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An analysis is made of the linear response of an exciton insulator with an allowed dipole transition to a 
homogeneous alternating electric field. It is shown that the electron subsystem of such an insulator has two 
low-frequency branches of natural oscillations, one of which corresponds (in the homogeneous case) to phase 
oscillations, and the other to oscillations of the modulus of the order parameter. The frequency of the latter 
oscillation exceeds the dissociation threshold but nevertheless the oscillation is weakly damped. Both 
oscillations are accompanied by the flow of a current and, therefore, the response (i.e, the dependence of the 
current on the field) is resonant. 

PACS numbers: 72.20. - i 

1. INTRODUCTION the momentum operator ,  calculated using Bloch func- 
tions corresponding to the  e x t r e m a  of the  bands under 

Exciton insulators  with a n  allowed dipole t ransi t ion 
consideration; these  functions should b e  selected to  be  are at t ract ing in te res t  because unusual p roper t i es  have 
real f o r  the e x t r e m a  located a t  zero quasimomentum 

been predicted f o r  them (including spontaneous c u r r e n t s  
and then p12 is a purely imaginary quantity; in the other  

and superdiamagnetism1-'). We sha l l  not d i s c u s s  these  cases all th i s  can b e  done by a canonical transformation. 
propert ies:  we  shall b e  interested i n  the l inear  re- 

The  Hamiltonian (1) is independent of the spin indices: 
sponse of such  a n  exciton insulator  to a homogeneous 

s inglet  pairing is assumed.  All t h e  calculations will  b e  
alternating e lec t r ic  field. We shall show that the  re- 

c a r r i e d  out f o r  zero absolute temperature.  
sponse is resonant ,  by analogy t o  substances which a r e  
active in  the infrared p a r t  of the  spec t rum;  this  is due 
to the fact  that in  a n  exciton insulator with a n  allowed 
dipole t ransi t ion even a homogeneous field affects  the  
magnitude of the  o r d e r  parameter  (gap i n  the spec t rum)  
already in the l inear  approximation and, therefore,  
the re  is a relationship between the field and f r e e  oscilla- 
tions of the system. In contrast  to  the  substances men- 
tioned above, whose infrared activity is due  to the lat- 
t ice, w e  sha l l  consider  the c a s e  when this  activity is 
ent i rely due to  the p roper t i es  of the electron subsys-  
tem. 

In the  presence  of a homogeneous e lec t r ic  field the 
vector  potential may b e  assumed to b e  independent of the 
coordinates  and we  can then u s e  the momentum repre-  
sentation, so  that Eq. (1) can b e  modified t o  

'/t(k-A)'-p vIz(k-A) +A (k) . 
H(k)= ( vZI (k-A) +A'(k), -'/,(k-A)'+p ) (2) 

the  following simplifications and the notation are used 
above: 

pI Jma=vIZ, eA/c+A, m=l .  
(3 

The  problem is t o  find the l inear  response  of the sys-  

We shal l  u s e  the s imples t  the Hamiltonian of 
t e m  descr ibed  by the  Hamiltonian (2), i.e., t o  find the 

the sys tem considered i n  the  two-band approximation 
relat ionship between the  c u r r e n t  and the field. In a 
weak  field t h e  problem can naturally b e  solved by per-  

can be  wri t ten in  the  f o r m  of a matr ix:  
turbation theorv. More ~ r e c i s e l v .  we  sha l l  u s e  the uer- - ,  

turbation theory to solve the  equation f o r  the  Green func- 
. tion; in  th i s  case t h e  Green function is a 2 x 2 matr ix,  

whose elements  are defined as follows: 

.. (Gt ( t ,  t')).,=-i(Ta,t(t)a,k'(t') ), 

Here, k=-  iV; A is the vector  potential; A is the  o r d e r  (4) 

parameter ;  m, is the electron mass ;  m is the effective where  a,,@), a,,+(t) are the opera tors  (in the Heisenberg 
mass ,  assumed to b e  the  s a m e  f o r  a n  electron and a representat ion)  of the  annihilation and creat ion of a n  
hole; the constant p r e p r e s e n t s  the d e g r e e  of overlap of e lectron with a quasimomentum k in a band n (n = 1 or 
t h e  original bands ( p  > 0); pi2 is the m a t r i x  element of 2). 
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The equation for the Green function has i ts  usual 
form: 

d 
( i -  -H ( k )  ) Gi(t ,  t') -6 ( t - t f ) .  

d t  (5) 
We also need the self - consistency equation fo r  the 
order parameter: 

(throughout our discussion we shall assume that the 
volume is unity). Here, U(k)  is the Fourier component 
of the potential of the interaction between electrons be- 
longing to different bands. 

We shall complete the formulation of the problem by 
including the expression for the current density j ;  this 
can be written in the form 

The above expression can be tested most simply a s  fol- 
lows. In the k representation (r = ia/ak) the velocity 
operator r = i(Hr - rH) is given by r = a ~ ( k ) / a k  and 
hence we obtain Eq. (7). 

2. PRINCIPAL RELATIONSHIPS 

We shall begin with some information on an exciton 
insulator in the absence of a field (A = 0). In this case 
the Hamiltonian is 

(8) 

where 5,=k2/2- p. The Green function G"' of this 
problem has the following form in the frequency repre- 
sentation: 

G'O) ( k ,  e )  - a ( k ,  E )  

(e-Er+i6) (e+Er-is) ' (9) 

where the matrix a is given by the relationship 

and * E, i s  the energy of a particle in the upper and 
lower (filled) bands of an exciton insulator: 

Er=[&'+I kvlZ+Ao(k) 12]". (11) 

Finally, the self- consistency equation i s  

We shall now return to the problem. First ,  we shall 
transform Eq. (5). We shall assume that the quantity 
A and, therefore, the Hamiltonian (2) and the Green 
function depend on the momentum which occurs in 
k- Amp, i.e., A = A(p, t). The total derivative with re- 
spect to time in Eq. (5) can be written in the form 

d c ,  ( t ,  t ' )  a c ,  ( t ,  t r )  a c  ( t  t l )  { -A&. 
dt  p-connt a~ 

We shall now introduce new notation: 

Employing all these expressions, we can rewrite Eq. 

(5) in the form 

This equation is s o  far exact. In a weak field the last  
two terms on the left-hand side of Eq. (14) can be re- 
garded a s  a perturbation and in these terms we can re- 
place G with the zeroth-order Green function which is 
identical with G'O' [see Eq. (9)] if the substitution k 
- p  is made. Thus, the correction G"' to the Green 
function 

is described by the equation 

The advantages of rewriting Eq. (5) in the form (14) 
a re  obvious: Eq. (14) contains explicitly not the vector 
potential but the electric field, and in solving this equa- 
tion with the aid of perturbation theory there is no need 
to ensure the gradient invariance of the results. In the 
homogeneous case the gradient invariance implies in- 
variance relative to arbitrary constant correction to 
the vector potential; i t  i s  understood that the initial 
equation (5) has this property. For example, if A=% 
= const, then a direct solution of Eq. (5) together with 
the self-consistency condition (6) gives A@) =A, (k - &) 
for the order parameter and the expression for the en- 
ergy is identical with Eq. (11) if k i s  replaced every- 
where with (k- %); thus, the spectrum remains un- 
changed, as expected. We can easily see  that this is 
also obtained from Eq. (14). 

Equation (14) can also be obtained by a shorter pro- 
cedure if we begin with a different form of the Hamil- 
tonian (1). In fact, if we allow for the existence of a 
homogeneous electric field by using the scalar potential 
- e6 r instead of the vector potential, and then adopt the 
momentum representation ( r  - ia/ak), we obtain direct- 
ly Eq. (14) for the Green function. However, it is more 
convenient to deal with the Hamiltonian (I), a s  is usual 
in problems of this kind, s o  a s  to avoid unnecessary 
complications. 

There is no difficulty in writing down the solution of 
Eq. (15) for  the correction to the Green function: 

G: ( t ,  t ' )  = j d t r ' G ~ )  ( t ,  t X )  { A ,  (t") 

We shall be interested in this correction only for co- 
incident times t l=t .  Going over to the w representation 
in Eq. (16) a t  t' = t, we obtain 

Here, each of the Fourier amplitudes, G"' (p, w) and 
Hl(w), A, is the coefficient in front of exp(- iwt); we 
shall assume that the amplitude A is real. 

The correction G"' contains a part depending ex- 
plicitly on A, and a part depending explicitly on A. De- 
noting these parts by c:" and G:", we shall write down 
the result obtained from them after integration with re- 
spect to E in Eq. (17); for simplicity, we shall omit the 
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indices and arguments; we thus find that 

Here, a = a ( E ) = E  +Ho [see Eqs. (10) and (8)], the ma- 
tr ix Hi is given by Eq. (18), and we have allowed for 
the fact that H!= E2. 

We shall now obtain expressions for A i  and for the 
current. Substituting the relationships (19) in Eq. (6), 
we obtain 

The following notation i s  used above: A = A, + pvi2 and 
A,* =A1*(- w). The equation for A: is obtained from 
Eq. (20) by complex conjugacy and by the substitution 
w--0.  

We shall carry out specific calculations for the sim- 
plified model in which the interaction is independent of 
the angle between p and p'; moreover, since integra- 
tions in Eq. (20) a r e  real  mainly near the Fermi sur- 
face, the interaction can in general be regarded a s  in- 
dependent of p and p'. Thus, our simplification is es- 
sentially 

u ( p - p ' )  + U ( E p ,  Er.) +g=const* 
(21) 

i.e., we have here a model of the BCS type. 

In this case i t  is known that A, is constant and real 
(fixation of the phase of the order parameter occurs 
because of the term p. vl, in the original Hamiltonian). 
This circumstance and the constancy of the function U 
allow us to simplify greatly Eq. (20) s o  that we can 
drop the terms containing an0/ap, which a r e  odd in re- 
spec t  of the momentum. Moreover, we shall consider 
moderately high frequencies: 

(ol2lGAo'W (22) 

The right-hand side of this condition is a consequence 
of the assumed smallness of the coupling constant g. 
As far a s  the quantity IPvizl i s  concerned, we shall as- 
sume that I pvi2 1 s A, (for too high values of Ipvl, 1 ,  the 
order parameter A, vanishes, i.e., this happens when 
Ipvlzl is the order of that value of the gap A, which 

would be obtained for v,,=O). 

Consequently, instead of Eq. (20), we now obtain 

Only the principal term is retained on the right-hand 
side of this equation, whereas the left-hand side i s  given 
in full because this is necessary in the subsequent dis- 
cussion. 

It is clear from Eq. (23) that it contains the field even 
in the linear approximation, which i s  not true if vlz=O. 

This is one of the reasons why the problem under con- 
sideration is of interest. 

Finally, we shall analyze the expression for the cur- 
rent (7). We shall consider f i rs t  the zeroth approxima- 
tion. At f i rs t  sight it might seem that even in this ap- 
proximation there is some contribution to the current 
because all  the quantities in the summation in Eq. (7) 
contain fields explicitly, i.e., they depend on the mo- 
mentum in t he combination k- A. In fact, there i s  no 
contribution to the current at all. This can be demon- 
strated by the following elementary consideration. The 
quasimomentum p of a particle in a field changes in ac- 
cordance with the equation of motion p = - A, and hence 
p(t) = k- A(t) (k is a constant of integration). Never- 
theless, it is known that the total current for a com- 
pletely filled band is zero. This shows why all the quan- 
tities depend specifically on k- A(t) (in the zeroth ap- 
proximation there a r e  no additional time dependences) 
and why in the zeroth approximation we can regard the 
current a s  zero. 

The current may appear only if we include, for ex- 
ample, interband transitions. This contribution is found 
in the next approximation. We should mention immedi- 
ately that the whole contribution to the current is ac- 
quired, a s  shown later, near the Fermi surface (5 =0) 
so  that we can go over to summation with respect to the 
variable p = (k- A) and then the additional dependence on 
t disappears completely. 

In the expression for the current, we shall identify 
the components j, and j, which depend explicitly on A, 
and A, a s  has been done earlier for the correction 
to the Green function given by Eq. (19). We shall not 
give detailed procedures, which a r e  generally not very 
complex. Instead, we shall mention a small point re- 
lating to the derivation of the expression for j,. If this 
expression i s  obtained using Eqs. (18) and (19), it might 
seem that it does not vanish in the limit w - 0; in fact, 
the expression under the summation sign contracts- 
a s  is easily shown-to the total derivative with respect 
to p and, therefore, the current j, vanishes in the limit 
w - 0, a s  expected. This can be used to transform the 
expression for j, even in the case when w f 0: it i s  
necessary to separate under the summation sign the 
part independent of the frequency and to drop it. 

In this way we obtain the following expressions for 
the current: 

We shall assume the model represented by Eq. (21); the 
terms with the derivative a ~ , / a p  containing the addi- 
tional smallness a r e  dropped. Retaining the principal 
terms in these expressions [using the condition (22)], 

135 Sov. Phys. JETP 53(1), Jan. 1981 i. G. Batyev and V. A. Borisyuk 



we finally find that 

The quantity j, represents the contribution of the 
virtual (when I o I < 2Ao) transitions of particles between 
the bands of an exciton insulator, which by definition is 
completely analogous to the corresponding contribution 
in the case of an ordinary insulator ; part of the current 
j, has no analog; this is the direct contribution of an 
electron- hole pair condensate associated probably with 
the polarization of this condensate. 

We can thus see  that Eqs. (23) and (24) give, in prin- 
ciple, the solution of the problem of determining the 
response (to an alternating electric field) of an exciton 
insulator with an allowed dipole transition. We shall 
analyze these expressions in the sections below. 

3. F R E E  OSCILLATIONS 

The system of equations for A, and A: =A:(- w) [the 
latter is obtained from Eq. (23) by complex conjugacy 
and the substitution w - - w] can be conveniently re- 
written for the quantities A,&&:; for these quantities we 
have 

x=A,+A;, v=Ai-A,'; 

The system (25) is obtained using the equation for the 
gap (12) in the model (21), which allows us to replace 
the first  term in Eq. (23) with 

We shall determine natural (eigen) frequencies by 
considering the system (25) when A = 0 (restrictions of 
this approach a r e  discussed in the next section). All 
further calculations will be made on the assumption that 

I P V ~ ~ ~ ~ A ~ .  (26 
We can see  directly that the coefficient in front of y in 
the first  equation of the system (25) (or the coefficient 
in front of x in the second equation) is generally small 
compared with the coefficient in front of x (or the co- 
efficient in front of y in the second equation); if ,  in the 
f i rs t  approximation, we assume that the density of 
states near the Fermi surface is constant, we find that 
this coefficient vanishes. In this approximation we find 
that f ree  oscillations have the following frequencies: 

(vl,=iv0, where vo is a real vector). The f i rs t  fre- 
quency is calculated using the condition (26); here, P, 
is the Fermi momentum (tp, = 0). 

It is known4 that a conventional exciton insulator (with 
vi,=O) exhibits an acoustic oscillation branch whose 
frequency in the case q=O of interest to us is thus zero. 

When the phase of the order parameter is fixed, the 
corresponding frequency naturally becomes finite and 
is given by Eq. (27.1) for the phase fixation mechanism 
(because of p* viz) considered here. The same result 
follows also from the expressions given in Ref. 5. 

In general, the origin of the low-frequency branch 
which begins from the frequency (27.1) and goes over 
to an acoustic branch at sufficiently high values of q 
(Ref. 5) i s  quite obvious. However, the appearance of a 
new branch whose frequency is close to 2A0 near q = 0, 
a s  given by Eq. (27.2), is fairly unexpected. Let us con- 
sider what occurs in the case of such oscillations. Both 
oscillations a r e  accompanied by the current, as indi- 
cated by Eq. (24); the direction of the current ("polar- 
ization" of the wave) i s  given by the vector v,; thus, 
the polarization i s  constant in the limit q-  0 and is in- 
dependent of the direction of wave propagation. In the 
case of the order parameter it is seen from Eqs. (27.1) 
and (27.2) that the frequency w, corresponds to a phase 
oscillation and the frequency w to an oscillation of the 
modulus of A. We can thus see  that these oscillations 
have no analogs in superfluid systems (we recall that 
we a r e  speaking here of oscillations with q = 0). 

The situation becomes somewhat clearer if we look 
from the other (microscopic) point of view. This ap- 
proach is aided by the use of a pseudospin model pro- 
posed for superconductors by ~ n d e r s o n , ~  in which each 
point in the p space is attributed a spin 1/2. Naturally, 
this model applies also to exciton insulators. Collec- 
tive excitations can be investigated by this approach; 
naturally, the equations then obtained a r e  completely 
identical withthe system (25) if A = 0. These excitations 
a r e  simply spin waves in a pseudospin system or, in 
other words, excitons in a system of Cooper pairs. 
Hence, i t  is clear that this is hardly possible in the 
case of structure-free particles. 

We shall now consider more accurate calculation of 
the oscillation frequency (27.2). The point is this: this 
frequency is slightly greater than 2A0, as is indicated 
by the initial system (25), i.e., an oscillation quantum 
may dissociate into two one-particle excitations. The 
problem is to find the attenuation and frequency shift 
which result from the inclusion in the system (25) of 
the terms rejected earlier. 

We shall proceed a s  follows. We shall f i rs t  calculate 
the determinant D(w) of the system (25) in the sub- 
threshold range ( w  ( c: ZA,. We shall then find an analytic 
continuation of D(w) via the upper half-plane to the re- 
gion beyond the threshold and find the frequency and at- 
tenuation in the usual way from the equation D(w)=O. 
It is then found that in our case it is sufficient to calcu- 
late the integrals in Eq. (25) subject to the condition 

1 (0/2)'-Ao'1 ((Pxvo)'. 
(28) 

The calculation is a simple process. The results are: 
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where y=p,/2s2 is the density of states on the Fermi 
surface and A=gy i s  the dimensionless coupling con- 
stant. In the calculation of the second integral in the 
system (29) we have to allow for the difference between 
the density of states near the Fermi surface y(5) and 
the constant density y, namely, 

The integral is then logarithmically divergent and this 
gives r ise  to a coupling constant A. 

We shall now introduce the following dimensionless 
quantities: 

The determinant of the system (25), including Eqs. (29) 
and (30), can be written (apart from an unimportant fac- 
tor) in the form 

The constant a! is small and it amounts to ( lno  I>> 1 in 
the weak interaction limit. This makes it possible to 
find relatively simply the zero value of D by f i rs t  de- 
termining the analytic continuation of Eq. (31) f rom the 
negative half-axis v via the upper half-plane to the posi- 
tive half-axis and then to the lower half-plane. The 
zero value of D is located a t  the point vo, where 

y= lr, 1 e'f, rp2nllnI v, 1, I va 1 (ln 1 yo 1)'=4a2. 
(32) 

It should be noted that the phase cp is negative and, a s  
expected, small. Solving approximately the relation- 
ships (32), we finally obtain the following expression for 
the oscillation frequency and attenuation 

The frequency shift is s o  small that we can use the con- 
dition (28) and the attenuation i s  even less. The calcula- 
tions a r e  carried out subject to the condition (26), but 
in re$ect of the order of magnitude the result (33) is 
valid also if p,vo -Ao; even in this case the attenuation 
remains weak. 

The origin of this attenuation weakness in Eq. (33) can 
be understood partly if we assume that the amplitude W 
of decay of an oscillation quantum into two Fermi ex- 
citations depends on the angle 6 between the wave 
polarization represented by the vector vo and the ex- 
citation momentum in accordance with the law W 
= Wo cos6. Then, the probability of decay per unit 
time, calculated from the familiar formula, is 

[in the notation of Eq. (30)]. Here, parentheses a r e  
used to identify the quantity which acts a s  the effective 
density of states of the spectrum 

E-[xa+At+(pvo)']" 

near the edge of the spectrum. The quantity v is ap- 
proximately (cr/lncr), for a f ree  oscillation and, there- 
fore, we can now understand how the small factor in 
Imw, appears from Eq. (33). 

4. RESPONSE 

The most interesting a r e  the natural and adjoining 
frequencies. Consequently, we shall consider low fre- 
quencies [where the natural frequency wi of Eq. (27.1) 
is located] and high frequencies (near 2Ao). It follows 
from the system (25) that in the low-frequency limit 

We shall now consider what happens in the limit of a 
static electric field (w -- 0, wA = const). It follows from 
Eq. (34) that the correction to the order parameter i s  

(in terms of conventional units with ti= 1). Here, 81 is 
the electric field. 

Having made some simple calculations of the inte- 
grals in Eq. (24) subject to the conditions represented 
by Eq. (26) and by ( w  I<< Ao, and substituting in the re- 
sultant expression the resonant terms A,* A: from Eq. 
(34), we find that approximately 

o r  in terms of conventional units 

where v, =p, /m and 

The expression for the current'(36) is simplified by 
dropping the term (P,V~/A,)~ compared with the non- 
resonant part and also dropping the contribution A t -  A: 
containing an additional smallness A. 

We shall now explain the notation introduced in Eqs. 
(36) and (37). The quantity c i s  the static permittivity 
of an exciton insulator in the limit vI2=O, whereas c0 
is the same permittivity but without allowance for the 
contribution of the electron- hole subsystem considered 
here. The required expression for the current can be 
obtained by relating it to the polarization P in the same 
subsystem: 

. . e-e . 
j=P, ~ = 4 8 ,  

4n 

which gives 

The factor 1/2 in Eq. (36) appears because this is the 
contribution made to the current only by electrons with 
one projection of the spin. This explains the meaning 
of the notation. The expression (37) i s  in agreement 
with the results obtained by Baklanov and chaplikT 

It is appropriate to make here the following comment. 
The method used in the preceding section to find the 
natural frequencies gives, strictly speaking, the correct 
results only in the case of transverse oscillations 
(ql vo) and only in the limit c - - (~q/c'/~>> cot); these 
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restrictions can be lifted, as is known, by solving [in- 
stead of Eq. (25) with A = 0] the Maxwell equations and 
using the response (36). It is generally found that the 
spectrum is of the polariton type; in particular, the 
frequency of a transverse oscillation in the limit cq/ 
E ' / ~ < <  W ,  is identical with the frequency w,, of a longi- 
tudinal oscillation (q I1 vo), and in the latter case we have 

In accordance with our assumptions, this ratio is small. 

We shall now go over to a study of the response at 
high frequencies (1 w 1 = 2A,). We shall f i rs t  consider the 
case 

In this limit, we obtain 

The result is qualitatively valid up to 

when the resonant component becomes important. We 
can see  that the contribution of the additional degrees of 
freedom (i.e., the contribution of the condensate) is 
large in a fairly wide range of frequencies. 

We shall now consider the frequency range (28). A 
considerable contribution to j, originates from A l  +A; 
and, therefore, we shall give the expression only for 
this quantity: 

where the notation introduced in Eqs. (29) and (30) i s  
used. We shall give the separate expressions for  j, 
and j,: 

where n = v,, /v,. The conversion to conventional units 
is made by multiplying by e2/mc.  

In the calculation of Eqs. (39)- (41) it is  assumed that 
v is negative. The expression for the positive values 
of v is obtained, a s  before, by analytic continuation 
across the upper half-plane. 

All that we have said s o  far  on the determination of 
natural frequencies near w, clearly remains valid also 
in the present case. Longitudinal oscillations obviously 
disappear because of the strong attenuation. 

The expressions (39) and (41) generally resemble Eq. 
(36); naturally, they a re  somewhat more complex be- 
cause the absorption edge has its effect. The common 
feature of these expressions is the fairly unusual angu- 
lar  dependence of the coefficient for the resonant part. 
This dependence appears because the polarization of 
f ree  oscillations is constant (as pointed out above) and 
i t  is governed by the quantity v,. 

We have thus solved the problem formulated above: 
we have found the response [the results (36), (39), and 

(41) should be multiplied only by 2 to represent both 
projections of the spin] . One of the intermediate re- 
sults, Eq. (35), which gives the changes in the order 
parameter in a static electric field, is interesting. 

The results obtained a r e  typical of exciton insulators 
with an allowed dipole transition. Since even in the 
most standard part [far from the absorption edges given 
by Eq. (36)] the response has i t s  specific features (an 
unusual angular dependence and particularly the be- 
havior near the absorption edge), we may expect that 
relatively simple optical methods will enable identifica- 
tion of this type of substance. 

5. CONCLUSIONS 

We shall consider once again the problem of deriva- 
tion of the expression for the current which has been 
subject recently to some controversy. Our derivation is 
given in Sec. 1. In fact, we have used there the effec- 
tive mass approximation. The fact that there a r e  two 
bands has the formal effect that the total set  of the 
functions of the problem (apart from the spin factor) 
can be represented in the form 

which follows from the form of the Hamiltonian. It 
would seem that such an approach cannot cause any mis- 
understanding. However, Volkov and ~ o ~ a e v '  have sug- 
gested an explicit allowance for the fact that the elec- 
tron eigenfunctions a r e  of the Bloch type, which may 
give r ise  to an additional contribution to the current 
apart from that obtained in the effective mass approxi- 
mation. This approach results in a contradiction, as 
shown in Ref. 8, where the solution to this problem is 
suggested. 

It should be stressed that if we use a definition of the 
current employed in Ref. 8 and apply it particularly to 
the problem under discussion, the result is Eq. (7), 
which gives the usual expression for the electron velocity 
v =* dE, /dk (* E, a r e  the energies of the upper and 
lower bands of an exciton insulator). Irrespective of 
the phase of A, the total current for a filled band is 
zero, which formally follows from the fact that v i s  a 
total derivative. This circumstance has been used 
earlier to analyze the expression for the current. The 
same conclusion is reached by Volkov et u Z . , ~  but they 
speak of cancellation of the interband and intraband con- 
tributions [see comments after Eq. (4) in Ref. 31. Apart 
from the terminology, the point of view of Volkov et aL3 
is basically in agreement with ours in respect of the 
absence of a spontaneous homogeneous current. 

We shall now consider the role of other (apart f rom 
p. vl,) mechanisms of fixation of the phase of the order 
parameter A ignored by us. For an exciton insulator 
with vi2=0 these mechanisms also have the effect that 
the acoustic branch begins from a finite 
however, if q = 0 such an oscillation cannot be accom- 
panied by the current because the vector cannot be di- 
rected anywhere and, therefore, the response is not 
sensitive to such an oscillation. However, in the case 
of a substance with a finite value of v12 we can have a 
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current ,  a s  shown above, and consequent resonant  be- 
havior of the response.  Therefore,  i t  is clear that 
other  mechanisms of phase  fixation can hardly change 
anything in principle, a p a r t  f r o m  resul t ing in, f o r  ex- 
ample, some renormalizat ion of the  frequency wi of 
f r e e  oscillations. The frequency w 2  is found to b e  rela- 
tively insensi t ive t o  the  additional interact ion fixing the 
phase, because th i s  frequency corresponds (as  pointed 
out in  Sec. 3) to  an oscillation mainly of the modulus 
of A. 
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Experimental determination of the critical exponent and of 
the asymmetric and nonasymptotic corrections to the 
equation of the coexistence curve of Freon-1 13 
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The coexistence curve (CC) of Freon- 11 3 was experimentally investigated in a wide range of temperatures, 
including the vicinity of the critical point, for the purpose of checking on new theories of critical phenomena, 
the results of which are presented in the form of extended expansions. It is shown that the CC can be 
described by a formula with not less than four terms, having different forms for the liquid and gas branches. 
Statistical reduction of the experimental data on the CC yields the exponents and the coefficient of such a 
formula. It is established that the expressions for the symmetric and asymmetric terms are the same for the 
liquid and gas branches. The validity of zero-order symmetric scaling is proved. A singularity is found in the 
CC "diameter." From a comparison of the experimental data with the extended nonanalytic theories it is 
deduced that the existing theories agree with experiment only qualitatively. 

PACS numbers: 64.60.Fr 

1. INTRODUCTION 

In the  last decade much p r o g r e s s  w a s  made i n  t h e  the- 
oretical r e s e a r c h  into the c r i t i ca l  state1 and th i s  s t im-  
ulated a numher of experimental  s tudies ,  which are re- 
viewed in Refs. 2 and 3. Methods w e r e  developed4-lo 
fo r  the construction of a n  extended nonanalytic theory 
of c r i t i ca l  phenomena. The  r e s u l t s  are presen ted  in 
the f o r m  of s e r i e s  whose leading t e r m s  correspond 
to zero-order  scaling. The  a s y m m e t r i c a l  t e r m s  take 
into account the difference between a real liquid + gas  
sys tem and idealized models ,  and when used  together 
with nonasymptotic s y m m e t r i c a l  t e r m s  they en la rge  
the describable vicinity of the  c r i t i ca l  points. Various 
suggestions are encountered i n  t h e  theoret ical  papers  
concerning t h e  numer ica l  values of t h e  exponents of the 
correct ion t e r m s ,  but the  values of the  coefficients do 
not lend themselves so f a r  t o  theoret ical  calculation. 

T o  find t h e  t r u e  equation of s t a t e  in a l a r g e  vicinity of 
t h e  critical point it becomes urgent ,  besides the  ex- 
perimental  determinat ion of t h e  leading (limiting, zero-  
o r d e r )  t e r m s ,  to obtain by experiment  the succeeding 
t e r m s  of the  expansion, and  t h i s  calls f o r  a highly ac- 
curate study of the  behavior of the  medium in a l a r g e r  
vicinity of the  critical point. In par t i cu la r ,  i n  the  study 
of the  liquid-vapor coexistence curve  (CC), besides the  
determination of the  lea ding term^,^'^'^"'^ at tempts  w e r e  
a l ready  made  to find t h e  f i r s t  nonasymptotic and asym-  
m e t r i c  correct ions.  16*0 It is obvious that the  experi- 
mentally determined f o r m  of the  correct ion terms can 
b e  s t rongly influenced by even a n  insignificant error 
made when choosing the  leading t e r m  of the  expansion. 
However, in  the  experimental  determination of the  
limiting laws  frequent u s e  is made of finite intervals  
of the state p a r a m e t e r s ,  so that  as a r u l e  one obtains 
not the  limiting zero-order  scal ing exponents, but cer - 
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