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A theory of the magnetic susceptibility of narrow-gap semiconductors of the Pb,-, Sn, Te and Hg, -, Cd, Te 
type is developed in Part I of the paper. A singular contribution of states in the vicinity of the extremal points 
of the bands separated by a narrow forbidden gap is isolated. It depends significantly on the gap width-i.e., 
on the alloy composition and also on the temperature and magnetic field. The susceptibility of the crystalline 
solid solutions Pb,-,Sn,Te (0.18 <x < 1)  is investigated experimentally in Part I1 over a wide range ofcarrier 
densities (from 2 .  1016 to 6. 102' cm-'). The results are compared with theory. It is shown that a theory that 
takes into account within the Dimmock model the contribution of the two closely spaced bands to the 
susceptibility agrees well with the experimental results. The so-called lattice susceptibility has a pronounced 
temperature dependence due to the appreciable change in the width of the forbidden gap. 

PACS numbers: 75.30.Cr 

I. THEORY 

1. INTRODUCTION 

The magnetic susceptibility of electrons in a solid 
had been examined by many authors. Within the frame- 
work of band scheme, we may obtain a general formula 
(see, for example, Ref. 1) which describes the sus- 
ceptibility in an  extremely weak magnetic field. It 
resembles the expression for the effective mass in the 

density n, and magnetic field. The singularity of this 
function depends substantially on the shape of the spec- 
trum in the neighborhood of the L point. The contribu- 
tion of the core states x ,,, to a f irst  approximation may 
be considered independent of the parameters indicated 
above. A detailed comparison with experiment showed5 
that the theory allows us to explain the high diamagnetism 
of the Bi,-,Sb, alloys and its dependence on the experi- 
mental variables x, T, n ,  and H. 

k. p method-it contains a ser ies  of terms,  each of 
which represents a sum over the occupied states. This Our work i s  devotedto the susceptibility of the currently 

popular narrow-gap alloys Pbl-,Sn,Te. The expression result is not suitable for practical calculations. On the 
obtained here may be also used to describe the suscepti- other hand, the electron spectrum in the neighborhood bility of the compounds of the type Hg,-,Cd,Te. 

of several  selected points of the Brillouin zone in the 
presence of a magnetic field was used explicitly in an 
actual calculation of the susceptibility of graphite2 and 
also of the contribution of the carr iers  in indium anti- 
m ~ n i d e . ~  Of course, it is not possible to calculate the 
contribution of deeper-lying (core) states by this means. 
In addition, the question ar ises  a s  to  what degree we 
may neglect the so-called interband interactions which 
a r e  involved in the k. p method and reflected in the 
general formula.' 

The answer to  this question i s  most simply understood 
using as  an example of the Bi,-,Sb, alloys, for which at 
the L point the conduction band is separated from the 
valence band by a narrow forbidden gap E,. By consider- 
ing the two-band effective Hamiltonian in a magnetic 
field we can, taking into account the interaction of the 
two close bands, determine the Landau level and calculate 
the thermodynamic potential and the ~uscept ib i l i ty .~  In 
a weak field, the susceptibility is the sum over the val- 
ence and conduction bands and depends on the cyclotron 
mass and some g factor. As long a s  we a r e  interested 
in the contribution of the states from the valence band 
with energies on the order of E,, it is  most essential to 
accurately take into account the effect of the close con- 
duction band on the mass and on the g factor, and the 
more distant bands introduce small corrections. The 
susceptibility of core states depends more substantially 
on the effect of the distant bands. However, it does not 
depend o,n &,. In the Bi,-,$b, alloys, E, is small  and 
rapidly changes with a change in x; consequently, the 
singular contribution of the shallow states X, i s  a 
rapidly changing function of x ,  temperature T, carr ier  

2. SPECTRUM IN  A MAGNETIC FIELD 

The compounds Pb,-BqTe have a lattice of the rock 
salt type. The effective Hamiltonian for the point L 
= (1,1, 1)/2 in a magnetic f ield parallel to the correspond- 
ing (111) axis is given by Dimmock6: 

where p is the Bohr magneton; v ,  m, g a r e  constants. 

The Hamiltonian is diagonalized if  the column of 
eigenfunctions is  expressed in terms of Hermite func- 
tions : 

$1. a. 1,4-$m1 $m+a. $.).I %+a. 

The spectrum is found from the equation 

I ~ ( k )  -e 1 =o, (3) 
and H(k) is obtained from ~ ( k )  in Eq. (1) by substitution 
(in the intermediate formulas, R = 1) 

k,, (k.a+k>)"+k,=[2eH(n+l) / c ] ' " ;  n=- l ,  0,. . . , (4) 
q,*+grf pH / 2-eH / 2cmrt. (5) 

Using the matrix equality 
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where A, B, C,D a r e  the 2 x 2 matrices marked off by 
the dotted lines in Eq. (I) ,  we write Eq. (3) in the ex- 
plicit form 

Equation (6) connects 6, k2,, &, and the field H, con- 
tained a s  a factor in q i  in Eq. (5). The second term in 
Eq. (6) is quadratic in H. If this term is neglected, 
Eq. (6) is broken down into two equations, differing in 
the sign of q: : 

In the absence of a magnetic field, q:=O and Eq. (7) 
describes the valence band and conduction band, which 
a r e  twofold spin degenerate. For states with n =-I, 
there i s  only one Eq. (7) with s = -1, a s  can be immed- 
iately seen by using Eq. (1) and recognizing that z), = O  at 
n =-1. Equation (7) in this case is accurate, since 
k,=O [see Eqs. (4) and (6)]. The extra solution in Eqs. 
(6) and (7) may be excluded automatically if instead of n 
we introduce the Landau number N =n + - s/2 and con- 
sider that N takes on the values 0, 1,. . . independently 
of s. Thus, having determined %(&, k,, sH) from Eq. 
(6) [or Eq. (7) in a weak field], we find the Landau level 
from the condition in Eq. (4): 

We note that since for q =0, Eq. (7) describes the 
spectrum in the absence of a field, the #,(&, k,, 0) de- 
termined from it agrees within a factor of n with the 
area  of the intersection of the equal energy surface &(k) 
= const with the plane k, = const. Therefore Eq. (4') 
differs from the usual quasiclassical quantization condi- 
tion only by the presence of the spin number s. 

Using Eq. (4), we find the spin splitting of the levels 
in  a magnetic field: 

O.=E (N,  kz, s = l )  -e (N ,  k,, s=-I)  . 
For the weak-field case this difference may be replaced 
by the derivative 

In the same approximation, the cyclotron frequency is 

We call the ratio g=20,/oc the g factor. Using Eqs. 
(8) and (9), we find 

c akLZ g I - - -  -= 
2 

(e ,  k,, h=O) . 
e ah 

Experimentalists usually call the parameter connecting 
w ,  with the Bohr magneton the effective g* factor: 

Comparing Eq. (10) with Eq. ( l l ) ,  we see that 

where m is the cyclotron mass and m, is the free elec- 
t ron mass. The large values of g* observed in the ex- 
periment a r e  explained by the low effective mass in 
semiconductors with narrow forbidden gaps. 

The g factor may be found using Eqs. (10) and (7): 

g(e ,  k.) =2[vt" (e+-e)g,- /  4m0+ (e--e)g,+ / 4% 

+ut2kL2(gl- / 2mo-I / mt- )  / (e--e)  ] 

l [u:-  (e+-e)/2m,-+(E--e)/2mt+]. (12) 

At the bottom of the conduction band, i.e., for k, =k, = O  
we have E = 1 E, 1 /2 and 

where B(x) is the unit step function. At the top of the 
valence band, & = - ( &, (/2 and 

From Eqs. (13) and (14) we see  that for the gapless 
state with ze=O, we have g c , = 2 .  The small  deviation 
of thegfactor from 2 (onthe order of 20%) in the narrow- 
gap semiconductors under consideration is basically 
due to corrections to the denominator in Eqs. (13) and 
(14), since m~=O.lm,, g;=-3, g;=-1 (Ref. 7). The 
same terms determine also the small correction to the 
transverse effective mass at the bottoms of the conduc- 
tion and valence bands: 

( l l m , ) , ,  .-2vtz/e,+l/mt'. 

The description in Eq. (4) of the spectrum in a magnetic 
field is suitable both for analysis of the spin splitting 
a s  well a s  for calculation of the susceflibility. To this 
end, we also introduce the corresponding expression 
describing the neighborhood of the r point in semicon- 
ductors with zincblende structure in the so-called three- 
band approximation. In this case, the %(&, k,, sH) de- 
pendence is determined from the equation3 

e (e+eg) (e+e,+A) -p'(k.'+kL2) 

(15) 
which may be solved with respect to k2,: 
kL1(e, k., sh') =-kZ2+[e (e+e,)/pz+seH/c] (e+e.+A) (e+e,+%A)-'. 

(16) 
Here p is a constant which is proportional to  the 
momentum matrix element. Using Eq. (10) we find the 
g factor 

The values & = 0, - E,, and -&, -A correspond to the 
extrema of the bands. The corresponding values of the 
g factor a re  - 2 ~ / ( 2 h  +3&,), -1, and 2. 

3. SUSCEPTIBILITY OF SEMICONDUCTORS OF THE 
TYPE Pb,-xSnxTe IN  A WEAK FIELD 

Knowing the levels in the magnetic field (3), we may 
calculate the susceptibility x = -8'52/8p from the depen- 
dence of the potential 52 on the field H: 
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In a weak field, the sum over N is calculated using the 
Euler-Maclaurin formula: 

We integrate by parts the integral term and transform 
to the variable c, using Eq. (4): 

We see  that the problem was reduced to calculation 
of the derivatives with respect to H of the expression 

eHs 
I ( H )  = J d e  [ k t ( & .  k.. S H ) - - ]  f ( a ) .  

% 

where f (&) is  the Fermi function of the distribution, 
and c, = E(N = 0, k,, sH). We find 

The difference 

is reduced to the g factor (lo), and the derivative 
a c , / a ~  is calculated using Eq. (4): 

where m(k,)=($)a&/ac is  the cyclotron mass in zero 
field a t  N = 0. 

Summing over the spin s, we obtain 

The remaining summation in Eq. (22) is  carried out 
over the bands and different L points. In the first  
term of Eq. (22), al l  the values a r e  chosen at N = O  
H -0, i.e., a t  

k , ( e ,  k., h+O)=O. (23) 

The corresponding value of the g factor is  found using 
Eq. (12): 

e , -T (eI+kZ2/rnl*)/2.  

The cyclotron mass at the limiting point of Eq. (23), 
and also the dependence of c0 on k,, a r e  determined by 
the relation (7): 

k.' ' 1 1 1  1 
F ( k 2 ) =  +4v la4 ' ]* ,  = (  2 rn m -  . (27) 

For T =0, the first integral in Eq. (22) a s  a function of 

cg is singular-it diverges logarithmically for small  k, 
a s  1 c, 1- 0, since in this case m(k,) - 0. The singular 
contribution X, of the small  neighborhood about the L 
point is easily separated if we note that here 

We must also take into account the fact that there a r e  
four L points. Expression (22) is correct  only for those 
L points for which the direction of the field coincides 
with the corresponding (111) axis. However the equal- 
energy surfaces in Pb , -pqTe  a r e  strongly prolate along 
the (111) axis; accordingly, the cyclotron mass for 
H (I(111) is substantially smaller than for H ~(111) .  
Therefore the contribution from any of the L points is  
a tensor, for which one principal value [namely, that 
for which Eq. (22) holds] is  substantially greater than 
the other two-whose magnitudes may be estimates using 
Eq. (22). Neglecting the latter and going over to the 
res t  of the L points by rotation of coordinates, we 
see  that the summation over the four L points is 
reduced to multiplication by the coefficient 1 +3  cos2a 
=2 ,  where a! is the angle between (111) and ( i l l ) .  

Finally, we obtain the singular contribution to the 
susceptibility (it is independent of the field direction, 
a s  it should be for a cubic crystal): 

where g ,  m,  and c, a r e  given by Eqs. (24), (26)-(29), 
and integration over k, may be carried out with infinite 
limits since the integral in Eq. (29) converges. 

The contribution of the deeper-lying states x,, must 
be calculated within the framework of the k. p method. 
It is  important that it does not depend on c, and other 
experimental variables. Combining it with the term 
regular in c, in Eq. (22), we write the complete suscep- 
tibility in the form 

The susceptibility of a semiconductor without ca r r i e r s  
is  often called the lattice susceptibility. In the absence 
of carr iers ,  f =0 for the conduction band and f = 1 for the 
valence band. The singular contribution to the lattice 
susceptibility is equal to 

e dk, g z (k  ) 1 
xSs1at = ( K )  J a [ + - T I  

where the integration is carried out over the valence 
band. Close to the extremum of the valence band in 
semiconductors of the type PbTe with narrow band 
gaps, the mass in Eq. (28) is negative, and the g factor 
(14) is close to 2. Sucha semiconductor is  diamagnetic, 
and its susceptibility depends on the temperature, 
basically a s  a consequence of the change in E&(T). The 
parameter v , ,  determining the mass in Eqs. (28), (27), 
is actually small. Therefore the evaluation of the inte- 
gra l  in Eq. (30) depends on the relation between I cgl 
and 4Mv:. If (&,I<< 4Mv;, then the major logarithmic 
contribution ar ises  from the region I&, I<< 2v,k,<< 4M$. 
In this region, we may neglect the dependence of the g 
factor on k, under the condition 
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Evaluating the integral in Eq. (30), we find in this case 

In the other limit, I&, I >> 4M<, the singular contribu- 
tion to the lattice susceptibility has the form 

where cp (~r )  = 1 for E,> 0, CP(E,) =ln14cr/M$ 1 for c,< 0, 
and g, is determined by Eq. (14). 

From Eq. (24) it is seen that the g factor decreases 
with an increase in k, and E,. Therefore the contribution 
of sufficiently deep-lying states in Eq. (30) may be 
paramagnetic; and for a large forbidden gap with, the 
contribution of the entire filled valence band may be- 
come paramagnetic. 

The difference between Eqs. (29) and (30) gives the 
ca r r i e r  susceptibility. Since 1-f for the valence band 
i s  the hole distribution function, the carr ier  sus- 
ceptibility is equal to 

where for the valence band 

and E, is given by Eq. (26); for the conduction band, f 
is the usual Fermi  function. The expression (31) is a 
generalization of the Pauli-Landau formula to the case 
of several anisotropic bands. The essential difference 
between Eq. (31) and the Peierls-Landau formula is  
the presence of the paramagnetic term,  which must be 
taken into account simultaneously with the diamagnetic 
term if the spin-orbit interaction is not small  compared 
with the forbidden gap width. 

At g =2, the relation between the Pauli paramagnetism 
and the Landau diamagnetism is the same a s  for free 
electrons. However, the carr ier  susceptibility in the 
semiconductor may have any sign, depending on the 
ratio of g2/4 to i. 

The measurement of the susceptibility of a degenerate 
semiconductor allows us to determine the g factor using 
Eq. (31). For example, for an n-type semiconductor 
with a low carr ier  density and &#>O,  Eq. (31) gives 

where j i  is the Fermi energy, and the g factor and the 
longitudinal mass m, a r e  taken at the bottom of the 
band. Noting that the ca r r i e r  density is 

we obtain 

We recall that the value of the g factor i s  given by 
Eq. (13), and the effective masses a t  the bottom of the 
conduction band a r e  equal to 
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The ca r r i e r  susceptibility in Eq. (31) depends on the 
temperature both a s  a consequence of the explicit 
change of the distribution function, and because of the 
temperature dependences of the gap E, and the chemical 
potential: the temperature dependence of the latter is 
determined from the electroneutrality condition. 

4. SUSCEPTIBILITY OF SEMICONDUCTORS OF THE 
TYPE Hg, -, CdxTe 

We use Eqs. (16), (17), and (22) to determine the con- 
tribution of the r point to the susceptibility of narrow- 
gap semiconductors with a zincblende structure. In 
Eq. (22) it is convenient to  transform from k, to the 
variable &, the connection between which is given by 
Eq. (15) a t  H=k,=O. Noting that 

2 E (e+e,) (e+e,+A) =-[ 
P e,+'/,A+e 

] ". 
we rewrite Eq. (22) in the form 

(32) 
where the factor sign m takes into account the sign of 
the mass 

m =  
(e+e,+A) (E+E,+~/,A) (2e+e,) -'/,e (e+e,) A 

2pZ (e+a,-t'/,A) a 

and the g factor is determined by Eq. (17). It is easy 
to see  that for the conduction band the mass is always 
positive, and for the valence band it is always negative. 
The second integral in Eq. (22) in this case vanishes 
identically, since a2k2,/ah2 =0, a s  is evident from Eq. 
(16). 

We estimate the singular contribution to the lattice 
susceptibility in a semiconductor with small  A and E, 

compared with the characteristic atomic energies E,. 
For this we se t  f = 1 in Eq. (32) and integrate over the 
light [extremum at & =min (0, -&,)I and spin-split (ex- 
tremum at & = -&, - A) hole bands. The contribution of 
the band of heavy holes, which a re  not considered in 
Eq. (15), is  small as  a consequence of their large mass. 

The integral in Eq. (32) has the following singularities: 
logarithmic for small  ) & I -  )&,)<<A and large lei>> A 
square-root for E = -E, -2h/3. Integration for small 
Ic I i s  actually limited b y  the region of applicability of 
the k. p method, i.e., by energies which a r e  small 
compared with the atomic E,. The contribution of these 
distant regions is small  with respect to the parameter 
l/m, and does not depend on &, and A. The singularity 
at E = -E, - 2 ~ / 3  results from the openness of the light- 
hole band: in Eq. (15), increases without limit a s  
E -  - E ,  - 2 ~ / 3  and at H=O. In fact, this openness dis- 
appears if the terms of second order in k a r e  included 
in the effective Hamiltonian. This means that we must 
exclude the region of the point & = -cr - 2 ~ / 3  with dimen- 
sions on the order of 

at the boundary of which the mass becomes comparable 
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with m,. The contribution of the excluded region is  pro- 
portional to l/m,, and it must be included in the regular 
part of the susceptibility. 

Estimating the contribution of the spin-split band to 
the lattice susceptibility, i.e., integrating over c from 
-c,- A to -E,, we see  that this contribution is para- 
magnetic: 

The contribution of the filled band of light holes 
(-c, - 2 ~ / 3  < c s I&, 1) to the lattice susceptibility is 
equal to 

As seen from Eq. (341, the diamagnetism of the semi- 
conductors of the type under consideration, in contrast 
t o  the alloys Pb,,,SqTe and Bil-,Sb,, should decrease 
with a decrease in the gap width Isg/. 

The expression for the carr ier  susceptibility is ob- 
tained using Eq. (32) in the manner used above for 
Pbl-,S%Te [see Eq. (31)]. Taking Eq. (17) into account, 
we see  that the sought expression agrees with the 
formula given by Bowers and Yafet,3 who calculated the 
carr ier  susceptibility in indium antimonide (see also 
Ref. 7). As seen from Eq. (32), in a semiconductor 
of the type under consideration the light carr iers  located 
close to the extrema of the bands E =0, -E, a r e  diamag- 
netic, since they have $/4< i. 

We note that the expression within the brackets in 
Eq. (32) is small  close to the extrema of the light 
bands-it tends toward & a s  c,-0. Therefore, in 
contrast to Pbl-,S%Te and Bil-,Sb,, where the corres- 
ponding factor is close to 2 ,  the ca r r i e r  susceptibility 
is small  compared with the lattice susceptibility right 
up to densities on the order of 1018 ~ m - ~ ,  and is  quite 
sensitive to small corrections in the spectrum. Gel'mont 
took into account these corrections close to the ex- 
trema.8 We note that the numerical value of the g factor 
given by Kim and Narita: taking into account the iso- 
tropic corrections, does not change the ratio of g2/4 to 
$ and does not explain the observed paramagnetism of 
the light carr iers  in n-HgTe. With increase in the 
number of light holes, they may prove to be paramag- 
netic, since their g factor increase a s  E- -st - 2 ~ / 3 .  
The carr iers  close to the extremum & =-sC - A  of the 
spin-split valence band a r e  paramagnetic, since here 
$/4- 1. 

In the gapless state (E,-0), the increase in the sus- 
ceptibility (34), o r  more precisely, the increase in the 
total susceptibility (32), when the carr iers  a r e  taken 
into account, stops when cg becomes comparable with 
the largest of the parameters T, p ,  or  w, - eHP/c I&, 1. 
In this case, the dependence of x on T, H, o r  the 
composition is described by Eq. (34), in which we must 
make the substitution 

en-max (T, p (eHp2/c)  '"1. 
For comparison of Eq. (34) with experiment, the alloys 
Hg,-,Cd,Te close to the gapless state a r e  apparently 
the most suitable, since these alloys can be obtained 
with low carr ier  density. 

I I .  SUSCEPTIBILITY OF Pb,-xSnxTe SOLID 
SOLUTIONS. COMPARISON WITH THEORY 

Investigations of the narrow-gap semiconductor solid 
solutions based on IV-VI compounds and characterized 
by a narrow forbidden gap E,, have intensively pro- 
gressed within the last decade. In these semiconduc- 
tors ,  E, changes with composition in such a way that 
the gapless state ar ises  a t  a definite temperature- 
dependent value.' Infrared detectors and lasers  based 
on these solid solutions have been ~onst ructed. '~  There- 
fore the problem of obtaining the most complete in- 
formation concerning their band spectrum is timely. 

The magnetic susceptibility method occupies a special 
position among the methods for studying the band struc- 
ture of semiconductors. It does not depend on the scat- 
tering mechanisms and is a universal characteristic 
of the band spectrum. Experimental investigations of 
the magnetic susceptibility a s  a function of temperature, 
carr ier  density, and composition makes it possible to 
determine the magnetic susceptibility of the crystal 
lattice, of the defects, and of the impurities. 

The goal of this work is to study the magnetic sus- 
ceptibility of Pbl-,SqTe solid solutions over wide 
ranges of carr ier  densities (2. 10"-6. loz0 ~ m - ~ ) ,  tem- 
peratures (4.5-500°K), and compositions (0.18 < x< I) ,  
and to compare the results with the theory. Here we 
have used results of both the latest investigations a s  
well a s  our own earlier  The methods for 
growing and heat-treating the single crystals a r e  pre- 
sented in Ref. 13. The technique of measuring the mag- 
netic susceptibility is described in Refs. 12 and 14. 

~ r e v i o u s l y ' ~  we attempted to interpret our results on 
the basis of Zawadzki's work,15 who calculated the 
dimagnetic part of the carr ier  susceptibility within the 
framework of the Kane isotropic model, using the Lan- 
dau-Peierls formula.. By extrapolation to  zero  ca r r i e r  
density, the magnetic susceptibility of the crystal lattice 
was determined at 77°K. However, the cause of the 
susceptibility remained unclear, a s  did the substantial 
temperature dependence of the ensuing fit parameter. 

The theory presented in Par t  I takes into account the 
contribution to the magnetic susceptibility of the valence 
band, separated from the conduction band by a narrow 
gap, and also the anisotropy of the band spectrum of the 
Pbl-,Sn,Te solid solutions. The magnetic susceptibility 
of the latter is represented a s  

The expression for X, in Eq. (29) is determined by the 
small  forbidden gap and describes the carr ier  magnetic 
susceptibility and the singular (i.e., substantially de- 
pendent on composition and temperature) part of the 
lattice susceptibility. Notwithstanding the anisotropy 
of the Dimmock band spectrum, the summation over 
the ellipsoids in the L points leads to the fact that X, is 
an isotropic parameter independent of the direction of 
the magnetic field. The contribution x,,, of the deeper- 
lying states does not depend substantially on the tem- 
perature, and can therefore be separated from the total 
susceptibility. 
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TABLE I. Characteristics of Pb,-, S p  Te 
samples and the regular part of the magnetic 
susceptibility. 

*n type samples. The rest are p type. 

We previously determined the numerical values of 
the matrix elements of the momentum operators16: 

Sample I s, mole 1 n* density, 
number fraction cm-' 

ut=7.98. 10' cmls; vl= (1.98+1.44x) .10' cmls. 

xrsr ' 10' cm3/g 

fOO H I 300 X 

a 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

The parameters m and g a r e  found e~per imental ly '~:  

-3.56 
-3.56 
-3.50 
-3.00 
-3.52 
-3.50 
-250 
-2.54 
-2.50 
-1.43 
+0.25 

The dependence of E, (in eV) on the composition and 
the temperature18 has the form 

-3.30 
-3.30 
-3.48 
-3.10 
-3.35 
- U 5  
-287 
-246 
-2.84 
-1.70 
-0.70 

0.18 
0.18 
0.18 
0.18 
0.35 
0.35 
0.35 
0.59 
0.59 
0.87 
1.00 

The carr ier  density and the compositions of the investi- 
gated samples a r e  given in Table I. 

2.0.1016 
1.2.1017 
3.0.10'9 
6.0.10" 
3.0.10'8 
2.0.10'9 
110. iOp 
5.1.10'9 
4.8.1020 
1,O.iOp 
1.0.102' 

For calculation of the magnetic susceptibility from 
Eq. (29) it is  necessary to know the temperature depen- 
dence of the chemical potential p .  This dependence is 
determined from the electroneutrality condition, which 
for n-type samples is of the form 

and for p-type samples 

The densities of the electrons n, and the light holes p, 

a r e  determined by the number of states N(&); af/a& is 
the derivative of the Fermi  function. The integration in 
Eq. (36) is carried out over positive values of & for 
electrons and over negative values for holes, if & is 
reckoned from the center of the forbidden gap. 

The number of states N(&) in the Dimmock model is 
given by an elliptic integral. This expression is s im- 
plified if we neglect the effect of distant bands on the 
transverse mass,  i.e., the term with l/m: compared 
with 24/&,. The correction to the longitudinal mass is 
more substantial and is due to the low value-of v,. In 
this approximation, a s  shown by Fal'kovskii 

In Eq. (37), the limiting value k,mPY o r  k,m'" is se t  equal 
to zero if the corresponding value e, given by Eq. (38), 
proves to be negative. 

FIG. 1. Temperature dependence of the magnetic susceptibility 
of Pbo.82Sn,,18Te for ( 1 )  N - 0  and ( 2 )  N =  2 . 0 . 1 0 ~ ~  ern-=. (The 
solid line indicates the theoretical curve in all the figures. ) 

- data from Ref. 12, 0-  data from Ref. 11. 

The density of the heavy holes, the mass of which is 
on the order of the free electron mass m,," is reduced 
to  the well-known Fermi integral 

where E, ,  is the energy separation between the extrema 
of the bands of light and heavy holes. 

The lattice magnetic susceptibility, x ht ,  may be 
designated as the value of the sum in Eq. (35) in the 
state for which the valence band is fully occupied and 
the conduction band is empty. The theoretical depen- 
dence of the specific lattice susceptibility (this differs 
from the volume susceptibility, considered in Par t  I, 
by the factor p-', where p is the density) on the tem- 
perature is shown on Fig. 1. The figure shows also the 
calculated and measured magnetic susceptibilities of 
a sample with a low carr ier  density. 

The values of x,,, , selected so  that the theoretical 
and experimental temperature dependences of the mag- 
netic susceptibility agree, a r e  given in Table I for 
different samples. It is seen that the magnitude of X., 
indeed depends weakly on both the temperature interval 
over which the comparison is made, and on the compo- 
sition of the sample, up to rather high carr ier  densities 

FIG. 2. Temperature dependences of the magnetic suscept- 
ibility of Pbo.82Sno.i8 Te (the curve numbers correspond to the 
sample numbers here and on Figs. 3-5). 
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FIG. 3. Temperature dependences of the magnetic suscepti- 
bility of Pb0.065 Sno,as Te. 

on the order  of 2 .  1019 ~ m - ~ .  The poorer agreement be- 
tween theory and experiment at la rger  c a r r i e r  densities 
is apparently explained both by the deviation of the dis- 
persion law from the Dimmock model for  such highly oc- 
cupied bands, and generally speaking, by the lower 
quality of the crystals ,  which contain in particular a 
large number of vacancies. 

In  a prior  work1' x,,, was determined experimentally 
for  Pb,.,Sn,,,,Te a t  80°K. The value of x ,,, at  500°K 
may be obtained from our data" for the sample with 
po =2.0 - 10'' ~ m - ~ ,  since a t  this  temperature the con- 
duction is intrinsic and the chemical potential i s  close 
to the center of the forbidden gap. As seen  from Fig. 1 ,  
the results  of our calculations agree  ra ther  well with 
the data of these papers. 

In  contrast t o  the established views of the crystal  
lattice magnetic susceptibility a s  a weak function of 
temperature, in Pbl-,S%Te solid solutions it has a 
significant temperature dependence due to  the sub- 
stantial change in &,. Therefore the separation of the 
ca r r i e r  magnetic susceptibility in the crystals  studied, 
assuming constancy of x .,, cannot be considered cor-  
rect .  

On Fig. 2 we present the experimental and theoretical 
temperature dependences of the magnetic susceptibility 
for  crystals  with x=0.18 and different c a r r i e r  densities. 
At low ca r r i e r  densities (sample 1) the magnetic sus-  
ceptibility decreases  with a n  increase in temperature. 
This i s  connected with the increase of &, with tempera-  
t u r e  and also with the washout of the F e r m i  function and 
the increase in the contribution to the magnetic suscep- 
tibility from states with higher effective masses.  For 
the case  of crystals  with high ca r r i e r  densities (sam- 
ples 2 and 3), the magnetic susceptibility increases with 
temperature. This is explained by the fact that for  no 

"L z.Jo roo zoo Joe uoo T, n 

FIG. 4. Temperature dependences of the magnetic suscept- 
ibility of PbOsH Sno.ss Te. 

FIG. 5. Temperature dependences of the magnetic suscept- 
ibility of Pb0.13 Snom8, TE. 

> 10" and Po> 10'' the level of the chemical poten- 
t i a l  p is located in a n  allowed energy band. With a n  in- 
c r ease  in temperature,  p approaches the edge of this  
band, increasing the contribution to  the magnetic sus-  
ceptibility from the sma l l  neighborhoods of the L point 
and, consequently, the diamagnetism of the crystal. 

On Fig. 3 we give the temperature dependences of 
the magnetic susceptibility for  x=0.35 and different 
hole densities. For x = 0.59 (Fig. 4) band inversion takes 
place a t  2 7 0 ° ~ . "  If &,- 0,  the effective mass  m*(&,) 
-c,;  E, and m*  have a maximum at  the inversion tem- 
perature,  and consequently the magnetic susceptibility 
has a minimum. However, the minimum in the ex- 
perimental and theoretical curves (7) is observed a t  a 
temperature which is substantially lower (120-170°K) 
than the inversion point and it is not pronounced. This 
is also due to the high level of the chemical potential, 
which leads t o  a weak dependence of the magnetic sus-  
ceptibility on &,. 

In  Fig. 5 we present the temperature dependence of 
the magnetic susceptibility of sample 9 of the solid solu- 
tion with x =0.87. In contrast t o  the case  x=0.18, for 
such a c a r r i e r  density the magnetic susceptibility de- 
c reases  with increase in temperature,  owing t o  the 
reversed  band arrangement and to  the increase in E, 

and l/m*. We note that, regardless of the lower value 
of x ,.,, the theory describes the temperature depen- 
dence of the magnetic susceptibility well. 

FIG. 6. Dependence of the magnetic susceptibility of 
a,-, Sn, Te (N = 0 ) on composition for temperatures T= ( 1 ) 
209K; (2) BOOK; (3) 2 0 0 " ~ ;  (4) 300°K. 
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On Fig. 6 we show the theoretical dependence of the 
magnetic susceptibility of Pbl-,SqTe solid solutions 
on composition for zero  carr ier  density at different 
temperatures. For 20°K, the value of x reaches -8.5 

cm3/g for x=0.36. Such a significant diamagnet- 
ism is due to the large contribution to the magnetic 
susceptibility from integrating over the small  neigh- 
borhood of the L point a s  &#- 0. With increase in tem- 
perature, the magnetic susceptibility at the maximum 
decreases and the maximum becomes less pronounced. 
This is explained by the temperature washout of the 
Fermi  function. 

The measurement of the magnetic susceptibility of a 
degenerate semiconductor makes it possible to deter- 
mine the g factor [see Eq. (31b)l. For samples with 
x = 0.18 and low ca r r i e r  concentration (n,,P,< 10'' ern-=) 
g=1.45 at T =30°K, which is close to the value 1.36 ob- 
tained by Melngailis et al. in an investigation of the 
Shubnikov-de Haas effect." 

Thus, the theory which takes into account the con- 
tribution to  the magnetic susceptibility from the two 
closely spaced bands and is developed within the Dim- 
mock model describes well the experimental results 
for a large number of Pbl-,SqTe solid solutions over 
a wide range of carr ier  densities and temperatures. 
We must point out that allowance for the transfer of the 
holes to  the heavy valence band is  essential for agree- 
ment of theory with experiment at high carr ier  densities 
and at temperatures in the liquid helium range. 

In the calculations we used, the longitudinal momentum 
operator matrix element, which is  substantially depen- 
dent on composition; v,  increases" with an increase in 
x ,  in contrast to the result of Appold et a1.,17 where it 
drops. The calculation of the magnetic susceptibility 
of SnTe for both versions of the v, (x)  dependence showed 
that the experimental data is described best by using the 
v , (x )  corresponding to our results." 

The authors express their deep appreciation to E. V. 
Mozdor for carrying out a l l  the necessary computer cal- 
culat ions. 

'P. K. Misra and L. M. Roth. Phys. Rev. 177, 1089 ( 1969) 
'M. P. Sharma, L. G. Johnson, and J. W. McClure, Phys. 

Rev. B9, 2467 ( 1974).  
3 ~ .  Bowers and Y. Yafet, Phys. Rev. 115, 1165 ( 1959).  

4 ~ .  D. ~enes lavsk i rand  L. A. ~al 'kovskif,  Zh. l?ksp. Teor. 
Fiz. 69,  1063 ( 1 9 7 5 ) .  [Sov. Phys. JETP42 ,  541 (1975)l .  

'N. B. Brandt, M. V. Semenov, and L. A. Fal'kovskir, J. 
Low Temp. Phys. 27, 75 ( 1 9 7 7 ) .  

6 ~ .  0. Dimmock, J. Phys. Chem. Sol. 32 (Suppl. 1 ) .  319 
( 1 9 7 1 ) .  

'B. L. Gel'mont, V. I. ~vanov-omski?, B. T. Kolomiets, and 
V. M. Mel'nik, Fiz. Tekh. Poluprovodn. 4,  299 (1970)  
[Sov. Phys. Semiconductors 4,  244 (1970)l. 

*B. L. ~e l 'mont ,  Fiz. Tverd. Tela 11, 1096 (1969) [Sov. Phys. 
Solid State 11, 646 (1969)l. 

'R. S. Kim and S. Narita, Phys. Status Solidi B 73, 741 
( 1 9 7 6 ) .  
'9. C. Harman and I. Melngailis, Appl. Sol. St. Sci. 4 ,  1 

(1974) .  
"G. V. Lashkarev, K. D. Tovstyuk, V. B. Orletskii, and 

A. D. Shevchenko, Ukr. Fiz. Zh. 19, 864 (1974);  G. V. 
Lashkarev, D. F. ~ i g l e r ,  K. D. Tovstyuk, and A. D. Shev- 
chenko, Fiz. Tekh. Poluprovodn. 8, 1425 (1974)  [Sov. Phys. 
Semiconductors 8, 929 (1975); K. D. Tovstyuk, G. V. 
Lashkarev. V. B. ~ r l e t s k i r ,  and A. D. Shevchenko, Fiz. 
Tverd. Tela 16, 221 ( 1974). [Sov. Phys. Solid State 16,  
140 (1974) l ;  G. V. Lashkarev, in: Poluprovodniki s uzkoi 
zapreshchenno? zonor i polumentally ( Narrow-gap Semicon- 
ductors and Semimetals) , Reports of the Fourth All-Union 
Symposium, L'vov, 1975, Part  11, p. 64; G. V. Lashkarev, 
V. B. ~ r l e t s k i f ,  M. V. Radchenko, K. D. Tovstyuk, and 
A. D. Shevchenko, ibid, p. 71. 

12G. V. Lashkarev, R. 0. Kikodze, and A. V. ~ rodovof ,  Fiz. 
Tekh. Poluprovodn. 12, 1066 ( 1978). [Sov. Phys. Semi- 
conductors 12 ,  633 (1978) l .  

'%. B. orletski:, F. F. Sizov, G. V. Lashkarev, and K. D. 
Tovstyuk, Fiz. Tekh. Poluprovodn. 9, 269 ( 1975). [Sov. 
Phys. Semiconductors 9. 176 ( 197511. 

I4G. V. Lashkarev, D. I?. Miglei, A. D. Shevchenko, and 
K. D. Tovstyuk, Phys. Status Solidi B 63. 663 (1974).  

15w. Zawadzki, Phys. Status Solidi 3, 1421 ( 1963). 
I6G. V. Lashkarev and A. I. Dmitriev. Visnik Akad. Nauk 

Ukr. SSR2, 12 ( 1 9 7 8 ) .  
"G. Appold, R. Grisar. G. Bauer, H. Burkhard, R. Ebert, 

H. Pasher, and H. Hasele. Inst. Phys. Conf. of Semicond., 
Edinburgh, Ser. N43, 1978, p. 29. 

"J. 0. Dimmock, J. Melngailis, and A. J. Strauss, Phys. 
Rev. Lett. 16,  1193 (1966).  

19G. V. Lashkarev, F. F. Sizov, V. B. Orletskii, and K. D. 
Tostyuk, Poluprovodniki s uzkor zapreshchennor zonor i pol- 
umetally ( Narrow-gap Semiconductors and Semimetals ) Re- 
port of the Fourth All-Union Symposium, L'vov, 1975, Part 
IV, p. 67. 

"5. Melngailis, T. C. Harman. J. G. Mavroides, and J. 0. 
Dimmock. Phys. Rev. B3. 370 (1971 ). 

Translated by Cathy Flick 

177 Sov. Phys. JETP 53(1), Jan. 1981 


