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Stationary-profile waves are investigated for an isotropic two-sublattice magnet whose free energy is described 
by a homogeneous quadratic form. An explicit form of solution is found, corresponding to a domain wall 
whose structure is determined by the ratio of the constants of uniform and of nonuniform exchange. A 
classification is made of the cases in which it is possible to lower the dimensionality of the phase space of the 
equation system and to separate the classes of exact solutions. 

PACS numbers: 75.10. - b 

1. Investigations of moving domain walls and of soli- 
tons in magnetic media have led to the discovery of new, 
completely integrable models, directly related to the 
basic equations of the dynamics of magnetically ordered 
media - the Landau-Lifshitz equations. In a work of 
sklyaninl there is carried out, essentially, a proof of 
the integrability of the Landau-Lifshitz equations for a 
physically meaningful model of a uniaxial ferromagnet, 
with allowance for magnetic dipole interaction, in the 
case of x, t geometry. At present there is no doubt of 
the fact that a new source of completely integrable and 

whose f ree  energy is a general quadratic form, a new 
form of differential conservation law is found, connected 
with the translational invariance of the system (the ana- 
log of the law of conservation of momentum). The rep- 
resentation found can be generalized to the case  of an 
arbitrary number of magnetic sublattices. Thus the geo- 
metric approach to the derivation of certain divergent 
forms, proposed in Ref. 3 and carried out in the case of 
an isotropic one-sublattice f e r r ~ m a g n e t , ~  permits gen- 
eralization to the case of substantially more general sys- 
tems. 

physically meaningful models is provided by the Lan- 2. We consider an isotropic two-sublattice magnetic 
dau-Lifshitz equations for media with several magnetic 

material with free energy of the farm 
sublattices, whose free energy is described by a homo- 
geneous quadratic form in the magnetic moments of the 2F= [ (m,') '+ ( m i )  z+2mimElD. (2.1) 
sublattices. For  example, we have shown2 that inte- The spatial coordinate is referred to 6,, where 6: is the 
grable models can be extracted in the case of weak fer- 

ratio of the constants A of nonuniform and D of uniform 
romagnets. exchange. For stationary-profile waves, 

In the present paper, in the case of an isotropic two- 
sublattice magnet whose f ree  energy is a quadratic 
form, stationary-profile waves a r e  investigated, and an 
explicit form of solution is found that determines a top- 
ological soliton. The latter is, with respect to the anti- 
ferromagnetism vector, a moving domain wall, within 
whose bounds there exists a self-localized distribution 
of magnetic moment. The characteristic dimension of 
the region of self-localization of the magnetic moment 
is of the order of 

Here y is the gyromagnetic ratio, Mo is the saturation 
magnetization, D and A a r e  the constants of uniform and 
of nonuniform exchange, and U is the velocity of motion 
of the topological soliton. It is obvious that the limiting 
velocity 

U-=y (2AD) -'"Mo-' 

determines the boundary that separates solitons 
and spin waves. 

A peculiarity of the domain wall found is the fact that 
i t s  structure is determined by the ratio of the constants 

mi (x,  t )  =mt (x-Ut) 

and the Landau-Lifshitz equations have the form (f '  
df /dS) 

Here 

p,=[mtmt'], m,l=l, i = l ,  2, 
(2.3 

~ = ~ / 6 ~ - u t / t ~ ,  t,=Y,/yD, 

and the parameter u i s  connected with the velocity of the 
stationary-profile wave by the relation 

U=y (AD) "Yo- 'u .  

The dimensionality of the phase space of the system 
(2.2) is eight and in contrast to the case of an isotropic 
one-sublattice magnet, the analysis of stationary-pro- 
file waves is not a simple problem. In fact, in the con- 
cepts of mechanics, the problem that corresponds to the 
Landau-Lifshitz equations (2.2) is that of the motion of 
two interacting material points on the surface of a 
sphere of unit radius. - 

of uniform and of nonuniform exchange. Realization of The Landau-Lifshitz equations (2.2) lead to  the follow- 
such a domain wall is probably possible in layered mag- ing obvious conservation laws: 
netic structures. The problem of stationary-profile 
waves for the Landau-Lifshitz equations in this situation p ~ + p ; - ~ m , m , = ~ ,  (2.4) 

can be compared to the mechanical problem of the mo- pt+pz+u(ml+mz) =MR. (2.5) 

tion of two material points on the surface of a sphere which can be relatedto the invariance of the system with 
with a bilinear interaction potential. respect to  displacement and rotation. 

Furthermore, for the case of a two-sublattice magnet We introduce the generalizedangular momentum of the 
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magnetic sublattice vectors, 

and we write the conservation laws (2.4) and (2.5) in the 
form 

The Landau-Lifshitz system of equations (2.2) can be 
written in the form of a system of equations solved with 
respect to the highest derivatives, 

Here 

h:=pi'+mlm2=Mt2+mlm2-u2, 

X i  a r e  Lagrange multipliers. 

We shall show that the problem of stationary-profile 
waves can be investigated completely a t  least in the case  
when one of the integrals of motion, namely the total an- 
gular momentum (2.5) of the magnetic sublattice vectors, 
is zero. In fact, because of the vanishing of the constant 
vector M,, according to the conservation law (2.8) the 
moduli of the generalized angular momenta (2.6) of the 
magnetic sublattice vectors a r e  equal. The latter fact 
implies equality of the Lagrangian multipliers (2.10). 
Thus when M,, = 0, 

h1=h,=A. (2.11) 

For the common Lagrangian multiplier (2.11) of the sys- 
tem of equations (2.9) we get, using the conservation 
law (2.7), the expression 

M=MI'+M,V2mlm,-2u2=%+4mlmI. (2.12) 

We transform from the unit vectors of the magnetic 
moments of the sublattices to the representation of the 
antiferromagnetism and total-magnetic-moment vectors 

21-ml-ma, 2m=m1+m2. (2.13) 

I t  is obvious that 

The system of equations (2.9), with use of the relations 
(2.11) and (2.12), takes the form 

We note that the separation of the degrees of freedom 
connected with the motion of the total magnetic moment 
m of the two-sublattice magnet i s  due to  the vanishing 
of the constant vector M, in the conservation law (2.8). 
In the new representation, the conservation laws (2.7) 
and (2.8) take the form 

(m') '+ (1') ++1"mz=%/2, (2.17) 
[mmr]+ [ll']+um=M,=O. (2.18) 

Equations (2.15) may be regarded a s  the equations of 
motion of a material point in the field of a central force 
with potential energy 

An obvious consequence of equations (2.15) is the con- 
servation law s 

where g,,, and C, a r e  the constants of the first  integrals. 
Furthermore, equations (2.16) permit a f i rs t  integral of 
the form 

'1, (1') "+V(l) -1/2~z(l- lz)  +8,. 

Here 
V(1) -I/, (%/2+3) la-1' 

and is a new constant. 

On summing (2.20) and (2.22) we find, after comparing 
with the conservation law (2.17), that the constant gm 
and $, a r e  connected by the relation 

8,+81=%/2. (2.24) 

We shall show that the relations obtained enable u s  to 
write explicit expressions for solitary waves. A state of 
equilibrium of the Landau-Lifshitz system of equations, 

m = ~ ,  I I I = I  (2.25)- 

corresponds to the following values of the constants of 
the f i rs t  integrals: 

%=2, Cm=O, &,=O. (2.26) 

According to (2.21), the motion of the magnetic-moment 
vector m in configuration 3-space occurs along a 
straight line that passes through the origin of coordin- 
ates. On choosing a reference system in which 

m(O, 0, m.) 

and integrating (2.20), we find 

Since 1 and m a r e  orthogonal, the motion of the anti- 
ferromagnetism vector occurs in a plane orthogonal to 
the z axis; that is, 

In polar coordinates 

h=l cos cp, lu=l sin cp 

the conservation law (2.18) leads to the relation 

which determines the rotation of the antiferromagnetism 
vector in the L,1, plane during variation of the total mag- 
netic moment in accordance with (2.28). The total angle 
of rotation is n. 

Thus the solution found represents a moving domain 
wall with respect to the antiferromagnetism vector 1, 
with which is connected a self-localized perturbation of 
the total magnetic moment m with a maximum ampli- 
tude 

max m.=(I-u2/2)"=[I-(U/Um~)21'1~. (2.32) 

We note that the rotation of the antierromagnetism vec- 
tor  i s  connected also with a variation of i ts  modulus. 
The solution found belongs to the c lass  of topological 
solitons and is the unique (to within trivial symmetry 
transformations) separatrix solution of the Landau- 
Lifshitz equations for vanishing total angular momentum 

MI,. 

The solutions found above correspond to a separatrix 
that goes out from the equilibrium position (2.25). But 
the system of equations (2.15) has still another equilib- 
rium position 

l=O, Iml=l. (2.33) 
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Here we get directly from (2.17) that 3c = - 2. Conse- 
quently 

(m,') (m/)s=2{m,m2-i) GO, (2.34) 
since m, . m, s 1; the equality is attained only in the 
case ml = m,. In this case the equilibrium position 
(2.33) is isolated, and for M,= 0 there a r e  no other sep- 
aratrices. 

3. We consider a two-sublattice magnetic material 
characterized by a free energy of the form 

All energies a r e  referred to the anisotropy energy K, 
and the coordinates a r e  measured in units (A/K)"'. 
Here the symmetric matrices A and 2 take account of 
the anis:tropy energies of the magnetic sublattices, the 
matrix B of the energies of uniform exchange (the sym- 
metric part of the matrix i) and of the Dzyaloshinskir 
(the skew-symmetric part of 2). 

The Landau-Lifshitz equations, which determine the 
temporal evolution of the magnetic moments of the sub- 
lattices, have the form 

Following Lakshmanan et U Z . , ~  we shall regard the un- 
it vectors of the sublattices a s  tangent vectors to 
two three-dimensional curves characterized by curva- 
ture 

and torsion 

We consider the pair of Frenet trihedra4 connected 
with these spatial curves: 

Here (e,, e,, e,) and (f,, f,, f,) a r e  the orthonormal basis 
vectors corresponding to the Frenet trihedra. 

The changes of orientation of the trihedra with change 
of the parameter of the curves, namely of the spatial 
variable x ,  at the instant of time t a r e  determined by 
Frenet' s f ormulas4 

On the other hand, the temporal evolution of the Frenet 
trihedra (3.5) is determined by the Landau-Lifshitz 
equations (3.2). For example, for the basis vectors e, 
and fl the equations of temporal evolution have the form 

and represent a new form of writing the Landau-Lifshitz 
equations, which uses the basic geometric invariants. 
The equations of temporal evolution of the vectors e,, 
f,, and e,, f,, determined by the relations (3.5) and by 
the Landau-Lifshitz equations (3.2), have a rather com- 
plicated form, and we shall not write them. 

The conditions for compatibility of the Frenet system 
of equations (3.6) with the system of equations of tem- 
poral evolution of the basis  vectors of the Frenet tr i-  
hedra, 

lead to the following divergent forms: 
P+ {m,'m,+m/l;l,)'=O, (3.9) 

(T,+TI):+ {~l"+r,'-pI"Ip~-p//~~-F-p,-~ (m,', Am,'+B'm,') 

-PI-'(rn,, hn,'+Cmz'))'=O. (3.10) 

The divergent form (3.9) corresponds to  the differential 
form of the law of conservation of energy. The diver- 
gent form (3.10) corresponds to the differential conser- 
vation law (3.2) related to translational invariance. The 
divergent forms (3.9) and (3.10) permit simple general- 
ization to the case of magnetizally ordered media char- 
acterized by anarbitrary number of magnetic sublattices 
(under the condition that the condition that the free en- 
ergy is a homogeneous quadratic form). 

Such a geometric approach to the derivation of differ- 
ential conservation laws was f i rs t  used by Lakshmanan 
et a1 .3 for the case of an isotropic one-sublattice mag- 
netic material. In this case the divergent forms contain 
only the basic geometric invariants (the curvature and, 
torsion). We showed2 that the derivation of the diverg- 
ent forms can be completed with allowance for uniaxial 
anisotropy and magnetic-dipole interaction. Finally, in 
the present paper we have achieved a generalization to 
the case of media with several magnetic sublattices. 

4. We now consider a weak ferromagnet with aniso- 
tropy of the "axis of easy magnetization" type, whose 
free energy has the form 

Here D and A a r e  the constants of uniform and of non- 
uniform exchange energy, K is the anisotropy-energy 
constant, d is the ~yaloshinski~-interaction constant, 
and n and v a r e  the unit vectors of the axes of anisotro- 
py and of the Dzyaloshinskii interaction. 

We showed earlier2 that in special cases  of the mutual 
orientation of the vectors n and v, it is possible to dis- 
tinguish exact classes of solutions. Here the magnetic- 
moment vector m executes a motion along a straight 
line, and the antiferromagnetism vector 1 moves in a 
plane orthogonal ta it. The dimensionality of the phase 
space of the Landau-Lifshitz system of equations is 
lowered from eight to four. 

We shall give a complete classification of the cases  of 
lowering of the order of the Landau-Lifshitz system of 
equations for magnetic materials with the f ree  energy 
(4.1). Let the vector m execute a one-dimensional mo- 
tion along some straight line L: then 1 l ies in a plane P 
orthogonal to the straight line L. It is easy to  show that 
such a motion is possible only for the following orienta- 
tions of the vectors n and v: 

nln,,  v l n ~  (4.2) 
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The inverse situation, when the vector 1 moves along the 
straight line L while m lies in the plane P, is possible 
only for zero velocity of motion of the stationary-profile 
wave; the permissible orientations of n and v a r e  also 
given by the relations (4.2). 

Thus for any orientation of n and v, lowering of the 
order of the Landau-Lifshitz system of equations is pos- 
sible. For this purpose i t  is sufficient, for example, to 
choose the direction 

n,=[nv]. 

Analysis of these exact classes of solutions reduces (by 
choice of an appropriate system of coordinates and by 
renormalization of the independent variables x and t )  to  
the completely integrable problem of a uniaxial one-mb- 
lattice ferromagnet. 

We note that separation of exact classes of solutions 
and lowering of the order of the Landau-Lifshitz system 
of equations is possible also for the case when the free 
energy of the magnetic material has the more general 
form 

ZP=A[ (mlf)'+ (m,')~]+A,m,'mtf-K[ (m,n)' 

+ (m2n)"-Kl (mln) (m'n) +2dv[m,mz]. 

In this case, however, the resulting system of equations 
with a four-dimensional phase space may prove unin- 
tegrable. (The system can obviously be integrated in the 
case n Ilv : but we know of no magnet withsuchanorien- 
tation of the axes of anisotropy and of Dzyaloshinskir 
interaction.) 
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NMR investigation of the effect of hydrostatic pressure on 
magnetization of the intermetallic compound YFe, 
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It is shown by the spin echo method that the local fields at the Fe5' nuclei decrease on application of 
hydrostatic pressure, while the local fields is the nuclei of the nonmagnetic yttrium ions increase. This change 
in the local fields is attributed to occupation of the d band by yttrium valence electrons, resulting in a decrease 
in the magnetic moment of the iron atom. 

PACS numbers: 76.60.L~ 

INTRODUCTION 

There i s  very little information on the effect of high 
hydrostatic pressure on the magnetic moment of iron 
in alloys. This i s  the result of technical difficulties: 
the accuracy of traditional magnetic measurement 
methods a s  well a s  the magnitude of the expected effect 
often require high pressures that cannot be achieved 
under laboratory conditions. Accordingly, a method i s  
increasingly widely used which i s  based on comparison 
of magnetic characteristics of compounds having differ- 
ent lattice parameters. From such a comparison of 
the intermetallic compounds YFe, and LuFe,, Buschow 
and Van Stapelel concluded that the magnetic moment of 
iron p,, increases on compression of the lattice. In 
our opinion, this conclusion i s  somewhat premature, 
since the observed change in the magnitude of P,, on 
going from one compound to another may be connected 

not only with the change in the distances between the 
ions, hut also with the change in electronic structure. 
The electronic structure factor i s  significant if it i s  
recognized that in alloys with iron, cobalt, and nickel, 
the valence electrons of rare-earth elements and yt- 
trium, making a transition to the localized 3d states 
o r  occupying the d band, contribute to the magnetic mo- 
ment of the 3d metals.' Within the framework of this 
idea, the valence electrons of yttrium and lutecium 
can make different contributions to p,, of the com- 
pounds YFe, and LuFe,. Thus, to explain the effect of 
the distance between ions and the electronic structure on 
p,, in the indicated alloys we need experimental results 
obtained by hydrostatic compression of the lattice under 
the action of pressure. 

Resonance methods and especially NMR at the FeS7 
nuclei a r e  suitable for such precision measurements. 
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