v2) there i s  generally 
not even one single-quasiparticle state within the zone 
of possible alignment near the Fermi  boundary. Be- 
cause of this, the tendency to alignment along J i s  not 
manifested even here in a pure form. Coupling of the 
nucleons to the axis n of the nucleus begins to compete 
with it, and with a sufficient decrease in the spin J the 
symmetry of the rotational state is lowered. 

Let us consider briefly how these circumstances a r e  
reflected formally in the quantum-mechanical descrip- 
tion of rotational states. I t  i s  well known that in the 
case of adiabatically slow rotation the total wave func- 
tion of a nonspherical nucleus can be represented in the 
form of the product" 

Here, M = J , ; D : , ( ~ ) = D ~ , ( ~ ,  0,O) i s  a Wigner func- 
tion, and 5 is the set  of so-called internal variables that 
the nucleus would possess if i t  were not in motion. But 
in the general case for arbitrary spins there is a su- 
perposition 

and the rotational density matrix is expressed a s  

where wK i s  the probability of the given value of K [on 
the right-hand side of Eq. ( z ) ,  the internal wave func- 
tions x i ( [ )  a r e  not themselves normalized/. 

At and above the Curie point Jc we have p,,(h, n) 
= 1/4n const. Physically, this can be interpretedas the 
final breaking of the coupling between a nucleon and the 
axis of the nucleus, after which the distribution of the 
vector n over the directions in empty space naturally 
becomes isotropic, and the quasiparticles tend to be 
aligned only along J. Formally, this corresponds to 
wK = (ZJ+ I)-' for  J a  Jc, i. e., all K a r e  equally prob- 
able. For  a concrete example, Fig. 1 illustrates the 
experimental picture of the phase transition due to the 
increased symmetry of the rotational state. In Fig. 1, 
the phase transition (backbending) can be  seen very 
clearly. ' ' 

Since the rotation does not destroy the equilibrium, 
the thermodynamic treatment makes i t  possible to es- 
tablish a number of bounds for the rotational character- 
istics. In this connection, we mention a feature of the 
present-day experimental situation. At present, the 
critical spin Jc has not yet been reached for many nu- 
clei and their rotational bands, so  that the existing data 
refer exclusively to the lower phase J <  Jc. Do these 
data predict the position of the phase transition point? 
As  a rule, this question must be answered in the nega- 
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ing simple calculation, though interpreted from a some- 
what different point of view). 

FIG. 1. Phase transition (backbending) in the ground-state 
rotational band of ''OW. 

tive. However, the thermodynamic inequalities permit 
one, by extrapolating the data on the lower phase, to 
find the limits between which the true value of Jc lies. 
In  the cases, also fairly numerous, when the critical 
value has already been determined experimentally, the 
reliability and effectiveness of this procedure can be 
tested directly. 

The overwhelming majority of experimental data of 
interest in this connection correspond to the ground- 
state rotational bands of even-even nuclei (the so- 
called yrast  lines). In what follows, we shall  have in 
mind mainly this special case. The modifications 
needed in some of the expressions in the more general 
case will be indicated separately. 

2. MINIMAL WORK FOR A ROTATING NUCLEUS 
AND THERMODYNAMIC INEQUALITIES 

The quantity 

is the energy in a coordinate system rotating uniformly 
with angular velocity Do (see, for example, Refs. 3 and 
4). The lowest state E(J)  of the rotational band can al- 
ways be regarded formally a s  nonrotating in the sense 
that this state minimizes the energy (4) for Do = 0. In 
principle, one can go over from it to any other state of 
the band by specifying a corresponding no = D + 0. Then 
the value of certainly does not increase a s  equilibri- 
um is approached. Bearing in mind also that J =  E = E 
= 0 for the original, nonrotating nucleus, we readily ob- 
tain 

E ( I )  GAQJ (5 

for any rotational level. 

Applied to rotating bodies, this is entirely equivalent 
to the notion of the so-called minimal work,4 which in 
the given case is mJ- E .  In the immediate neighbor- 
hood of equilibrium, the energy 2 has a local minimum. 
This yields the inequality 

where 

is the moment of inertia and, in general, variable (the 
Appendix to the preceding Ref. 1 gives a correspond- 

So fa r  we have considered inequalities that hold equal- 
ly in either of the phases. We now turn to a more defi- 
nite examination of each of them separately. We shall 
label the lower phase J -C Jc - 0 by the index m, and the 
upper, J a  Jc+O, by the indexn. Where necessary, 
the additional index C will be used directly a t  the Curie 
point J= Jci 0. 

F i r s t  of all, we use some of the results  obtained in 
Refs. 1 and 2 for the upper phase. It is difficult to vis- 
ualize clearly i t s  properties near the transition point, 
a t  which the moment of inertia exhibits pole behavior: 

( j  is some constant coefficient). After i t  has passed 
through the "superrigid-body" region adjoining the 
Curie point, the moment of inertia sinks to a minimum, 
and then tends to the rigid-body asymptotic form I=Io 
from below. Over the complete upper phase, the re-  
ciprocal value of the moments of inertia cancel out: 

I t  can be concluded from this that the section from 
some particular running value J to infinity makes a 
negative contribution to the integral (9). As a result, 
using Eq. (7), we readily obtain 

i. e . ,  in the upper phase the ratio of the angular mo- 
mentum to the angular velocity exceeds the rigid-body 
value. Equality is attained only a t  the phase transition 
point J= Jc + 0 itself, and also asymptotically a s  J - *; 
for  more details, see  Ref. 1. 

The theoretical investigation of the behavior of the 
moment of inertia of the lower phase is made difficult 
by i t s  low symmetry, and the coupling scheme of the 
angular momenta is complicated and itself changes con- 
tinuously a s  a function of the spin J. We shall consider 
this question in detail only for the lowest part of the 
ground-state rotational band. This consists of course 
of the levels J= 0,2,4,6, . . . . 

The energy E ( J )  of the levels can be represented a s  
the expectation value of the Hamiltonian of the nucleus 
with respect to the true wave function (2), which is a 
superposition of different K. But if the expectation 
value i s  found in accordance with the approximate func- 
tion (I), the result E'O'J is an overestimate: 

E ( I )  <E'O' ( J )  . (11) 

We shall assume that the averaging over the tr ial  
wave functions (1) is made in two stages, the f i rs t  with 
respect to the internal variables 6 .  Since KO = 0 for  the 
rotational band in which we a r e  interested, the Wigner 
functions reduce to spherical functions, and the new 
Hamiltonian will act only on them. Under these condi- 
tions, the scalar'operator must be expressed in terms 
of J' = J ( J +  I ) ,  and we write the corresponding expan- 
sion in the form 

222 Sov. Phys. JETP 53(2), Feb. 1981 V. G. Nosov and A. M. Kamchatnov 222 



Here, A =fZ2/21f, I' rI,_o is the adiabatic moment of in- 
ertia, and B-A/J?c. 

We expand the true energy E ( J )  in the usual ser ies  in 
powers of J. In the ground state there a r e  no differenc- 
es: For  obvious reasons, the wave function (1) is exact 
for J = 0 .  Moreover, in the limit a s  J - - 0  the f i rs t  and 
second derivatives of the energies E and E'" a r e  also 
equal, since otherwise i t  would be impossible to have 
the adiabatic approximation expressed by the f i rs t  term 
on the right-hand side of Eq. (12) (the Bohr-Mottelson 
formula; see, for example, Refs. 5 and 6). The differ- 
ence required by the inequality (11) a r i se s  only in the 
cubic term of the expansion, and the corresponding co- 
efficient 

(d3EldJ')  ] J - o  

has the order of magnitude -~/I 'J ,  >> 3 (in fact, the ex- 
pansion i s  in powers of the rat io J/J,; in accordance 
with the previous Ref. 2, Jc- k f R  >> 1, where k, is the 
limiting momentum of the Fermi  distribution, and R is 
the radius of the nucleus). Thus, 

and, using Eq. (7), we obtain 

i. e . ,  the moment of inertia increases near the base of 
the rotational band. 

The inequality (14) agrees  with experiment. However, 
numerous experimental data on the ground-state rota- 
tional bands indicate that in them the monotonic growth 

of the moment of inertia with the spin also holds in the 
entire lower phase J< Jc. 

Bearing this in mind, one can draw a number of con- 
clusions about the ratio of the angular momentum to the 
angular velocity. We transform the derivative of this 
ratio in accordance with Eq. (7): 

Since 

we have 

i. e . ,  the ratio of the angular momentum to the angular 
velocity also increases. 

We now use an inequality obtained earl ier  in Ref. 2: 

O,~=-S~.C, (17) 

which determines the sign of the discontinuity of the ro- 
tational velocity at  the phase transition point, and the 
relation 

to which Eq. (9) is essentially equivalent [see also the 
text following Eq. (9)]. Then 

We have previously estimated the integral 

from below. We now obtain an upper bound: 

The unified expression of the inequalities (19) and (20) 
is 

In the lower phase, the ratio of the angular momentum 
to the angular velocity is l e s s  than the rigid-body value 
but exceeds the adiabatic value I' of this ratio (in prac- 
tice, the accuracy of this last  assertion is limited by 
the circumstance that we have in fact ignored the speci- 
fically quantum "zero-point rotation": Ef2iS2,-o=~/2~') .  
It is also well known that the inequality I f <  lo agrees 
with experiment. 

3. UPPER AND LOWER BOUNDS FOR THE CRITICAL 
SPIN Jc 

We find f i rs t  the boundaries of that region on the 
(J, E )  plane within which the upper phase can in princi- 
ple exist. Combining the inequalities (5) and (lo), we 
obtain 

This means that the part of the E(J) plot corresponding 
to the upper phase is situated entirely to the right of the 
parabola fi33/Io [see Fig. 2(a)]. Overall, the curve of 
the energy of the rotational levels is continuous, E,(Jc) 
= E,(Jc), since we have a second-order phase transition. 
Ultimately, the smallest possible value eln of the criti- 
cal spin is determined by the transcendental (and in 
practice empirical) equation 

min 
Em (I,"'") =h2[l,"'"]"/r,, JcaJc . (23) 

The prescription for finding the upper limit is 
clear from Eqs. (101, (171, and (18); see  also Fig. 2(b). 
In the plane (J, tiS2) the upper phase begins on the 
straight line ~ J / I ~  and is situated to the right of it. 
The lower phase cannot penetrate to this region, for  
otherwise the sign of the discontinuity of the rotational 
velocity at  the phase transition point prescribed by the 
inequality (17) would be reversed [the monotonic growth 
of the moment of inertia of the lower phase expressed 
by the inequality (15) does not permit i t  to return to the 
left of the line fi3~/1~; see also Eq. (7)]. The upshot i s  

To avoid confusion, we emphasize that the graph of 
m ( J )  is discontinuous (see also Fig. 1); therefore, $" 
does not coincide with the true Jc but exceeds it. 3 ,  
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A typical formulation of the problem is a s  follows. 
Suppose that, in contrast to the example in Fig. 2, 
there a re  data on only the lower phase. We denote Jf 
the highest value of the spin for  which the rotational 
velocity and the moment of inertia a re  known [since cal- 
culations in accordance with Eqs. (7) actually require 
the taking of finite differences, the spin JF of the last of 
the experimentally detected levels is in practice usually 
higher and equal to J f +  21. First, i t  is readily seen 
that a s  long a s  I <  I. the graph of I%'i(J) moves away from 
the broken straight line in Fig. 2(b), but when the re- 
quirement I >  I. is satisfied i t  moves towards this 
straight line. This makes i t  possible to find an upper 
bound on the discontinuity ~(fiS2) = I%'imc - I%'inC of the 
angular velocity of rotation of the nucleus: 

But if J >  Gin, i. e. , the lower limit of the critical spin 
has already been passed experimentally, then in Eq. 
(25) i t  is necessary to replace $" by Jf (the require- 
ment If  > I. remains in force). 

We consider the cases in which the finding of the low- 
e r  or  the upper limit requires a comparatively short 
extrapolation of the existing data up the band. Then we 
can restrict ourselves to the approximations 

A' 
E,(J) ~ J E , + A P ~ ( J - J ~ ) + - ( J - J ~ ) ' ,  

ut 

ha AP, (J )  SAP, + - (J-Jf )  . 
If 

Substitution in Eqs. (23) and (24) and solution of these 
equations lead to 

The criterion of applicability of the first  of these is 
formulated here on the basis of primarily practical 
considerations; namely, in the cases of interest, the 

FIG. 2. Lower (a) and upper (b) limits for the possible values 
of the critical spin Jc (ground-state rotational band of 'g~b*). 

quadratic approximation given by the f i rs t  of Eqs. (26) 
usually has a very good accuracy. When the conditions 
of applicability of the expressions a r e  violated, one 
must resort to graphical extrapolation. Naturally, this 
has i ts  shortcomings. 

Finally, we consider a curious application of the 
boundary curve P ~ / I ~  on the (J, E) plane. The less 
symmetric lower phase is characterized by an order 
parameter, whose part is played by the static quadru- 
pole moment Q. Since i t s  actually realized value must 
be energetically advantageous, this predetermines the 
sign of the discontinuity of the angular velocity in ac- 
cordance with inequality (17) (for more details, see  the 
preceding Ref. 2). One can however also show that 
there exists a general restriction of the magnitude of 
the discontinuity AS2 a s  well. 

Consider Fig. 2(a). The plot of E(J) crosses from 
left to right, the dashed parabola on which the deriva- 
tive is 2Fi?Gin/~o, and d ~ / d J  along the band is here 
smaller. Therefore, the inequality (16) enables us to 
conclude that 

Expressing now in accordance with (18) the rigid-body 
moment of inertia in terms of the upper rotational ve- 
locity 52,,, we find that < 2anc, i. e. ,  

Thus, the magnitude of the abrupt decrease in the rota- 
tional velocity a t  the phase transition must not exceed 
half i t s  original value a,,. 

4. COMPARISON WITH EXPER!MENT 

For several years, the compilation by Sayer et al.' 
served a s  the prime source of information on the 
ground-state rotational bands of individual nuclei. 
However, these data a re  now partly obsolete and many 
new data have been published. Therefore, we have al- 
so used original papers. *-I6 References to some other 
sources of experimental data that we have used can be 
found in a later compilation of Lieder and Ryde. " 

The results for the ground-state rotational bands in 
which the phase transition has already been found a re  
summarized in Table I. The limits J:'" and J",= were 
found in accordance with the scheme illustrated in Fig. 
2 (see also the text). When the conditions were more 
favorable for application of the second of the expres- 
sions (27), the calculated value of the upper limit is 
given with one decimal. In the remaining cases, J",= 
was found by graphical extrapolation. Values 4'' c 8  
a re  not given, since they a r e  certainly of no interest. 
The true critical spin Jc is determined basically in ac- 
cordance with Eq. (18). Sometimes, when suitable da- 
ta on the upper phase a re  available, i t s  value can be 
found more accurately or  confirmed by means of the 
relation 

which is obtained from Eqs. (8) and (18) by integrating 
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TABLE I. 

the first  of them. Where possible, the result of extra- 
polation from the upper phase in accordance with the 
limiting law (8) is given for comparison. The details of 
this procedure a re  explained in the previous Ref. 2; we 
recall here only that i t  is free of the necessity of speci- 
fying a definite radius of the nucleus (concerning this 
question, see  also below). 

Naturally, the main aim was to test the validity of the 
inequalities 3'" < Jc < ePI. One sees  that there a r e  
five violations of the first  of these inequalities, ob- 
served for the nuclides I3OCe, I3%e, ' 3 4 ~ e ,  ' 5 6 ~ r ,  and 
l6OYb. Except for I3'ce, the violations of the inequality 
Jc> Gin do not in themselves appear too appreciable. 
However, the matter appears in a somewhat different 
light if one notes the following circumstance: Near the 
phase transition point, the inequality (5) is also violated 
for the listed nuclides. Although the width of the region 
of violation in the band does not exceed three units of 
angular momentum, the question is nevertheless of 
some interest. Indeed, in deriving the thermodynamic 
relation (5) we assumed essentially only that we have a 
rotating body (concerning the possible influence of the 
spin of the lowest level of the band, s e e  below a t  the end 
of this section). 

A likely qualitative explanation is as follows: In prac- 
tice, we deduce the rate of rotation from the distance 
between neighboring levels, Caking half of i t  from the 
equality m2 = dE/dJ .  But the shape of these nuclei in 
the ground state gives grounds for certain doubts, and 
the deformation of these nuclei evidently varies along 
the band. Under these conditions, one cannot rule out 
abrupt changes of state; for example, the deformation 
may increase abruptly by a certain amount. If the posi- 
tions of the two transitions a r e  close to each other or  
even coincide, then a t  the phase transition point there is 
an anomalously small distance between the levels, be- 
cause the abrupt change in the structure or  shape of the 
nucleus must be energetically advantageous. Directly 
at the point of a first-order phase transition (although 
in the given case i t  is in fact nearly a second-order 
phase transition with an increase in symmetry; see also 

the Introduction), this anomalously small intervti loes 
not correspond to the rotational velocity of the nucleus. 
By making such an identification, we significantly re- 
duce the right-hand side of the inequality (5). After the 
transition point has been passed, the intervals between 
the levels again give the rotational velocity, and the in- 
equality (5) is again well satisfied. The fact that our 
theory is not always fully adequate for  nuclei that may 
still be spherical in the ground state has already been 
noted. " 

In contrast, for nuclei of pronounced nonspherical 
shape the entire picture of a second-order phase transi- 
tion is completely confirmed, and none of the inequali- 
ties given in Secs. 2 and 3 is violated. This also holds 
for the inequality ~ ( m )  c ~(m2),, [see Eq. (25) and the 
text]. The data on the discontinuities of the rotational 
velocity, whose actual values a r e  very different (some 
vanishingly small), a r e  not given in the tables. 

Initially, in the calculation of the rigid-body moment 
of inertia we used the previously recommendedi** value 

ro=l . l .  lo-'' cm (3 0) 

of the parameter in the well known expression for the 
radius of the nucleus. However, comparison with ex- 
periment revealed unexpectedly that for the isotopes of 
ytterbium, hafnium, tungsten, and osmium (2 = 70-76) 
a t  neutron numbers N 2 98 the radius is different. This 
can be seen particularly clearly with the ground-state 
rotational band of '~:Osl,, a s  the example. In accord- 
ance with Fig. 3, the previous value ro = 1.1 x 10"~ cm 
is unsuitable for describing the properties of the upper 
phase. Therefore, in this range of nuclides we gave 
preference to a smaller radius and used the working 
for mula5 ' 

ii2 104300 -=- As,, [keV] (re-1.0.10-"cm) 
I0 

(31) 

instead of formula (15) of Ref. 1. 

We do not know the reasons for the decrease in the 
nuclear radius when N > 98. I t  is possible that this may 
ultimately be interpretable a s  a purely surface phenom- 
enon, and i t  could be that the surface tension of the nu- 
cleus increases abruptly a t  the boundary of this region. 
Note also that, judging from everything, the isotopes of 
ytterbium '"Yb and hafnium   OH^ with N=98 have an in- 
termediate value of the radius 7-0. 

FIG. 3. Change in the slope of the r ig id-boa line E2~/x0 with 
rotation of the nucleus l ~ ~ s i O B  as  the example [I) ro= 1.0 
:< lodi3 cm, 2) ro = 1.1 x 10-l3 cml . 
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FIG. 4. Scheme for determining @m'" (a) and S""(b) by ex- 
trapolation of the data of the lower phase (the case of I S ~ Y ~ ~ ~ ) .  

We now consider the ground-state rotational bands in 
which a phase transition has not yet been detected ex- 
perimentally. The scheme for determining the limits 
is illustrated in Fig. 4, and the results a r e  given in 
Table II. In the second column, we give the spin of the 
last  of the experimentally found levels of the band. 

With regard to the predictions contained in Table 11, 
we should like to make one remark. In cases  such as 
1 5 2 ~ d ,  1 5 6 ~ d ,  "w, lT60s, and 2 3 8 ~ ,  the experiments 
have very nearly reached the phase transition point. 
However, as can be seen from Eqs. (24) and (25) and 
the text, i t  is precisely in the case of small 4"-J, that 
the discontinuity h(m2) is negligible. If the discontinu- 
ity of the rotational velocity is not discerned in experi- 
ment, the phase transition is by no means s o  striking 
as in Figs. 1, 2 (b), and 3. Transition to the upper 
phase must be gauged from the fulfillment of the in- 
equality (10) at the achieved interval between the levels. 
But if we a re  not satisfied with this and wish to  deduce 
the arrival in the upper phase also from the course of 
the moment of inertia (which is not related to concrete 
assumptions about the radius of the nucleus), then one 
o r  two more energy intervals a re  required. 

Besides the ground-state rotational bands, the energy 

TABLE 11. 
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spectra of nonspherical nuclei also contain, of course, 
other bands with J= J', S + 2, J' + 4, _J' + 6. . . ; in the 
general case S# 0. Then the energy E determined by 
Eq. (4) (in equilibrium S1 = a o )  is also nonzero for a 
"nonrotating" lowest state J=S of the band. Finally, 
the generalization of the inequality (5) takes the form 

where E' is the excitation energy of the level J= J'. 
Accordingly, instead of (23) we arrive a t  the equation 

After substitution of the quadratic approximation given 
by the f i rs t  of equations (26), the corresponding solution 
appears somewhat cumbersome: 

When the applicability of this formula does not inspire 
particular confidence, Eq. (33) must be solved by 
graphical extrapolation (or interpolation if the value Jc 
= 8'' has already been passed through experimentally) 
of the data on the lower phase. 

With regard to Eq. (24), and also the second of the 
approximate expressions (27), they remain valid. 
Quite generally, i t  should be noted that the basic prop- 
ert ies of the upper phase and the form of the corre- 
sponding relations and inequalities do not depend on the 
spin J' of the lowest level. It has, for example, the 
very characteristic asymptotic tendency to the simple 
rigid-body law =ZoS1 of proportionality between the 
angular momentum and the angular velocity as J- Jc - a. This qualitative feature does not depend on the 
specific choice of the band. Nor does i t  depend on the 
absence or  presence of an odd nucleon o r  on the value 
of the individual angular momentum that one is inclined 
to ascribe to i t  in a particular model of slow rotation 
(in making this last comment, we have in mind odd nu- 
clei). 

As an example, we consider some data obtained in the 
experimental study of Ref. 12. We a re  here concerned 
with the position of the energy levels of the nuclide 
' 6 4 ~ r ,  which evidently correspond in the region of adi- 
abaticity of the rotation to y vibrations of the nucleus 
(quadrupole shape vibrations corresponding to depar- 
tures from axial symmetry of the figure). The evalua- 
tion results a r e  a s  follows: 

Band 2+, 4+, 6+. . . J F  = 18; @"= 8.8; Crn2 20; JC = 15.2. 
Band 3+, 5+, 7+.  . . Jp=21; JP= 10.9; r= 18; Jc= 14.0. 

The pole dependence of the moment of inertia of the 
upper phase of this band, which is fairly clearly pro- 
nounced in accordance with the limiting law (81, also 
permits the estimates Gtr= 14.8 and j/z0 =2.1. 

I t  should however be said that the nonmonotonicity of 
the moment of inertia of the lower phase sometimes 
observed in the excited rotational bands of even-even 
nuclei can introduce some uncertainty in the estimate 
of Jy. 
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For odd nuclei, S # 0 i n  any band. For such bands, 
Eq. (33) is suitable as is, i n  favorable cases, i t s  ap- 
proximate solution (34). We have not analyzed h e r e  ex- 
amples corresponding to odd nuclei. 

5. DISCUSSION 

T h e  theory of the phenomenon i n  which we  are inter- 
ested, which is based on the notion of nonconservation 
of the quantum number K, would be  verif ied b e s t  on the 
bas i s  of the s tat ic  quadrupole moments  and the intensi- 
t ies  of quadrupole t ransi t ions between neighboring rota- 
tional levels.  However, i n  the high-spin s t a t e s  i n  which 
we are interested,  the s ta t i c  quadrupole moments  have 
not been measured a t  all. A s  yet, data  on E2 t ransi-  
tions are fragmentary and their  accuracy leaves  some- 
thing to b e  desired.  I n  addition, a n  appreciable  frac-  
tion of these data  corresponds to the region K= 0 of 
adiabatic slowness of the rotation, where,  naturally, 
they do not appear  to contradict  the well-known standard 
expressions. I t  is precisely where  the predict ions of 
the theory are part icular ly unambiguous (in the upper 
phase) that the experimental  points can  be  l i teral ly  
counted and, as a rule ,  have l a r g e  e r r o r s .  

The t rue  intensity of a n  E2 transition is usually divid- 
ed by i t s  purely adiabatic value calculated i n  accordance 
with the model wave function (1) (KO = 0). I n  accordance 
with the previous Ref. 2, F,,,, = 0.48 a t  J =  14 f o r  this 
relat ive intensity. We give the recently published ex- 
perimental  result,18 which h a s  a m o r e  o r  less accept- 
able accuracy: In the case of 1 2 6 ~ a ,  the transition 14' - 12' w a s  found to have intensity F = 0. 53::$68 (the resu l t  
is taken f r o m  the f igure i n  Ref. 18). At the p resen t  
s ta te  of the a r t ,  the re  is apparently no contradiction be- 
tween theory and experiment. 6 '  

But if one is not sat isf ied with such accuracy,  i t  is 
necessary  to  r e s o r t  to a m o r e  indirect  verification of 
the theory, based on the a r rangement  of the rotational 
levels  themselves, to which the presen t  work  is i n  fact  
devoted. 

')We ignore the circumstance that J =  J .  n is actually a 
pseudoscalar, so  that, strictly speaking, and analogous 
term, corresponding to the value K= -KO, should be added to 
the right-hand side of Eq. (1). In the special and in practice 
most common and important case KO= 0 of even-even nuclei 
there is no need for such a term and Eq. (1) is valid as it 
stands. 
It should be noted that in the quantum case in which we are 
here interested, the angular velocity S1(J) of the rotation is  
not, in essence, a function of the state (2) as such. It is 
determined by the distance between the two neighboring ro- 
tational levels. Therefore, the discontinuity of the rotational 
velocity in Fig. 1 does not contradict the continuous nature 
of the phase transition itself. 

3, Overall, the above serves sufficiently well for purely prac- 
tical purposes. From a deeper and more rigorous point of 
view, extrapolation of the lower phase beyond the Curie point 
is not completely correct mathematically and is somewhat 
arbitrary, since the function E,(J) has a certain singularity 
here. However, we have already noted2 that a t  least the f i rs t  
and second derivatives of this function do not become infinite 
as  J - Jc-0.  

4, For such nuclides, the previously notedi so-called second 

backbending is rather characteristic. At the present time, 
it has been found in two nuclei: l S 8 ~ r  andi60yb. The rea- 
sons for this phenomenom are not entirely clear; it takes 
place entirely to the right of and at  a depth -100 keV be- 
low the straight line ~ ' J / I~ .  After this, the graph m(J)  of 
the rotational velocity must tend asymptotically to the rigid- 
body line ~ ' J / I ~ .  However, nuclear spins permitting this 
tendency to be followed experimentally have not yet been 
obtained. 

5, We have in mind the usual formula I. = 2 ~ ~ ~ / 5 ,  where M is 
the mass of the nucleus. In the upper phase, isotropy of the 
distribution of the vector n over its spatial orientations 
corresponds to equal probability of all directions of the 
vector n11 J with respect to the figure of the nucleus. Under 
these conditions, the corrections to the rigid-body moment 
of inertia that depend on the deformations (Y could contain 
only invariant combination of them, i.e., would actually enter 
through a2. We shall throughout ignore the deformation cor- 
rections to the rigid-body moment of inertia, whose relative 
magnitude is  - a2 << 1. 

') Speaking of the complete set of accumulated experimental 
data, one can establish that the value E'= 1, which corres- 
ponds to K= const= 0, is  fairly convincingly refuted in the 
general case by the already existing data. 
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