
Quantum magnetosize effects in metals 
S. S. Nedorezov 

Physicotechnicol Institute of Low Temperatures, Ukrainian Academy of Sciences 

V. G. Peschanskl 
A. M. Gor'kiiKhorkov Stote University 
(Submitted 8 July 1980) 
Zh. Eksp. Teor. Fiz. 80,368-379 (January 1981) 

An analysis is carried out of the magnetic size-effect oscillations of the thermodynamic and kinetic 
characteristics of metallic films. It is shown that the density of electron states in a film in a parallel magnetic 
field H is very sensitive to the topology of the Fermi surface, and upon variation of H or of the film thickness 
L it either changes discontinuously or possesses logarithmic singularities. The latter are due to saddle points 
on the Fermi surface. In the case of open sections of the Fermi surface, strong modulation arises of the 
oscillations of the magnetization of the heat capacity, and of the magnetoresistance of the films. 

PACS numbers: 75.70.Dp, 75.80. + q 

INTRODUCTION the investigation of quantum oscillations in weak mag- 

The study of quantum oscillations of thermodynamic netic fields. The presence of logarithmic singularities 

and kinetic characteristics of conduction electrons in of the density of electron states is connected with the 

metallic films in a magnetic field is of significant inter- presence of saddle points on the constant-energy sur- 
faces.. In the case of open electron orbits, the ampli- est  in connection with the study of the electron energy 
tude of the quantum oscillations of the density of states spectrum of metals and the interaction of electrons with 

the boundaries of the sample. The magnetic size-effect increases like I H - H, 1 " ' 2  a s  H- H,, where 

oscillations predicted by kosevich and-~ifshitz' were Hj=jcfrGleL, j=i, 2,3, .  . . (1 
observed in the investigation of the electrical conductiv- is the intensity of the magnetic field at which degener- 
ity of filamentary crystals (whiskers) of antimony,' and a c y ~  of the electron energy levels relative to the quasi- 
also in the measurement of the magnetization of the momentum component p, takes place. (The magnetic 
whiskers of a number of metals.' Quantum oscillations field is directed along the axis, the normal to the 
a r e  possible in metallic films4 in weak magnetic fields. film is directed along they axis, and G is the period of 
Similar oscillations have been observed in the electrical the reciprocal lattice in the direction of openness of the 
conductivity of bismuth films.5 electron orbits.) 

The effects noted above apply to metals with closed 
electron orbits in a magnetic field H under the a s s u m p  
tion of specular reflection of the electrons by the bound- 
a r i es  of the sample. As was shown in Ref. 6, magnetic 
size-eff ect oscillations a r e  possible that a r e  due to elec- 
trons with open orbits. In the bulk metal, a s  is well 
known, electrons on open sections of the Fermi surface 
(Fs) do not participate in the establishment of quantum 
oscillations. In a thin sample, whose thickness L is 
less than the f ree  path length Z of the carr iers ,  the fi- 
niteness of the motion of the electrons along the normal 
to the boundary of the sample leads to quantization of 
the energy of the carr iers  belonging to the open sections 
of the FS. The contribution of these electrons to the 
thermodynamic and kinetic characteristics of the thin 
plates turns out to be quite substantial and causes the 
appearance of new oscillation effects, the investigation 
of which allows us  to obtain detailed information on the 
shape of the open electron orbits. 

In the present work, we have carried out a detailed 
analysis of the quantum magnetic size-effect oscilla- 
tions of the thermodynamic and kinetic electron charac- 
teristics of metallic films in a parallel magnetic field. 
It is shown that the density of electron states v either 
changes discontinuously with change in H or  else has 
logarithmic singularities. As If- 0, the noted singu- 
larities of v a r e  identical with the corresponding state- 
density singularities obtained by one of the authors4 in 

The mentioned properties of the density of electron 
states ar ise  in the magnetic size-effect 'oscillations of 
the thermodynamic and kinetic quantities. The corre- 
sponding formulas were obtained for  the quantum oscil- 
lations of the thermodynamic potential 51, the heat ca- 
pacity, the magnetic susceptibility, and the transverse 
magnetoresistance. 

DENSITY OF ELECTRON STATES 

Under the assumption of specular reflection of the 
carr iers  from the boundary of the sample, the quantum 
energy levels E ,  of the conduction electrons in a plate in 
a parallel magnetic field a re  determined by the quasi- 
classical quantization condition:' 

LeH 2nheH. 
E.pz,Ps;T)=T (n+y), n=0,1,2,. . . , 

where S is the area  of the intersection of the constant 
energy-surface $(p) = E with the plane p,  = const. This 
intersection is bounded by the straight lines p, and p, 
+ L~H/C (Fig. 1). The quantity y in formula (2) is less  
than o r  equal to unity, the latter corresponding to ap- 
proximation of the surface potential by an infinitely high 
potential barrier.  In the case of an arbitrary surface 
potential, y can be expressed in terms of the change in 
phase of the wave function of the electron upon reflec- 
tion from the boundary of the sample.' In the present 
work, we shall set y = 1 for simplicity. Here e is the 
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FIG. 1, Trajectories in momentum space (heavy lines) of elec- 
trons colliding with film walls in the case of closed (a, b, c) 
and open (d) sections of the Fermi surface. The magnetic field 
is  parallel to the film surface and in the case (d) it i s  equal to 
Hi = ci? G / ~ L .  At H>>H1, the electron trajectory spans many 
cells of momentum space. Case (b) i s  possible only at H < H ,  
= c D / e ~ .  

charge of the electron, Ti is Planck's constant, and c is 
the speed of light. 

In the case of open electron orbits (see Fig. Id), the 
area S in (2) i s  a periodic function of p, with period EG. 
At values of the magnetic field H = H j  [see (I)]  the area 
S is independent of p,  (Ref. 6) and is equal to 

S(e,  p,, p,; LeH,lc) =io(E, P.), (3 
where u is the area of the open section of the constant- 
energy surface within the limits of the reciprocal lattice 
cell. It then follows from (2) that the quantized energy 
levels, in the principal approximation in the quasiclas- 
sical small parameter (l/n<< 11, do not depend on the 
quasimomentum componentp, ." In fields H# H,, the 
degeneracy of the levels is removed, which leads to 
characteristic singularities in the density of states of 
electrons with open orbits. 

The density of the electron states v(&, H) i s  determin- 
ed by the expression: 

where p = efi/2moc, and p,, is the component of the 
quasimomentum in the plane of the plate. Summing (4) 
by Poisson's formula, and using the quantization condi- 

tion (2), we obtain the following for the oscillating part 
v,,, of the density of states (v = F + v,,,, where F is 
some smooth function of c and H): 

Hence, calculating the integral and summing over k in 
(51, we have 

m' 
I 

eS. m' 
v ( ) - - - I -  2 sin i -  - i n -  ) 1, 0 (6) 

I - ,  
2heH ma 

FIG. 2. Oscillations of the density of electron states with the 
magnetic field: a) J >O, b) J < 0. 

where 
1 as. m' = -- S e s S  E9Pze9 

2r. a6 ' ( 
is the extremal value of the area S with respect to the 
variables p, and p,  (as/ap,, = as/ap,,), {x} is the frac- 
tional part of x ,  

With change in & or  H, when the energy c i s  identical 
with the quantum level &,(p,,, H) pH, the density of 
states V(E, H) changes either discontinuously ( J >  0) o r  
has a logarithmic singularity ( J <  O), depending on the 
sign of J (Fig. 2). As H- 0 the formulas (6) transform 
into the corresponding expressions obtained for v,,, in 
Ref. 4, where an analysis is given constant-energy sur- 
face topology that gives r ise  to the presence of the log- 
arithmic singularities in the density of states. 

The density of electron states in a plate in a parallel 
magnetic field is determined by formulas (6) both in the 
case of closed and the case of open sections of constant- 
energy surfaces. In the latter case, near the degener- 
acy of the quantum levels a s  H- HI, we get from (6) 

where the upper sign is chosen in the case a2u/apZ,> 0 
and the lower in the case a2u/ap:# < 0; p, is the extrem- 
a1 chord of the constant-energy surface $(p) =& in the 
direction of the normal N to the plate, CY is the angle 
between N and the normal to the constant-energy sur- 
face at the points of its intersection with the extremal 
chord, and R, are  the radii of curvature at these points 
(see Fig. Id), o,=u(&,p,). 

Formula (8) is valid in fields 

where a is the lattice constant. At H=H,, we have the 
following expression for v,,: 

(G cos a)'" ao. a'o -'is 
voSc(e, Hj)'vj(e)*-- - rhnsn.:nzclz a .  l a ~ , , ~  l 

The amplitude of the quantum oscillations of the density 
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of states reaches i ts  maximum value in fields H=Hj, 
and significantly exceeds the amplitude of the oscilla- 
tions at intermediate field values HP H,: 

lvosc/v,l - ( ~ / L l ' ~ < i .  (1 1) 

QUANTUM OSCILLATIONS OF THERMODYNAMIC 
QUANTITIES 

As a result Of standard calculations (see, for exam- 
ple, Refs. 1 and 4) we obtain the following for the 0s- 
cillating part i2,,, of the thermodynamic potential O: 

k as, ~ C S .  rc 

Here T is the temperature, V is the volume of the sam- 
ple, 5 is  the chemical potential, and =x/sinhx. In 
the argument of the cosine, identical signs were chosen 
in the case J >  0; the sign is plus in the case a2~/ap:e > 0 
and minus in the case a2s/ap: < 0; the signs a re  differ- 
ent in the case J <  0. 

Differentiating with respect to the field, we ob- 
tain the oscillating part of the magnetic moment M,,, 
=-B~~,,,JBH. We consider in more detail the manifes- 
tations of the singularities in the density of states (see 
the previous section) in quantum oscillations of the mag- 
netic susceptibility &,,, =-a2i20ac/a~2: 

k dS kcS. n n 
xcos 2 -- a ; ) c 0 s ( X F * ~ * ~ ) 7  (13) 

and of the heat capacity C,,, = - ~ a ~ n , , J a ~ ~ :  

k as. kcS. n 
~ - ~ ( ~ ; ; r n ) - ( ~ + ~ * + ) ,  

where A c  =21~tie~/(ca~,/ab) is the distance between the 
quantum energy levels. 

In the region of low temperatures, T << A c, we get 
from (1 3) a t  J  < 0: 

where the values of the field Hni a re  determined by the 
condition 

Summing over k in formula (13) a t  T =0, and compar- 
ing the result obtained with (6), we can express the 0s- 

cillations &,, directly in terms of the oscillations v,,, 
(C,  H) of the density of states at any sign of J: 

as, -I as. s. 
x ~ ( H ) = v  (ot) ( V O ~ ~ ( C . ,  H ) .  

At the points Hd, the magnetic susceptibility either 
changes discontinuously o r  has logarithmic singulari- 
ties, depending on the sign of J. There a re  similar sin- 
gularities in the heat capacity C,JT a s  T -- 0: 

At finite but sufficiently low temperatures, T <<A , 
we have from (14) at H=Hnl and J <  0, 

T as T c osc- - - v - ~ I I I - ~ ~ ~ ~ ~ ( - ) ,  
6nAZL at AE 

while a t  H#H,, the oscillations of the heat capacity a re  
determined by formulas (17) and (16) [similar to the ex- 
pressions (15) for oscillations of the magnetic suscepti- 
bilit y 1. 

In the region of weak magnetic fields 

H C H , ,  (18) 
where Hc = C D / ~ L  is the field a t  which the extremal or- 
bit is cut off by the dimensions of the plate (D is the 
size of the extremal cross  section of the FS along p,) ,  
the obtained formulas (13)-(17) transform into the cor- 
responding expressions given in Ref. 4. The singulari- 
ties in the oscillations of the thermodynamic quantities, 
pointed out above, occur in fields H <  Hc. At H >  Hc, in 
the case of closed sections of the FS, the effect of the 
boundaries of the plate can be neglected and the quantum 
oscillations of the thermodynamic characteristics of the 
conduction electrons a r e  described by the theory of Ref. 
8. The transition field region H-Hc was investigated in 
Ref. 9. In the case of diffuse scattering of the electrons 
by the boundaries of the sample, the oscillations that 
correspond to the specified extremal orbit drop outi0 
and in fields H < Hc quantum oscillations take place on 
nonextremal sections of the FS." 

We have a quite different situation in the case of open 
sections of the FS, when the existence of quantum 0s- 
cillations is determined entirely by the effect of the 
boundary of the plate.6 As follows from formulas (81, 
(1 O), (1 5) and (16), the amplitudes of the oscillations 
xosc and C,,, near the degeneracy of the uantum energy 
levels increases in the case H- Hj 1ikeqH- 
reaching maximal values a t  H=Hj. The period of the 
oscillations near Hj is equal to 

In intermediate fields H#Hj, the amplitude of the 0s- 
cillations falls off and is of the order of ( U / L ) ~ / ~  rela- 
tive to the maximum amplitude. The period of the 0s- 

cillations in this region of fields has a complicated field 
dependence 

which is determined by the extremal a rea  of the FS sec- 
tion. ' 
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QUANTUM OSCILLATIONS OF THE TRANSVERSE 
MAGNETORESISTANCE 

The quantum oscillations of the kinetic characteristics 
a re  due to the singularities of the density of states, and 
also to the singularities of the scattering amplitude of 
the carriers.  The latter manifests itself only in very 
pure metals and a t  low temperatures. Thus, in a bulk 
sample, the singularities of the amplitude of electron 
scattering from impurities in a magnetic field have a 
significant effect on the oscillatory dependence of the 
magnetoresistance only under the  condition^:'^"^ 

max { T ,  TD) -X ( h x ) ' l f ,  

where T, is the Dingle temperature and o, is the cyclo- 
tron frequency. 

In metallic films in a parallel magnetic field, the sin- 
gularities of the scattering amplitude turn out to be 
much weaker than in the bulk metal, and the region 
where account of them is significant is much narrower, 
to wit, 

max ( T ,  T D ] < f  exp ( - f  l h o x ) .  (22) 

Therefore, in a very wide range of temperatures and 
magnetic fields, the oscillations of the kinetic charac- 
teristics a r e  connected with the singularities of the den- 
sity of states of the conduction electrons and a re  pro- 
portional to ~M,,JBH (see Ref. 14). We limit ourselves 
below to the case and analyze the quantum oscillations 
of the transverse magnetoresistance, i.e., we shall as- 
sume the magnetic field H to be located in the plane of 
the plate orthogonal to the electric current density j. In 
this case, in strong magnetic fields, when the radius of 
the classical trajectory of the electron r, is much less 
than the free path length 1, we can use the Kubo method1' 
for calculation of the electrical conductivity and take in- 
to account the scattering amplitude of the charge car- 
r iers  in the Born approximati~n.~'  

The symmetric part of the electrical conductivity ten- 
so r  can easily be expressed in terms of the shift of the 
center of the electron orbit, brought about by the action 
of the film potential on the electron and to scattering 
from impurities. The film potential has no effect on the 
drift of the carr iers  along the normal to the surface of 
the film (they axis). Therefore, the shift of the center 
of the orbit in this direction, brought about by the action 
of the scattering potential of the impurities, and deter- 
mining the quantity o,,, can be calculated by analogy 
with the bulk samples.16 The drift of the carr iers  along 
the surface of the film is essentially due to the action of 
the film potential. Therefore, a, depends essentially 
on the form of the film potential. Under conditions of 
the static skin effect," the contribution to ox, from elec- 
trons glancing along the surface film is decisive. The 
calculation of u,, is obviously more convenient to carry 
out by using the quantum kinetic However, 
the oscillating part of the resistance is determined in 
most cases, a s  will be seen below, by the oscillations 
of the component a,,, which we calculate within the 
framework of the Kubo theory,16* l6 taking into account 
the specifics of the electron states in the film. 

As a result, we get for U, 

where fp(&) is the fermi function, 

R, is the radius vector of the scattering center and u is 
the potential energy of the electron in the field of such a 
center. It is assumed that u(r) is independent of the 
electron spin. 

As the basis functions in (23), we use the eigenfunc- 
tions of the electron in a plate in a parallel magnetic 
field: 

1 CP. 
$np ,;G) = - exp - 

2 n h  ( i p 1 7 ) ( ~ -  z l n , P z ) ,  (24) 

where the function (y - cp,/eHln, p,) satisfies the equa- 
tion 

a,. (,- T, p.. u.) ( y- 1 n. p . )  =rn(pu.  H )  ( y- $1 n* P * )  

(25) 

with the zero boundary conditions 

Here $,, is the function $(ps,py,p,), completely sym- 
metrized with respect top, and p,. This function de- 
termines the dispersion law of the considered conduc- 
tion electrons, 6, =-itia/ay. 

The effects considered a re  important a t  low tempera- 
tures, so  that one must take into account only the scat- 
tering of the electrons by the impurities. Averaging 
over the impurities, and calculating the sums in (23) 
according to the Poisson formula, we get the following 
for  the oscillating part of the conductivity: 

I - 
O C E = - C C J d ~ f r T ( ~ + c - i ) a ~ ~ )  j b p l l w ( e , p , ;  H )  

0-1 k-I 

kc LeH 
xcos [=s ( 8 .  ~ k i  -) 1 7 (26) 

- c ~ x / e H  

where x is the impurity density, u(q) is the coefficient 
of expansion of the potential energy u(r)  in a Fourier in- 
tegral, 

L e H  
n ( 8 , p U ) = & ~ ( e ,  pIl; T). (28) 

Calculation of the integrals in (26) leads to the folIow- 
ing expression for the conductivity oscillations: 

ose iieH - 1 
avv -4n7 W ( C ,  pIl.; H )  ~ ~ l - ' ' ' ~  xv (g?) 

h* 

k  as. LeH n n 
X C O S  (zm, -- d f  ) cos [ $ S ( ~ ~ P ~ ~ * ; ~ )  *.'TI. (Z9) 

Comparing (29) with the formulas of the preceding 

191 Sov. Phys. JETP 53(1), Jan. 1981 S. S. Nedorezov and V. G. ~eschanski: 191 



section, we see  that, as in the case of the bulk metal (see 
Ref. 14), the quantum oscillations of the conductivity in the 
plate a r e  proportional to the quantum oscillations of the dif- 
ferential magnetic susceptibility X,,. At low temperatures, 
1' <<A&, the oscillations of o z a r e  expressed in terms of the 
quantum oscillations v0,,(S, H) of the density of electron 
states: 

O x _  LeH as. -I 
a,, -(2nh)'- ( - ai ) W ( S .  ~ r n ~ ) v o s c ( ~ . ~ ) .  

It follows from (6) and (30) that the conductivity oO,: 
either changes discontinuously upon variation of the 
magnetic field a t  the points H,,, when J >  0, o r  has a log- 
arithmic singularities ( J <  0). In the latter case [#$ I 
reaches maximal values a t  H = H,,, : 

where the distance between the quantum levels3' 

The indicated conductivity singularities take place in 
fields that a re  less than the cutoff field H,. In fields H 
> H,, the effect of the boundary of the plate (in the case 
of closed sections of the FS) disappears and the oscilla- 
tions a re  identical with the corresponding oscillations of 
the conductivity of the bulk sample. 

In the case of open sections of the FS, the quantum 
oscillations of the conductivity, which a re  determined 
by the formulas (29) and (301, increase essentially a s  
[H- H ~ I - ' ' ~  in the case H-- Hj; this follows directly 
from the expression (8) for the density of the electron 
states. The maximum values (apart from the sign) of 
the conductivity 8; occur at the points H =Hj: 

The period of the oscillations AH near Hj is determined 
by the formula (19). In intermediate fields H# Hj, the 
amplitude of the oscillations falls off to values of the 
order of (o/L)"~ relative to the maximum value of the 

FIG. 3. Modulation of quantum oscillations, due to the elec- 
trons on open sections of the Fermi surface, of the transverse 
electric conductivity of metallic films. 

conductivity a t  the points H, (Fig. 3). The period of the 
oscillations AH has a complicated dependence on H and 
L ,  determined by formula (20). 

The difference of the potentials is usually measured a t  
a specified value of the electric current flowing through 
the current contacts, and i t  is necessary for us to find 
the matrix that is inverse to the matrix of the electrical 
conductivity a,,. If the current contacts a re  located at 
the ends of the plate and the distance between them ap- 
preciably exceeds 1 ,  then the electric field along the x 
axis can be assumed to be uniform with sufficient ac- 
curacy, while the inhomogeneous field E,(y) must be 
found from the condition of electrical neutrality of the 
metal." Specular reflection of the ca r r i e r s  ensures 
that the current cannot flow through the surface of the 
plate, while the law of charge conservation div j = 0 
ensures the vanishing of j, at  any depth y in the conduc- 
tor. 

It is not difficult to verify that the inhomogenity of the 
field E,  is most appreciable a t  distances of the order r, 
at the surface of the film; however, i t s  account does not 
lead to a qualitative change in the quantum oscillations 
of the resistance. Therefore, in the calculation of the 
transverse resistivity p =ail ,  ,we limit ourselves to the 
approximation of a homogeneous electric field. 

In strong magnetic fields, when Y,<< L,  the asymptot- 
ic behavior of the electrical conductivity of the plate 
depends essentially on the topology of the FS. If the FS 
has open sections a t  given orientation of the magnetic 
field and the electrons belonging to these sections drift 
into the interior of the metal at some angle a to the 
normal, then the expression for a, has the following 
form: 

+ * osc osc 
(a=, -a,. ) - (o?+o,"."') 6 tg a, 

La 

where oo is the electrical conductivity of the bulk Sam- 
ple a t  H=O; 6 is the relative fraction of electron be- 
longing to the open sections of the FS. Numerical fact- 
o r s  of the order of unity a re  omitted in the formula 
(34). Also omitted a re  small quantum corrections, 
which vary smoothly with the magnetic field, such that 
ern is identical with the classical expression.i3 Even a t  
small 8 ,  but large Y ~ / Z L ,  the basic contribution to the 
electrical conductivity of the plate is made by electrons 
belonging to closed sections of the FS which, reflected 
specularly from the surface of the plate, carry  out un- 
bounded motion along the direction of the electric cur- 
rent [the first  term in formula (34)], while the interior 
of the plate hardly participate in the charge transport 
(the static skin effect). - 

It is easy to note that in a sufficiently broad range of 
magnetic fields satisfying the condition Y, > L2/1 the 
resistance is determined by the quantity a",",", i.e., 

oac osc 

-- a,, rnld p== --- ra" 
BB-. 

P=" oo BZLS ' 1L 

Here 5;: describes the contribution of the volume elec- 
trons, those not touchilig the boundaries of the sample, 
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and the contribution of electrons on open orbits of the 
FS, which a re  described by formulas (30) and (32) .  

Formula (35 )  remains valid s o  long a s  the maximal 
diameter of the electron orbit 2r,, is less  than the thick- 
ness of the plate. At 2r, > L, the distribution of the 
electric current over the c ross  section of the sample is 
practically uniform, but the specific conductivity of the 
plate agrees with oo in order of magnitude. In this case 
fl; is determined by electrons colliding with both sur- 
faces of the plate, while the specifics of the open cross  
sections of the FS do not enter into the smooth and 0s- 
cillating portions of the resistance. 

') The dependence of the energy levels on p, is  preserved in 
the next terms in the quasiclassical expansion of the energy 
in l/n; this is  not significant for the effects considered be- 
low. - -  .. . 

2)Following Refs, 12 and 13, we can express the formulas for 
uOsc andp ., obtained below in terms of the exact amplitude of 
electron scattering from point impurities, which would allow 
us to consider the range of fields and temperatures satisfy- 
ing the condition (22). 

')According to what was said above, a t  too low temperatures 
(22X the formula (31) for u z  is not applicable. In the case 
we have considered 1 u z  1 << g,m, where u, i s  the smooth 
part of the conductivity. 
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