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A kinetic equation is derived in the quasiclassical approximation for phonons in nonequilibrium 
superwnductors on the basis of the Keldysh formalism. The collision integral of this equation is expressed in 
terms of polarization operators for which equations are obtained w?th the aid of the Keldysh technique and on 
the basis of the analytic-continuation procedure proposed by Eliashberg in an analysis of the electron 
component of nonequilibrium superwnductors. The corresponding expressions, as expected, coincide. It 
turns out to be possible to express the polarization operators in terms of Green's functions integrated with 
respect to the en~rgies; these functions were introduced in the equilibrium case by Eilenberger and used 
subsequently by Eliashberg in an analysis of a nonequilibrium electron subsystem. It is shown how to use the 
resultant equation to investigate the emission of nonequilibrium phonons from this superconducting film. The 
problem of the boundary conditions for the phonons is briefly discussed for this case. The phonon flux out of 
a thin superconducting film into an external medium is calculated analytically for the case when the 
electromagnetic-field frequency is much less than the gap. It is shown that in a narrow spectral interval (of the 
order of the external-field frequency) of phonon frequencies close to double the gap, the phonon flux becomes 
negative in magnitude, i.e., in this spectral interval the film absorbs the phonons. It is noted that this result is 
closely related to the effect of superconductivity stimulation by a microwave field and is due to the 
"supercooling" of the electron subsystem under these conditions. 

PACS numbers: 74.30.Gn, 73.60.Ka, 63.20.Dj 

INTRODUCTION tion of the electron subsystem itself in terms of dis- 
tribution functions is possible in far from all nonequi- 

A number of papers published during the last decade librium situations. In addition, the situation is made 
(see, in particular, the articles1-l9 and the bibliograph- complicated by the fact that an external perturbation 
ies  in them) laid the groundwork for a theoretical de- (e.g., an electromagnetic field) influences the density 
scription of nonequilibrium superconductors located in of the electron levels in the superconductor. This 
external electromagnetic fields. The principal object limits the applicability of the ordinary phonon kinetic 
of study, however, was the electron subsystem. In equations used in the literature. - .  
particular, Eliashberg6 obtained for the description of 
this subsystem kinetic equations in terms of energy- 
integrated Green-Gor'kov functions. These equations 
made i t  possible to go outside the framework of the 
ordinary equations of the Boltzmann type for supercon- 
ductors, a s  well a s  to determine the limits of applica- 
bility of these equations. At the same time, in most 
cases the phonon field was regarded a s  given, and 
moreover a s  being in equilibrium. This approach i s  
justified in those cases when the deviation of the pho- 
nons from equilibrium has little effect on the kinetics 
of the noneauilibrium electrons. Inasmuch a s  in ex- 

The main purpose of the present paper i s  a derivation 
of a more general kinetic equation for phonons in the 
case when the electron-phonon system of a supercon- 
ductor is subjected to the action of an external electro- 
magnetic field. The collision integral of this equation 
is then expressed not in t e rms  of the electron distribu- 
tion functions, but in terms of energy-integrated 
Green-Gor'kov functions (in analogy with the procedure 
used by ~l iashberg '  in the derivation of the kinetic 
equations for the electrons). We present below a brief 
content of the paper. 

periment one usually measures those superconductor Using the Keldysh formalism, we derive in the quasi- 
electromagnetic characteristics which a r e  directly classical approximation a kinetic equation for phonons 
connected with the behavior of only the electron compo- in nonequilibrium superconductors that a re  in a spatial- 
nent, a detailed study of the phonon subsystem turns ly inhomogeneous nonstationary state (Sec. 1). In the 
out to be unnecessary in most cases. right-hand side of this equation, the decisive role is 

It is possible, however, to formulate the problem 
differently, and investigate in fact the phonons that r e -  
sult from the action of an external perturbation on the 
electron subsystem. Problems of this type arise, e.g., 
in the design of sound generators based on supercon- 
ducting systems." The basis for their solution should 
be a kinetic equation for  the phonons. There a re  a 
number of papers (see, in particular, Refs. 9, 12, 
and 14) in which a nonequilibrium electron subsystem 
is considered jointly with a nonequilibrium phonon 
subsystem. We note in this connection that the question 
of phonon kinetics i s  f a r  from simple, since a descrip- 

played by polarization operators, expressions for which 
a re  obtained both with the aid of the Keldysh technique 
(Sec. 2 )  and on the basis of the analytic-continuation 
procedure proposed by Elashberg in the derivation of 
the kinetic equations in nonlinear electrodynamics of 
superconductors. The corresponding expressions, a s  
expected, coincide, and the final values a r e  expressed 
in terms of the energy-integrated Green's functions of 
the electrons (Sec. 3). 

We note that the obtained equation can be used jointly 
with the kinetic equations for  the nonequilibrium elec- 
tron component in those cases when the disequilibrium 
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of the phonon field is of importance for the electron 
component. The most interesting, however, is the 
use of the equation precisely when the nonequilibrium 
phonons manage to leave the system without signifi- 
cantly influencing the behavior of the electrons. In 
this situation, the equations for the nonequilibrium 
electron subsystem can be solved independently (using 
in them the equilibrium phonon distribution functions). 
The corresponding solutions, when substituted in the 
phonon equation, determine the source of the phonons 
that a re  emitted from the nonequilibrium superconduc- 
tor into the external medium. This circumstance is of 
interest, in particular because the solutions of the 
kinetic equations for the electron component a re  already 
known for a large number of problems. In Sec. 4 we 
touch upon the problem of boundary conditions for the 
phonons, .and also discuss briefly the kinetics of the 
electron subsystem in films. 

The approach developed in Sec. 5 can be used to de- 
scribe phonon emission from a superconducting film 
situated in a microwave field. The spectrum of the 
emitted phonons is calculated analytically in the case 
when the frequency of the external field (w,) is much 
lower than the nonequilibrium value of the gap (A). It 
is shown that the phonon flux is negative in a narrow 
spectral interval of the phonon frequencies 2AG w,,,, 
< 2A + w,. Thus, the action of an external R F  electro- 
magnetic field can lead not only to phonon emission by 
a film (the so-called phonon fluorescence, e.g., Ref. 
16), but the nonequilibrium film should also absorb 
phonons in the indicted spectral region. This effect is 
connected with the decrease of the number of such pho- 
nons in a film acted upon by the microwave radiation, 
and with the onset of a corresponding flux of phonons 
from the outside, which compensates for the deviation 
of phonon distribution function from equilibrium. This 
effect, which we call the "phonon deficit," is essential- 
ly of the same nature as the well known phenomenon of 
superconductivity stimulation by a microwave field. le 

In the concluding Sec. 5 we discuss in greater detail 
the physical nature of the phonon deficit, and compare 
the results with those of the numerical calculations of 
Chang and Scalapino,14 who investigated the kinetics of 
nonequilibrium phonons under conditions close to those 
considered by us. 

1. THE KINETIC EQUATION 

1. Preliminary definitions 

We introduce the Green-Keldysh phonon function in 
the usual manner'': 

The Keldysh indices i and k assume values - o r  +, 
depending on which of two time axes (-.o, + -) o r  (+ -, --) 
the time of each of the phonon-field operators @ is lo- 
cated.' We note that the time on the second axes (+) is 
assumed to be longer than any time on the f i rs t  axis (-), 
and on the second axis the T-ordering of the operators 
is reversed. The phonon-field operators (since this 
field is real, $+= q) a r e  expressed in the absence of 
interaction in the form2 

where wok)  i s  the phonon dispersion law in the normal 
metal. 

The "bare" phonon Green-Keldy sh functions deter - 
mined on the basis of (1.1) and (1.2) can be easily ob- 
tained in the homogeneous and stationary case. We 
present an expression for (cf. Ref. 3): 

oo- * ( t ,  r) = - - -(w, ( k )  e ik ' [Nt  exp( - ioo(k) t )  "* 2  ( 2 a ) 3  

in which Nk = ( 6, + g,) is the nonequilibrium distribution 
function of the phonons. 

We introduce also the operator D;I',(,,, which acts on 
the f i rs t  (second) argument of the phonon propagator 
(u is the phonon propagation velocity): 

then 

D~::,, D,"(12)= uao,'*6(t,-tz) ~ : ( 2 ,  6 (r , -r2) ,  (1.5) 

where $3 i s  a Pauli matrix. 

In the general case the phonon function satisfies the 
Dyson equation 

o r  in an alternate form 

where the functions a r e  matrices in the Keldysh in- 
dices. We recall that by virtue of the very definition 
(1.1) the Green-Keldysh functions a re  linearly depen- 
dent (D-' +D++ - T - D'+= 0), as a result of which the 
polarization operators a re  likewise linearly dependent 
(n--+ n* + n-+ + nP= 0). 

The electron Green-Keldysh-Nambu function i s  de- 
fined similarly (we follow the notation of Ref. 4): 

where a and B are  the Nambu indices of the field opera- 
tors 

$,( t i )=*+ ( 1 4 ,  9 ~ ( 4 t ) = $ + + ( I i ) .  (1.9) 

The symmetry properties of the function (1.8) are 
given in Ref. 4. 

2. Derivation of kinetic equation 

The Green-Keldysh functions depend in the homo- 
geneous and stationary case on differences between 
space-time coordinates. If the evolution of the phonon 
subsystem is gradual enough, we can assume that the 
quantities characterizing this system depend weakly on 
the sum variable (1 +2) and a re  functions mainly of the 
difference variable (1 - 2).  h his is essentially the 
condition for quasiclassical behavior.) Separating these 
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variables [we use below a notation of the type 1 x, 
=O[,t)]: 

we take Fourier transforms with respect to the dif- 
ference variables R = r, - r, and 0 = t, - t, 

DXk(q ,  u , r ,  t )  = jDzh(r ,  t ;  R, 8)eiqR+i'e dRde, (1.11) 

where obviously r = ( r ,  + r,)/2 and t = (t, + t,)/2. Acting 
with the operator D;: on Eq. (1.6) and with D-,: on (1.7) 
and subtracting the second from the first ,  we write the 
results for the (-+) component: 

(DL' - D,') D-  + (x ,x?)  = - j d'z, d4s, { [ D -  - (13)  II- + (34)  

+ D- + (13)  n+ + (34)  16 (t ,-t ,)  V,26 (r,-r,) +[ II- - (43)  0- + (32)  

+ H-+(43)D+ + ( 3 2 ) ] 6 ( t , - t , )  V t16 ( r , - r , ) ) .  (1. 12) 

We turn first  to the right-hand side of (1.12) and 
transform i t  with allowance for the quasiclassical 
conditions. For the phonon subsystem the latter mean 
that the quantities characterizing i ts  variation in time 
(A t) and in space (AY) should be large compared with 
reciprocal frequencies (w(q))-I and wave vectors q-' 
which a r e  typical of phonons, i.e ., 

which is a good approximation when the perturbation 
of the phonon subsystem is due to the superconducting 
electron subsystem. The condition (1.13) makes it 
possible to simplify in the usual manner (see, e.g., 
Ref. 3) the right-hand side of (1.12). Recognizing that 
the operator (D-,: - Dz:) in the left-hand side of (1.12) 
can be represented in the form 

a2 a2 
D,;'- DL'= - - + u.- 

a t a e  a r d R '  

we take the Fourier transform of Eq. (1.12) and obtain 
a s  a result the expression [the arguments of all the 
functions in the curly brackets a re  (q, w; r, t)] 

(we have used here the linear dependence of the com- 
ponents of D" as well as of TI"). 

To change over to the kinetic equation in terms of the 
phonon distribution functions N(q, r ,  t )  we must estab- 
lish a connection between N and 6. Unfortunately, the 
Green-Keldysh function for phonons, defined in ac- 
cordance with (1. I ) ,  while convenient from the point of 
view of the dynamics of electron-phonon interaction, is 
not as directly connected with the density matrix which 
as the electron function G (Refs. 2 and 3).2' Neverthe- 
less,  in the quasiclassical case of interest to us, such 
a connection can be established. We note for this pur- 
pose that the superconducting transition has hardly any 
effect (Aw,(q)/w,(q) -lo4) on the base phonon spectrum, 
w,(q) J w(q). Using the quasiclassical condition for the 
phonons, we assume that N(q, r, t )  and B(w, q; t, r) a re  
related a s  

+ N(q ,  r ,  t )  6  (0-0 ( 4 )  11. (1.16) 
This relation is similar to that which follows from 

(1.3) for the quantities DT(q, w) and N,,. (Concerning 
the subsitutions 

where t and r serve a s  parameters, see, e.g., Ref. 3.) 
Next, for acoustic phonons (the only ones that appear 
in the phenomenon of interest to us), the following rela- 
tion holds for momenta that a re  small compared with 
the limiting values: 

Using also the property 

which follows from (1.1) and (1. l l ) ,  and substituting 
(1.16)-(1.18) in (1.15), we obtain, after integrating 
with respect to w within the limits (O,oo), the kinetic 
equation 

the source in which i s  the quantity (cf. Ref. 13) 

We note that this expression can be represented also in 
a somewhat different form, if we change over in usual 
fashion (see, e.g., Ref. 3) from the matrix TIib to the 
linearly independent functions = lI-' + TI*, TIR = n-- 
+ n-+, and TIA = TI- -+ n+- 

io ( q )  1 I ( N ) = - - { ( I I R - ~ * ) N  - - [n - ( n ~ - n ~ )  I ] .  
2 2 

(1.21) 

This representation turns out to be more convenient. 

2. THE COLLISION INTEGRAL 

1. The polarization operation in the Keldysh 
technique 

In the Keldy sh -Nambu technique, the polarization 
operator is given by a diagram expansion similar to 
the usual one: 

 h he electron propagators in the left-hand side of (2.1) 
should be represented by thick lines.] The diagrams 
a re  set  in correspondence with analytic expressions by 
the usual Feynman rules: the only difference being that 
all the quantities, including the vertices, a re  matrices 
in the indices of Keldysh and Nambu. Since the super- 
conducting transition, just a s  an interaction with an ex- 
ternal electromagnetic field, affects in the polarization 
operator only a small smeared region (- T/E,, A / E  ,) 
near the Fermi surface, i t  follows that, just a s  in the 
case of a normal metal,5 we can set ,  with adiabatic 
accuracy (-u/v,),  the total vertex r equal to r, -g. 
On the other hand, the electron function G" [the thick 
lines in (2.1)] will be assumed accurate in the sense that 
they contain the interaction of the electrons with the 
external field, with phonons, with impurities, and with 
one another. Recognizing that in the technique em- 
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ployed by us4 the vertices r, have a matrix structure 

we obtain (g i s  the electron-phonon interaction con- 
stant) 

It is more convenient, however, to operate with the 
linearly -independent quantities G, G ~ ,  and G ~ .  
Changing simultaneously over also to the quantities II, 
I f ,  and IIA and leaving out terms of the type ~ 4 ( 1 2 )  
G: (21), which vanish indentically, we obtain 

and correspondingly 

It remains to go over to the ( x , p )  representation, 
as i s  required for a kinetic equation written in the form 
(1.19). It becomes clear then that the polarization 
operators can be expressed in terms of the so-called 
#Green's functions integrated over the energies." 
They were introduced for the equilibrium case by 
Eilenberger6 and generalized by Eliashberg6 for the 
description of a nonequilibrium electron subsystem of 
a superconductor in the model with phonon thermostat. 
We shall dwell in somewhat greater detail on the physi- 
cal and formal aspects of this model, for the purpose of 
clarifying certain features of the behavior of the elec- 
tron-phonon system, which a r e  of importance for the 
subsequent application of Eqs. (1.19), (2.4), and (2.5). 

2. Model with phonon thermostat 

To use the analytic-continuation method for the de- 
rivation of the kinetic equations for a nonequilibrium 
electron in a model with a phonon thermostat, the 
temperature electron Green's functions were expanded 
in powers of the external field, and this gave rise6 to 
diagrams of the type 

(the wavy lines correspond to interaction with Bose 
fields, and w, = 2ilrk a re  discrete imaginary frequen- 
cies of the Bose field). 

The physical quantities were determined by analytic 
continuation of the quantities involved in the phonon 
model of the superconductor into the upper half-plane 
with respect to each of the discrete imaginary field 
frequencies. It i s  significant here that the phonons a re  
in equilibrium. From the formal point of view this 
means that in the exact phonon Green's function 

the initial distribution of the discrete imaginary Bose 
frequencies (a - a') = 2ilrTn, with n an integer,3) is 
fixed. As a result the lines of the cuts of a diagram of 

arbitrary type (e.g., case b in the diagram) coincide 
with those for diagrams that do not contain self-energy 
inserts (but a re  of the same order in the field, see 
case a ) ,  and it is this which determines the equality of 
the analytic structures of diagrams of a given order 
with respect to the external field. In the general case, 
when the phonons a re  not in equilibrium, the phonon 
Green's function can be repeesented in the form4) 

The real part  Re lI,(q), with which the renormalization 
of the sound velocity is connected, is determined by the 
entire mass of the electrons, and the region of the 
temperature smearing near the Fermi surface yields a 
correction of the order of T/ap. AS already stipulated, 
the renormalization of the sound velocity in the transi- 
tion to the superconducting state has an analogous 
smallness (A/+), and the influence of the electromag- 
netic field is also small and affects mainly only the 
smearing region. It is therefore possible to disregard 
the small corrections and assume that these renor- 
malizations have already been included in (2.6). (We 
note that this circumstance has allowed us in Sec. 1 
above, when working with Dyson matrix equations, to 
retain only the components that determine the dis- 
tribution function.) On the other hand, the imaginary 
part Im II,(q) is determined entirely by the vicinity of 
the Fermi surface, and is therefore sensitive to the 
distribution of the excitations. The neglect of this 
quantity in (2.7) and the transition to the initial repre- 
sentation (2.6) correspond to the physical assumption 
that a relaxation source stronger than the one con- 
nected with the interaction of the phonons and electrons 
is active in the phonon system. Such a source can be a 
connection of the phonon system with the external medi- 
um (thermostat), which causes the phonons themselves 
to assume the role of the thermostat for the electron 
subsystem. If this connection were to be included ex- 
plicitly in the analysis, then the right-hand side of the 
kinetic equation obtained above would become equal to 
zero in the cases corresponding to an equilibrium 
phonon distribution. Another equivalent procedure was 
used in the derivation of the kinetic equations in non- 
linear electrodynamics of superconductors~ wherein 
the connection of the phonon system with the thermo- 
stat was obtained by simply equating the polarization 
operator to zero. In both cases the resultant phonon 
system is in equilibrium. 

The foregoing arguments clarify the physical mean- 
ing of the kinetics equation (1.19) obtained by us. If it 
is assumed that the phonon functions in its right-hand 
side, a s  well a s  in the complete electron Green's func- 
tions, a re  in equilibrium, then the left-hand side of 
this equation corresponds to departure of phonons to 
the external thermostat, i.e., i t  determines the emis- 
sion of phonons by the sytem. In situations when this 
assumption is valid, the kinetic equations of Eliash- 
berg for the electron component a re  likewise applicable. 
We shall show below that the right-hand side of the 
phonon kinetic equation i s  expressed in terms of the 
solution of the Eliashberg equation, which in many 
cases of practical interest (e.g., for thin films in an 

157 Sov. Phys. JETP 53(1), Jan. 1981 A. M. Gulyan and G. F. Zharkov 157 



external electromagnetic field o r  for weak-coupling 
bridges) have already been well investigated. 

3. COLLISION INTEGRAL AS A PHONON SOURCE 

It is indicated in the preceding section, the imaginary 
part of the polarization operator, which is of interest 
to us, is entirely determined by the vicinity of the Fer- 
mi surface. This circumstance is quite important, 
since i t  enables us  to describe the behavior of the elec- 
trons in the collision integral (1.21), (2.4), (2.5) on 
the basis of Green's functions integrated with respect 
to the energies. Before we do that, it is advisable to 
obtain expressions for the polarization operators by 
the Eliashberg method. 

1. Polarization operators in the ~ l i a s h b e r ~  method 

Thus, we obtain the quantities I'I, nR, and nA by the 
analytic-continuation method generalized to include the 
nonlinear case.' In the representation of discrete 
imaginary frequencies ( E ,  = ir(2n + 1)T, w, = 2inTm) 
we have for polarization operator the expression 

For the sake of brevity, we omit the second arguments 
of the Green's functions (GE1E2 etc.), which can be re-  , 

constructed from the adecayv conservation law for the 
internal variable : 

Connected with the use of the rules (3.2) is the ap- 
pearance of the functions G in (3. I) ,  which differ in G 
that the directions of the arrows on the diagrams a re  
reversed. In addition, the presence of the pair FF' in 
(3.1) is connected, a s  usual, with the change of the 
sign of the diagram. Proceeding to the analytic con- 
tinuation of the polarization operator, we shall regard 
each of the terms in (3.1) as a sum of diagrams of 
different order in the external field [cf. (2. I)]. The 
entire procedure is perfectly analogous to the one 
used by Eliashberg in Ref. 6 when finding the analytic 
continuation of the self-energy parts of the electron- 
electron collisions, the only difference being that now 
we have Bose external frequencies (and, naturally, the 
number of electron lines is equal to two). Since the 
direction of the arrows on the lines of the diagrams 
does not influence essentially the procedure of the 
analytic continuation, we consider for the sake of argu- 
ment the expression 

Diagrams of a definite order in the external field have, 
a s  functions of the complex variable w at  fixed imagin- 
ary frequencies of the field vertices, cuts on the lines 
Im(w -a,) = 0, located between the outermost upper 
and lower cuts 

OGIm a<Im a'. (3.4) 

Just  as in the case of the electron-electron self-energy 
parts,%e quantities 51, constitute certain combinations 

FIG. 1. Transformation of the integration contour. The dash- 
ed lines show the positions of the cuts on the &; plane. When 
there is no cut (e. g. at Im &; = 0) the sum of the contribution 
along lines a and b is zero. 

of field-vertex frequencies, and in this case, too, the 
set of these combinations and their total number depend 
on the distribution of the vertices over the electron 
lines. We assume that the respective functions cor- 
respond to cuts with Im(&, - m,,) = 0 and 1m(&, - w,,) = 0 
and transform the sum over the frequencies in (3.3) 
into a contour integral 

where C is the contour shown in Fig. 1. Unwinding the 
contour C and C' along the edges of the cuts and recog- 
nizing that for diagrams of arbitrary order the inte- 
grals along the a r c s  of large circles vanish when the 
corresponding radii go to infinity, we obtain after 
simple transformations 

where 6,,,(G) is the jump of the Green's functions on 
the corresponding cut. The external variable w and the 
field frequencies remained imaginary. Their combina- 
tions determine the se t  of cuts of a given diagram. 
Putting in all the diagrams w > o' (the upper edge of the 
upper cut), shifting in them the integration variables, 
and summing the perturbation-theory ser ies  in all or-  
ders,  we obtain the value of rR: 

" d z  n 
nA-*, = j -(GzG,.-z 

4ni 

where the function G is defined by 

G..-. 

and the functions G ~ ( ~ )  a re  determined directly from 
the diagram expansion (or-from an equation of the Dy- 
son type, where all the electron Green's functions a re  
retarded (advanced), and the entire set  {G, GR, GA) CO- 

incides directly with the functions that enter in Ref. 6. 
In the same manner, an expression for  nA follows 
from (3.6) at w < 0 (lower edge of the lower cut): 

Using for nu,,, a representation similar to (3.8) but 
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modified in connection with the Bose character of the 
external frequencies: 

we obtain after substituting (3.6) in (3.10) and using the 
identity 

cth (z-x') (th Z-th z') -1-th z th z' 

the value 

By the same token, we have found fo r  the polarization 
operator (3.1) the entire set of functions II, nR, and nA 
which arise in the nonequilibrium case. It can be shown 
that they a re  equivalent to  those obtained earlier on the 
basis of the Keldysh formalism. This agreement is na- 
tural, inasmuch, a s  shown by Volkov and Kogan; the 
functions G(~*"),  6(R*A), F(~+" , and ~ ( ~ 1 ~ '  coincide, 
apart from the sign, with the functions G g 4 ) ,  G:feA' , 
Gi:eA', and G:fsA', and therefore the polarization oper- 
ators quadratic in the Green's functions should be iden- 
tically e q ~ a l . ~ '  We note also that even though some of 
the terms in (3.11) make a zero contribution, we shall 
use precisely this form of the equation, which will be 
convenient subsequently. 

2. Integration over the energies 

We now express the source of the obtained kinetic 
equations in terms of the energy-integrated Green's 

TO this end we consider some term, say 
the first, in the expression for ll,,_,, (p,p -pl), which 
follows from (3.1) when (3.11) is taken into account. 
In this term we can change from integration with r e -  
spect to d 'p, to integration over the angles and energies, 
on the basis of the relation 

Using the auxiliary 6-function 6([, - [, + q .p,/m), we 
can introduce also integration with respect to  the vari- 
able [,, so that we can express the quantity 

in terms of the energy-integrated functions defined by 
relations of the type 

" 
g..-. (p ,  k )  = j dbG..-. (p ,  p-k) , (3.14) 

-m 

since the 6 function in (3.13) limits mainly the integra- 
tion with respect to angle (cf. Ref. 6) and can therefore 
be moved outside the integrals with respect to 5 .  We 
have thus 

Introducing, to abbreviate the subsequent notation, the 
operator M: 

deIdoldak dB,, (3.16) 

a s  well a s  the symbol 

[ A ,  Bl+=A,,,,-,,(pi, k)B.-.,. m-*,+ma-wr (P-PI ,  p'-k) +B .A ,  

we obtain the final expressions for the Fourier compo- 
nents of the quantities that enter in the source of the 
phonon kinetic equation: 

n..-..=M{[g, g1+- [ f ,  f+l++[gR-gl, 8-PI+ 
-[F- f* ,  f+R- f+Al+} ,  

We note that the collision integral (1.21) turned out to  
be expressed in terms of functions that do not depend on 
5 .  This enables us to use Eq. (1.19) even in those 
cases when the concept of the excitation spectrum be- 
comes meaningless for the electron subsystem ([ be- 
comes a poor quantum number). 

The electron functions contained in (3.17) (g, f, etc.) 
coincide, as is evident from the foregoing analysis, 
with those used in Ref. 6, which is devoted to a de- 
scription of the electron subsystem of a superconductor 
in the presence of an electromagnetic field. Therefore 
our method leads to a closed system for describing the 
phonon kinetics. 

Using the expressions given in Ref. 6 for the 2-func- 
tions, we can show that the kinetic equation (1.19), 
(1.211, (3.17) describes the relaxation of the phonon 
system to equilibrium as a result of inelastic collisions 
with electrons. 

We consider next in this paper a spatially homogen- 
eous case and use expressions for the functions gR(A' 

in an approximation diagonal in the energies 

[we have changed here from the excitation distribution 
function n, that is even in E (Ref. 6) to the quasiparti- 
cle distribution function f (see, e.g., Ref. 1011. It can 
be shown that in this case the collision integral takes 
the canonical form 

(here A =g2mp,/2r2 is a dimensionless constant of the 
electron-phonon interaction, A - 1 ; wD is the phonon 
Debye frequency), equivalent to that obtained by Bar'- 
yakhtar et a1.' by another method. Some seeming dif- 
ficulty i s  that the terms of the type s2 that a re  
used in Ref. 9 a re  absent from the coherence factors 
in (3.19). Actually the contribution of these terms is 
identically equal to zero if i t  is recognized that & = (A' 
+ [z)1/2 (cf. Ref. 12). 
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4. NONEQUI LlBRlUM PHONONS AND ELECTRONS 
IN THIN FILMS 

1. Boundary conditions 

The kinetic equation obtained above for phonons, to- 
gether with the corresponding kinetic equations for the 
electron system, must generally speaking be supple- 
mented also by boundary conditions for the phonon sys- 
tem. (In the electron system, the question of the 
boundary conditions is usually circumvented by assum- 
ing a large number of nonmagnetic impurities, so  that 
the reflection of the electrons from the boundaries can 
be neglected.) We consider hereafter the process of 
phonon emission from superconducting films situated 
in a high-frequency electromagnetic field, and advance 
here arguments that permit simplification of the bound- 
ary-condition problem. 

The propagation of phonons with frequency consider - 
ably higher than u/d (where d is the film thickness) can 
be considered in the #geometric -opticss approximation, 
when their behavior on the boundary i s  determined by 
the ratio of the 'optical9 densities p,u,/p,u, of the media 
(p,,, a r e  the densities of media 1 and 2). These pho- 
nons give up their entire energy in each collision with 
the wall (the latter is assumed to be smooth enough), 
i.e., they will be freely radiated to  the outside if the 
phonon "optical density* of the outer medium pu ( p i s  
the mechanical density) coincides with the "optical 
densityn of the film metal. Imposing this lower limit 
on the frequencies of the considered phonons, we 
choose the superconducting-film thickness such that the 
phonon time of flight is less  that the travel time con- 
nected with the interaction with the electrons, the order 
of magnitude of which in a bulky sample is6' v,/uw (q) .5 

Under this condition the model with the phonon thermo- 
stat becomes applicable for  the electron subsystem 
(since the reaction of the phonons on the electrons can 
be neglected). Let, e.g., the film have a thickness d 
comparable with the correlation radius 5, -v,/T,. For 
films of this thickness, the foregoing means that in the 
frequency region 

T,ulv,Go (q) GT, (4.1) 
i t  is possible to use directly the scheme developed for 
the phonons. 

We note that we have neglected above everywhere the 
damping of the phonons, i.e., the phonon lifetime was 
assumed to be long enough. Assuming that the phonon 
is absorbed in each collision with the wall, this time 
can be estimated at T -d/u, and in order for the scheme 
developed by us to be applicable [see, in particular, 
formula (1.16)], we must have T 77 l/w(q). If we put 
d -to, then this condition takes the form to/u -vF/Tp 
77 l/w(q), which coincides in fact with the condition for 
the applicability of the ageometric-optics9 approxima- 
tion [see the left-hand inequality of (4.1 )I. Thus, the 
damping of phonons with frequencies in the interval at 
(4.1) can indeed be neglected. 

2. Kinetics of electron subsystem in films 

Bearing in mind that for sufficiently thin films the 
coupled system of kinetic equations becomes uncoupled, 

we assume that a film of an isotropic superconductor 
of thickness d comparable with the correlation radius 
to, irradiated by an external electromagnetic field, is 
in a thermostat with temperature T. The correspond- 
ing Eliashberg kinetic equations in matrix form now be - 
come (v =v,=p,/m): 

(u-vk) g (28-w-vk)f ) = ( HI 01) 
((2e-u+rk) f+ -(u+vk)g 0 a 

where 

and the matrix product must be understood also a s  a 
convolution in the internal variables. The matrices 
3 Rd , which a re  the self -energy par ts  of the electron 
interactions with phonons, impurities, and with one 
another, a re  in turn expressed through ;-function. We 
shall not present the corresponding expressions for 
them, nor for 2 R*A , SO a s  not to clutter up the exposi- 
tion (for details see Ref. 6). The solutions of (4.21, 
when substituted in the right-hand side of the kinetic 
equation (1.21) for the phonons, determine the phonon 
flux from the film to the outside, and an equilibrium 
phonon distribution function should be assumed in 
(1.21). 

Let us  recall briefly the assumptions under which the 
solutions of Eq. (4.2) a re  It is assumed 
that the external electromagnetic field of frequency w, 
is perpendicularly incident on the film and is described 
in a gauge with a vector potential A lying in the plane 
of the film. It is assumed for simplicity that the vec- 
tor  potential i s  constant over the film cross  section. 
This means that the film is thin, (less than the depth 
of penetration of the field). We note, however, that the 
condition that A be constant over the cross section is 
not critical (from the point of view of homogeneity of 
the picture over the film thickness), owing to the large 
diffusion length of the nonequilibrium electronic excita- 
tions. It i s  assumed also that the density of the non- 
magnetic impurities is high enough. The dynamics of 
the electron system then simplifies, and in particular, 
the electron mean free path I becomes small (1 = v , ~  
<< d)  and it is possible to disregard the reflection of 
the electrons from the walls. Even when all  these 
simplifying circumstances a re  taken into account, the 
kinetic equations (4.2) a re  quite complicated. They can 
be further simplified if w,T,>> 1, where 7, is a certain 
effective excitation-energy relaxation time. In conjunc- 
tion with the locality conditions w , ~  << 1 and T A << 1, it  
enables us  to show that the decisive role ffr the elec- 
tron subsystem is played by the functions gc=&c 

= 2r6(w)$c,,,, which a r e  diagonal in the energies and 
the equations for which take into account the successive 
one-photon transitions [the probability, e.g., of two- 
photon transitions has a smallness (w,~,)*]. We use 
next the solutions given in Refs. 7 and 15 for these 
equations to calculate the phonon emission from the 
films. 
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5. EFFECT OF "PHONON DEFICIT" INDUCED IN 
SUPERCONDUCTING FILMS BY A HIGH-FREQUENCY 
FIELD 

Remaining within the framework of the approximations 
made above, we impose on the electromagnetic-field 
frequency the limitation w, < 2A. It will be formally 
assumed hereafter that the parameter w,/h is small, 
but actually the results, a s  will be made clear later, 
remain meaningful also a t  w, > 2A. 

1. Nonequilibrium electron distribution 

We shall use below for the nonequilibrium electronic 
component of the superconductor in the stationary state 
the expression obtained in Refs. 7 and 15. We repeat 
here some essential factors connected with this solu- 
tion. Using the definition (3.18) we can obtain on the 
basis of (4.2), taking into account the conditions listed 
in Sec. 4.2, a kinetic equation for n ,  ( n , ~  f at i > A) 
in the form 

where E > A and we have designated by D = v,1/3 the 
diffusion coefficient, and 

The collision integral I has a canonical forme*" and 
contains collisions of the electrons with one another 
and with phonons, while the collisions with the im- 
purities drop out in the derivation of ( 5.1).  h he lat- 
ter  is the result of the assumption that these collisions 
a re  elastic, an important factor when averaging over 
the angles.) We do not present here the expressions 
for I, in the general case, since we shall use hereafter 
only the solutions obtained in Ref. 7 for (5.1) in the 
relaxation-time approximation. 

The field term of the kinetic equation (5.1) can be 
written in the form 

We have introduced here the symbol a! = D(~/c)~A,,A,,, 
while the derivatives dn'O'/d& and d2n':'/dc2 a re  ob- 
tained by expanding the quantities in the parentheses in 
(5.1) (this procedure is generally speaking meaningful 
at w,<< a), and then using an approximation by the 
equilibrium value n(;' = [l + exp(1 E 1 /T)]". Using (5.2), 
we easily see that the first  of the field terms in (5.3) 
differs from zero in the region E- A, while the second 
varies in the region E -T. If we a re  interested only in 
the linearized equation, then we can assume that the 
change of the distribution function also breaks up into 
corresponding parts,  n '" =nP' + ng1'. In the relaxa- 
tion-time approximation we can write for the collision 
integral in (5.1) (Refs. 7, 15) 

which leads to the following solution for n(" : 

It can be shown by iteration that the corrections to nil' 

a re  of the order of A/T at  E- A, but in contrast to (5.5) 
they a r e  different from zero in the interval t -T.  The 
quantity nil' is of the same order of smallness. As a 
result it can be assumed that the change of the distribu- 
tion function n(l) = nc - n(,O) consists of the quantity nf' 
(5.5) and a small increment (#tail," which drops off a t  
t - T). The relaxation-time approximation is insuf - 
ficient for the calculation of this small increment. In 
our case, however, this increment i s  immaterial, since 
we shall operate hereafter with expressions in which the 
decisive role i s  played by the region &-A<< T (at T - T,), where this correction can be neglected compared 
with nil' (5.5). It is therefore legitimate to  use the T -  

approximation in the vicinity of the transition tempera- 
ture. Analysis7 shows that the linear approximation 
(5.5) is valid up to an external-field intensity 0 given 
by 

where y coincides with double the excitation damping 
determined by the single-particle Green's function [it 
has the same value a s  in a normal metal accurate to 
(A/T)']. It is precisely this case, when condition (5.6) 
i s  satisfied, which we shall have in mind in the present 
study. 

2. Classification of phonon sources 

Within the framework of the approximations made for 
the electron subsystem and in the approximation linear 
in the external-field intensity, expression (1.19) is 
written, with allowance for (3.19), in the form 

where 

As follows from the foregoing, expression (5.7) de- 
termines directly the phonon flux in the frequency re-  
gion (4.1) if the parameters ( p u )  of the outer medium 
and of the film coincide. Generally speaking, the prob- 
lem of the boundary condition is not s o  simple (on this 
subject, see, e.g., the bibliography of the reviewle). In 
this respect we adhere to the approach developed in 
Sec. 4 and assume that expression (5.7) determines the 
phonon fluxes directly. In the more  general case, when 
explicit account of the processes on the boundary i s  
necessary, one can treat this expression as represent- 
ing an internal source of nonequilibrium phonons. 

The source (right-hand side) in expression (5.7), 
which determines the kinetics of the phonons, can be 
classified in the following manner. The first  integral 
in (5.7), which i s  connected with the relaxation proces - 
s e s  in the electron subsystem, will be called the re -  
laxation source (&,,). The second integral i s  connected 
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with the processes of excitation recombination and the 
'pair breaking" of the condensate. It can be called the 
recombination source (Irw). Each of these sources 
consists of an aggregate of t e rms  proportional to the 
phonon occupation numbers, and terms of another type 
which do not contain explicitly this proportionality. 
The aggregate of the f i rs t  type can be called the in- 
duced source (I,,,) and that of the second type the spon- 
taneous phonon source (I,,). By the same token, the 
entire source can be represented in the form 

which is convenient for analysis. 

We note f i rs t  that a t  frequencies w, <A the following 
relation holds in the vicinity of the transition tempera- 
ture 

~ ! : / n , > f  (5.10) 

and consequently the spontaneous sources in (5.9) a re  
small in this frequency region and can be left out. We 
a r e  interested in the spectraldependence I =  Z(w,) for dif- 
ferent values of the frequency w, of the external elec- 
tromagnetic field. It turns out that this dependence 
can be established analytically in the most interesting 
region of the spectrum w, comparable with A if w,<< A. 
Further study of the behavior of the relaxation and re-  
combination sources is best carried out separately. 
A general analysis of the results and a discussion of 
their physical meaning i s  given in subsection 5 of the 
present section. 

3. Recombination source 

We consider first  the recombination term 12;. It can 
be represented in the form 

Using (5.51, we can write 

which reduces, after simple transformations with al- 
lowance for (5.2) and (5.8), to the form 

where 
",FA 

&(a,)= j A (e, O(oq-26-a*) de, 
A+-. 

(oq-~-A)"(&-W,-A)"(~-A)'~' 

.q-A (5.14) 
A (8, -4 

B2(oq)= I ( o q - e - ~ ) ~ ( e + U o - ~ ) ~ ( e - ~ )  ,lB(oq-2A)de, 

while the function A( &, w,) is defined by the relation 

Results in this form already reveals two important 
spectral features of the source If::. First ,  there 
exists a minimum threshold frequency of nonequilibri- 

um phonons (equal to double the gap), above which the 
source (5.13) becomes different from zero. Second, 
inasmuch as B,(w,) [which is positive, as is seen from 
(5.14) and (5.15)1 enters in the source (5.13) with a 
minus sign, and since i t  differs from zero in a certain 
frequency interval, where Bl(w,) is equal to zero, we 
can conclude that there exists a region of frequencies 
u, in which If$ is negative. This result is at f i rs t  
glance somewhat unexpected. It is therefore of interest 
to study in greater detail this "anomalousv behavior of 
the recombination source. 

It is necessary fo r  this purpose to calculate the inte- 
grals (5.14). This can be done approximately by taking 
into account the smoothness of the function A(&,  w,) in 
the integration region. This circumstance enables us  
to apply the mean-value theorem and represent (5.14) 
in the form 

where Z and E lie respectively in the regions (A + w,, 
w, - A) and (A, w, - A), while K(k)  is a complete elliptic 
integral of the first  kind in normal form," and appears 
on going from (5.14) to (5.16). For this function we 
have 

Of greater interest for the sequel a r e  the frequencies 
w, - 2A of scale w,. We note that for these frequencies 
the calculations obtained by the mean value theorem a r e  
asymptotically exact in the case w,<< A. It is precisely 
this case which we shall bear in mind. We therefore 
put Z = E = A [in which case A(Z, o,) =A(; -coo) 
=2112~312] and obtain from (5.16) and (5.15) the thresh- 
old value of the function B ,(w,) and w, = 2A. As a re-  
sult we get 

From this expression, together with (5.13) which de- 
termines the depth of the dip on the spectral curve of 
the recombination source (see Fig. 3), it follows that 
the dip becomes deeper when the frequency of the ex- 
ternal field w, increases. An investigation of expres- 
sion (5.16) shows that B,(w,) decreases with increasing 
frequency w, and assumes a t  w, - 2A = w,, accurate to 
w,/A, the value (we use here the numerical values of 
the coefficients) 

With further increase of w,, the t e r m  Bl(wa) comes 
into play, and accurate to w , / ~  i t s  threshold value coin- 
cides with that of B,(w,), i.e., 

From this, taking (5.19) into account, i t  follows di - 
rectly that the difference Bl(w,) - B,(w,) is positive a t  
o, = 2A + w, and amounts to approximately one -fifth of 
B,(w,) a t  w, = 2A. Inasmuch a s  with further increase 
of w, each of the quantities B,(w,) and B,(w,), and oon- 
sequently also their difference, tends to zero, we a r -  
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FIG. 2. Spectral dependence of 
the recombination source of the 
phonons. 

rive at the conclusion that the function Ifb; has a 
'spike" (maximum). An investigation of the expression 

Bto,)  =B, ( a , )  - -B2(oq)  
1 

= '31:A*1z { 
([ "-'"-"a ] ") 

o - 2 A  

shows that the half-width of the "spike* is of the order 
of o,. The results of the calculation of the source I;:P, 
are  illustrated in Fig. 2. (These results will be di- 
scussed in subsection 5). 

4. Relaxation source 

We proceed to consider the relaxation source I;::, 
which i s  represented on the basis of (5.7) in the form 

o r  else, taking into account (5.8) and the relation w, 
<< T, a s  well a s  the obvious transformations, in the 
form 

where n'i' is defined in (5.5). The succeeding analysis 
is perfectly similar to that for the recombination 
source. Leaving out the details of the calculations, we 
present the results in the case w,<< A for the source 
(5.23): 

son 
R, (o,, oo ) , 

2eaoq ,-, 

where 

and the quantities rp , ( E ) =  q ( & ;  w, w,), which ar ise  when 
the mean-value theorem is used, a re  equal to 

FIG. 3. Spectral dependence of the relaxation source of the 
phonons. 

As is evident from the presented expressions, the 
function 1;:: has no threshold singularities. By investi- 
gating (5.24)-(5.26) we can verify that the relaxation 
source vanishes.(from the positive side) a t  the start  of 
the spectrum (w, s 0). At larger values of the argument, 
I;:: increases and is characterized a t  w, = w, by a loga- 
rithmic divergence. Further increase of the argument 
is accompanied by a decrease, f irst  logarithmic [the 
term R, (w, w,)] and then in power-law fashion and, for 
example a t  w, r A, the source is given by 12: r3(w0/ 
A)'/' (in units of I, = rAa! 7, wowD/2 E p  w,). The foregoing 
is illustrated in Fig. 3. 

Thus, the behavior of the two contributions I"' and 
Ire' has been established in the entire phonon-frequency 
spectral range of interest to us. 

5. Discussion of the phonon-deficit effect 

The results obtained in subsections 3 and 4 a re  
graphically combined in Fig. 4a. We note first  that the 
regions of action of the relaxation and recombination 
sources in the case considered us, when the external- 
radiation frequencies a r e  low compared with the gap, 
do not overlap in practice. For this reason the total 
phonon flux I= IreO +Ire1 is negative in the frequency 
interval 2A<< was 2A+ w, ('dipn on Fig. 4a). This 
means that a superconducting film acted upon by high- 
frequency electromagnetic radiation should absorb 
phonons selectively. The origin of this effect is close- 
ly connected with the processes that cause supercon- 
ductivity stimulated by a microwave field.lg In fact, at 

FIG. 4. Spectrum of phonon emission from a thin film. The 
negative "dips" on the curves correspond to the phonon-deficit 
effect. 
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a temperature T f  0 the superconductor always contains 
a definite number of excitations above the gap, and 
these excitations a re  in thermodynamic equilibrium 
with the phonons. The phonons, whose energy i s  ap- 
proximately double the gap, produce effectively quasi- 
particles that recombine and emit phonons of the same 
type. We note that in accordance with the detailed 
balancing principle the probabilities of the direct and 
inverse processes a re  equal. The situation changes 
when an external high-frequency electromagnetic field 
is turned on. It is known (see, e.g., Ref. 15) that if 
the frequency of the latter does not exceed the quasi- 
particle production threshold, then the action of the 
microwave field reduces mainly to a change of the 
"center of gravity" of the distribution function of the 
quasiparticles, whose number above the gap becomes 
less than the thermodynamic equilibrium value (in other 
words, an effective Usupercooling" of the quasiparticles 
takes place). This means violation of the detailed 
balancing when the excitations interact with phonons in 
the presence of an external field, a s  a result of which 
the probability of absorption of phonons with frequency 
2A becomes larger than the probability of their emis- 
sion. This produces in the indicated phonon-frequen- 
cies a phonon deficit, which can be replenished from 
the outside in the presence of a connection with the ex- 
ternal medium, and i t  is this which leads to the nega- 
tive phonon flux (the entire picture remaining station- 
ary). 

We note in this connection that an experimental ob- 
servation of phonon absorption could be regarded not 
only a s  a direct confirmation of the theory developed 
above, but also as one more proof of the validity of 
the premises used in the construction of the theory of 
stimulated superconductivity. 

A few words now on the paper of Chang and 
Scalapino. l4 They have introduced in the kinetic equa- 
tion for the phonons an additional term (of the type 
~N/T,,, where T,, is the time of escape of the nonequi- 
librium phonons from the film), which takes into ac-  
count the coupling of the phonons to the outer medium. 
Since in free exchange (T,,- 0) the phonon deficit pro- 
duced by the external field i s  completely offset by the 
influx from the outside (6N- O),  all that has been noted 
in Ref. 14 is that an equilibrium phonon distribution i s  
produced in the interior of the film. This equilibrium, 
hbwever, is dynamic and is directly related with the 
presence of phonon fluxes of opposite sign. These 
phonon fluxes were not calculated in Ref. 14. Figure 
4b shows the curve obtained in Ref. 14 by numerical 
calculation for 6N(w,) a t  re,+ 0, from which i t  i s  seen 
that negative values 6N(wa) < 0  a re  present. The shape 
of this curve points to the presence of a phonon deficit 
inside the film, and also points indirectly to the pre- 
sence of negative phonon fluxes (Fig. 4a). 

As for the spike on the central curve (Fig. 41, i t  is 
due at frequencies w, - 2A + w,, a s  indicated in Ref. 14, 
to the fact that the quasiparticles displaced by the ex- 
ternal field from the edge of the gap by an energy w, 
recombine with the quasiparticles remaining a t  the 
edge. In our analysis this is particularly evident. In- 

deed, a s  indicated in Sec. 4, the considered situation 
is characterized by one -quantum transitions. Conse - 
quently, the excess of the quasiparticles i s  produced 
mainly at energies E a A + w,. As seen from (5.51, the 
increment to the distribution function of the quasipar- 
ticles has a singularity a t  these energies. However, 
since we have confined ourselves to an approximation 
linear in the intensity of the external field, it follows 
from (5.7) that the principal role i s  played here by re -  
combination of nonequilibrium quasiparticles of energy 
& = A +  w, with equilibrium quasiparticles of energy 
E n A at the edge of the gap, where the density of the 
electronic states i s  large. As a result, phonons with 
energy w, = 2A + w, a re  obtained. 

In conclusion, we discuss the logarithmic divergence 
of the phonon (relaxation) flux a t  the frequency w = w, 
(Figs. 3 and 4a). This formal divergence i s  connected 
with a singularity in the density of the electronic states 
[see, e.g., (3.1911, which is typical of superconductors 
in the absence of external fields. Such a logarithmic 
divergence vanishes if account if taken of the 'smooth- 
ing" influence of the electromagnetic field on the state 
density of the quasielectrons. In other words, the ap- 
proximation diagonal in the energies for the 2 functions, 
which caused the transition from the general expression 
(1.19) to the canonical form (3.19) for the collision in- 
tegrals, must be supplemented by allowance for defi- 
nite off-diagonal terms. [we note that allowance of 
certain similar off-diagonal field terms was made in 
Refs. 7 and 16 when the nonequilibrium distribution 
function of the electronic excitations (5.5) was deter- 
mined on the basis of Eq. (4. 2).] There exist also 
other ways of eliminating divergences of this kind. 
Thus, for  example, in Ref. 14 the divergence was 
eliminated by artificially smoothing out the singular- 
ities in the electronstate density. In Ref. 21, the 
divergence of the nonequilibrium increment to the dis- 
tribution function (at energy E = A + w,) was eliminated 
on the basis of considerations connected with the Pauli 
principle. One can indicate one other method of elimi- 
nating this divergence. The point i s  that the frequency 
of the emitted phonons is determined accurate to  their 
damping, which in order of magnitude is comparable 
with the damping of phonons in a bulky normal sample,' 
i.e ., 6wa - w,u/v,. Substituting this value in the expres- 
sion for  R, (w, w,), which determines the divergence of 
the relaxation source (5.241, we obtain A,,(@ n w,) 
n l , (o , /2~)~ '~ ln (~ , /u ) .  The dashed lines in Fig. 3 
shows the corresponding cutoff. 

More accurate estimates can also be made, but they 
do not influence the results to any appreciable degree. 

The authors a re  very grateful to G. M. Eliashberg for 
a discussion of the results. 

')We omit hereafter the index A connected with the phonon 
polarization. Allowance for the polarization, as  will be 
made clear later, leads to a simple addition of the index A to 
the phonon quantities in the final expressions. 

2, We note in this connection the paper by Prange and Kadan- 
off, Is who used a different approach to the problem of elec- 
tron-phonon interaction. ' 
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3, Indeed, by changing from the expression for the Green's 
function (2.5) to the phonon distribution function (see Ref. 2) 
we can verify by direct summation over the frequencies that 
the resultant distribution function coincides in the case of 
integer n with the equilibrium Bose distribution: N:= [exp 
(w/n - 11 -I. 

4, Such a schematic representation of the nonequilibrium phonon 
Green's function was used in Ref. 7 and turns out to be quite 
useful in the discussion of many physical problems. 

5)We did not dwell in detail on the proof on this statement. A 
more detailed exposition of this problem a s  well a s  of other 
aspects touched upon in the paper will be given elsewhere. 

6, This estimate is  satisfactory in those cases when the fre- 
quency of the emitted phonons is  less than the threshold of 
quasiparticle production in the superconductor. 
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Nonlocal electron-interaction effects in the spontaneous- 
current model 
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We consider the influence of hybridization of the electron bands of a semimetal on the symmetry of the order 
parameter A(k) of the exciton phase. It is shown that an arbitrarily small hybridization suppresses the 
symmetrical component A,(k) of the order parameter in a one-dimensional system with weakly screened 
Coulomb interaction of the electrons and holes. In a three-dimensional system one can indicate for the 
hybridization a limit below which a first-order phase transition is possible with formation of a symmetrical 
component A, (k) =A ,( - k). One of the possibilities of formation of an inhomogeneous state for an excitonic 
dielectric is noted. The results of the study have a direct bearing on the spontaneous-current model. 

PACS numbers: 71.25.Cx, 71.35. + z, 71.45.Gm 

INTRODUCTION 

An indispensable part of the model of spontaneous 
currents in an excitonic dielectric1 is the presence of 
interband dipole transitions in the system. If an elec- 
tron-hole condensate with an imaginary component of 
the order parameter appears in a semimetal (semicon- 
ductor) system, then a macroscopic electron current 
can flow in the presence of interband dipole transitions 
in this system.' This, however, still leaves open the 
question of the influence of the interband dipole transi- 
tions of the electrons on the phase transition of the 

semimetal (semiconductor) into the state of an exci- 
tonic dielectric with imaginary order parameter. As 
will be shown in the present paper this influence is par- 
ticularly important when the electron-hole interaction 
is nonlocal. 

The most widely used and simplest description of 
electron bands, which takes into account the interband 
dipole transitions, is the approximation of Luttinger 
and Kohn. In this approximation these transitions a re  
represented in the form of band hybridization. The 
hybridization is expressed in the Hamiltonian in the 
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