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We use the quantum-mechanical inverse scattering method to diagonalize the Hamiltonian of a many- 
component quantum system on a one-dimensional lattice. We construct the generating functional of the 
commuting integrals of motion and the corresponding eigenfunctions and eigenvalues. As an application of 
the formalism developed here we evaluate the spectrum in the Gross-Neveu model. We enumerate a number 
of quantum-mechanical systems for which one can obtain an exact solution by this method. 
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The development of a quantum-mechanical inverse 
scattering method enables one to combine in a single 
scheme the known exact solutions of many different 
quantum-mechanical systems and to indicate new ex- 
actly soluble models (see the review article by 
Faddeevl and Refs. 2 -10). ~ a n g ' s  generalization" of 
the Bethe Ansatz to the case of the many -component 
non-linear Schradinger equation which describes the 
interaction of a Bose-field multiplet has been analyzed 
from the point of view of the quantum-mechanical in- 
verse scattering method (QISM).~ One of the central 
objects of the QISM is the R-matrix which determines 
the commutation relations between the generating func- 
tional of the quantum-mechanical integrals of motion 
and the creation and annihilation operators. The R- 
matrix satisfies the Yang-Baxter relation (equation 
for S-matrix factorization) and, in turn, can be con- 
sidered to be the operator of the auxiliary linear prob- 
lem connected with the exactly soluble quantum-mech- 
anical system on a lattice. For example, the 4 x 4 R- 
matrix of the single-component non-linear Schr8dinger 
equationzn3 is the operator of the linear problem con- 
nected with an isotropic ferromagnetic spin-i chain.4 
For the (M + 1)' x (M + 1)' R-matrix used earlier,' such 
a system is the generalized Heisenberg ferromagnet- 
a quantal system on a one-dimensional chain with short- 
range action and the space of states on a site i s  equal 
to e. The present paper is basically devoted to this 
system. 

Ansatz. We apply the quantal inverse scattering meth- 
od to construct a generating functional for the integrals 
of motion t h ) ,  we get the commutation relations be- 
tween the t h )  and the creation and annihilation opera- 
tors  of the eigenstates of the Hamiltonian (21, and we 
recover the transcendental equation for (M - 1)-st set 
of quasi-momenta that determine the eigenstates for 
finite N .  In the limit as N -  - the system will be a 
ferromagnet ( &  = -1) o r  an antiferromagnet ( r .  = 1). 
For those cases we evaluate the spectrum of the ele- 
mentary excitations and their S-matrix. 

The revival of interest in the use of the Bethe Ansatz 
for solving relativistically invariant sine-Gordon mod- 
els6 and the massive Thirring rnodel8*l3 led to interest- 
ing results for asymptotically free models with an 
isotropic fermion multiplet (number of colors N ,  = 2) 
and with a four-ferrnion interaction (modification of the 
Gross-Neveu and Vaks-Larkin We show 
that the equations for the quasi-momenta, which deter- 
mine the eigenfunctions of the Hamiltonians of these 
models, a re  the same, apart from the inhomogeneous 
term, a s  the corresponding equations of the generalized 
Heisenberg ferromagnet. This enables us  to evaluate 
the spectrum of the asymptotic states of the model, 
which i s  the same a s  the quasi-classical answer in 
Ref. 16. 

The plan of the paper is as follows. In section 1 we 

The complete space of states of the quantal system f l  construct the monodromy matrix of the auxiliary linear 

will be equal to the product of the spaces of the states problem, we evaluate the commutation relations be- 

in all the si tes of the chain: tween its  elements, and we find the generating function- 
a l  for the integrals of motion t ( ~ ) .  In section 2 we " 

%=?,%,, %,==Cx, dim C"=M. (1) diagonalize the trace of the transition matrix, and give "-. 
the transcendental equations for the quasi-momenta 

The Hamiltonian has the form (assuming the periodicity which parametrize the eigenstates t(A) for a finite num- 
condition X,,, = q) ber of si tes N  on the lattice. We go to the limit a s  

n N  - - in the ferromagnetic case & = -1 and calculate 
H = C ~ P  E-*O (2) the S-matrix of the excitations, and realize the Zamol- 

"-1 
odchikov algebra in section 3. In section 4 we consider 

where P,,,,, is the permutation operator in the Xn the more complicated case of the antiferromagnetic 
8 %,,, space. If we choose in C a base {e,), then the state E =  1, when the eigenstates of the Hamiltonian (2) 
action of P,,,,, on the base in %will be as follows: a re  described by integral equations a s  N -  -. In the 

p,,,+,e,,@ . . . @e,"@e,.,@ . . . Qe,N=ei,@ . . . @ed.,,Qeb@ . . . Qe,. (3) 
last section the formalism developed here i s  applied to 
the Gross-Neveu model and we list  a number of quantum 

Sutherlandl2 has studied the generalized Heisenberg models the exact solution of which can be obtained by 
ferromagnet in the framework of Bethe's coordinate this method. 
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1. As in the classical variant of the inverse scat- 
tering method, the basic object of study fo r  the QISM*" 
i s  the auxiliary linear problem connected with the non- 
linear equation (in the present case-the Heisenberg 
equations for quantum operators). We shall give later 
the Heisenberg equations generated by the Hamiltonian 
(21, but we start  with considering the linear problem on 
a chain of N sites: 

The operator Ln(h) acts in the space C"@ [see ( I ) ]  
and we can represent i t  as an M X M matrix in Cn (the 
auxiliary space) with matrix elements-operators in Xn 
(in the space of the quantum states). The operator 
Ln(A) which interests us can be written as follows: 

where P, i s  the permutation operator in PO&",, A is 
the spectral parameter, a(h) + b(h) = 1,  ah)=^/(^ + ic), 
and &=i l .  

The analog in the QISM of the transition from the po- 
tential of the linear problem to the scattering data is the 
transition from the local operators that act non-trivial- 
ly only in to the elements of the transition matrix 
T,(A)-to operators in &q For Eq. (4) TN(h) i s  given 
a s  a product: 

T N  ( A )  = L N  ( A )  L ~ - < ( A )  . . . L, ( A ) .  (6 

The central role in the exact solution of the quanta1 
equations is played by the commutation relations be- 
tween the matrix elements of TN(A). These relations 
can be found because of the special form of the opera- 
tor L,(A). Indeed, L,(h) satisfies the Yang-Baxter r e -  
lations, which we write down a s  follows. We consider 
the product of three spaces Cf@ C f @  (the lower in- 
dices a re  used to distinguish operators which act non- 
trivially in the corresponding spaces). We introduce 
three operators: 

L . ~  ( A )  =a ( A )  + b ( A )  P,, (7) 

and similarly L,,(x) and L,,(x). In that case the follow- 
ing relation holds: 

We now consider two transition matrices T,,h) and 
T,,(A) in the space @ @ Cf 8 8 which act trivially in 
Cf and q, respectively. Using the fact that L,,h) and 
L,,(x) commute when nf m, we get 

Lax ( A )  Len ( P )  . . . L.1 (A )  Lsi (c) ( A )  T N ~  ( P ) ,  

and the following equation holds: 

L~(~-~)T~.(A)TN~(P)=TN~(P)TN~(~)L*(A-P). (9 ) 

It is  this equation which determines the required com- 
mutation relations between the elements of T,h). 

To write Eq. (9) more compactly i t  i s  convenient to 
rewrite it, using the tensor product 

where R h )  = b(A) + a(A)P, while P i s  the permutation 
operator in C" 8 CM. An obvious consequence of Eq. 
(10) i s  that the trace of T,(A) a s  matrix in C" commutes 

for  different h with itself: 

I t ( x ) , t ( p ) ] = O ,  t ( A ) - S p T , ( A ) .  

This enables us to consider t h )  as a generating func- 
tional of the higher integrals of motion. Indeed, the 
operators 

a re  local for  1 sN and by virtue of (11) commute with 
one another. The first  two of them have the form 

X 

~ ' ~ ' = i z  [P,+I,,+I. P.,,+,I. 
n-l 

The operator for a cyclic permutation t(O), 

t (O)e , ,@.  . . @e,,.,@e,,=etN@e.,@ .. . Be,,,-,, 

is ,  in the limit N- a, connected with the momentum 
operator, and it is  natural to call the logarithm of i t s  
eigenvalue the momentum of the state. 

The linear problem (4) is connected a s  follows with 
the Heisenberg equations of motion. We rewrite the 
Hamiltonian (2) in terms of the basis matrices e,,: 

The Heisenberg equations of motion for the e", 

can be written in the Lax form 

where the operator-valued matrix Mn i s  given by the 
equations 

The proof of this statement follows easily from the 
Heisenberg equations of motion for L,h) and the Yang- 
Baxter relations. 4*17 

2. To make the formulae clearer and simpler we 
shall consider the case M = 3 (we give the final an- 
swers for arbitrary M). The 3 X 3 matrix L,h) can be 
written a s  follows: 

a ( A )  +b ( A )  en1' b  ( A )  enaL b  ( A )  e," 
b  ( A )  enta a ( A )  +b ( A )  enzz b  ( A )  e," 

L, ( A )  = 
b  ( A )  e," b  ( A )  emW a ( A )  +b  ( A )  enaa ) (13) 

where (e:),, = 6,,6,, a r e  the basic matrix-operators in 
T. There exists in & a h-independent vector lo),, 
action on which (element-by-element) makes L,h) 
triangular : 

We construct in Z t h e  vector 10) which i s  the product 
of the vectors 1 O), for all sites ("baren vacuum, ferro- 
magnetic state), 
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T;~' (A): 

r ( a - p ) ~ J O  (A) @T:' (p)=TdO ( C L )  'T:') ( A ) ~ ( A - P ) -  (23 

Operating on such a vector all L,(A) a re  triangular and, 
hence, the transition matrix TNh)  is triangular: 

a(AIN 0 
h l A ) l O ) = (  O a ( A ) N : ) I O ) .  (15) 

c1(u c z ( a )  I 

In correspondence with these results i t  is natural to 
write TNh)  in block form 

The action of the introduced operators on the generat- 
ing vector 1 0) is as  follows: 

The vectors 10) and / A ,  a) a re  linearly independent, so 
that it i s  natural to call C,h) creation operators and 
B,h) annihilation operators. 

We get from (10) the commutation relations (we write 
down those which are  of most interest for what follows): 

1 
D(l i . )c . (p)=c.(p)D(h)  - C. ( A )  D (p) . 

a ( ~ - h )  a(p-A) 

The difference from the commutation relations for the 
non-linear Schrcdinger equation3 and the spin-* chain4 
is connected with the appearance in (17) of the matrix 

r (h)  -b (h) I+a(h)P ,  Po,, ~ ~ - 6 ~ ~ 6 ~ ~ ~  (19) 

where P i s  the permutation operator in 8 C2 (in 
@ CYml for the general case M > 3). 

In correspondence with the algebraic explanation of 
the Bethe Ansatzl for the construction of the eigenvec- 
tors t(A)-the trace of the monodromy matrix-we 
must act upon 10) with the creation operators C,h) and, 
using Eqs. (17) and (la), obtain transcendental equa- 
tions for the quasi-momenta A,. We consider the vec- 
tor 

( I" , ,  ...,I%, F)=Ce,(lrr) . . . Ch(A.) 10)Fo.. . ..,. (20) 

In order that this is an eigenvector for t h )  it is neces- 
sary and sufficient that F be an eigenvector for the 
operator t,h) = T r  T,(" (A) and that the quasi-momenta 
satisfy the equation 

I= 1 

The operators which appear here 

completely reproduce our initial construction with the 
single difference that now we have a chain of n sites 
and the linear operator L?'(X -A,) in C? g c  depends 
through A, on the site number (inhomogeneous chain"). 
The latter, however, does not prevent a relation which 
is analogous to (10) for TN(A) from being satisfied for 

Hence it follows that 

and Eq. (21) and the requirement that the vector F be 
an eigenvector of t , ( ~ )  a re  therefore consistent. In our 
case (M= 3) T,' b) is an operator in c2@%'l), i.e., a 
2 x 2 matrix and the matrix elements a re  operators in 
xi"=% k.1 c 9 2Y11)= @. Writing T,!')(x) in the form 

we can construct the eigenvector F in the same way as  
in the preceding case: 

F=cl' )  (a : ' ) ) .  . . ~ 1 1 )  (c) ) [ O ) l i ) ~ l ~ ~ ' )  )I1), 

The commutation relations between A 'l'h), B("(x), 
c'"(x), and ~ " ' h )  which follow from (23) enable us to 
find the eigenvalue t l h )  and the equations for the 
auxiliary set of quasi-momenta {L:~'}: 

For the first set of quasi-momenta {A,} we get the 
scalar equations 

and the eigenvalues U(A) of the operator t ( ~ )  

In the case of arbitrary M the matrices L(') and r 
will have the dimensionality (M - 1)' x (M - 1)' and it i s  
convenient to introduce the following notation. Instead 
of (X,E we shall write (Xi1'); 1, instead of (X:"): we 
shall write hj2')",2, and so on. 

We can regard the operator T$) (A) in (22) as a mono- 
dromy matrix on a lattice with n, sites with a space of 
states CY-' in the site. To construct the eigenvectors 
of the operator t ,h) one is obliged to introduce the 
transition matrix (A) on a lattice of n2 sites, and so 
on, up to T~;::'(X). The eigenvectors 

tb(a)  -,sp T: ( a )  

(the trace i s  taken in the space CM") a re  determined 
by the set of quasi-momenta 

(a/w1') ;-I, . . . , ( L : ~ - ' ) )  y - 1 .  

The required eigenvector t h )  i s  thus determined by 
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the (M - 1)-st se t  of quasi-momenta 

satisfying the following equations: 

i+j  

The eigenvalue t(A) for given se ts  (~y ' f ik  is the fol- 
lowing: 

It is convenient to introduce the variables fiy =A:'' 
+ gick and then, taking the logarithm of the obtained 
se t  (30), we arrive a t  the equations from Sutherland's 

Here the J?) a r e  integers o r  half-integers (depending 
on whether the number n, -n,, -n,, + 1 is even o r  odd), 
and B (x) = -2 arctanx. 

We note also that if we use the formalism developed 
here we can diagonalize intrinsically the transition 
matrix T,h from (6). To prove that it is sufficient to 
note that i t  can be written in the form of the trace of a 
new transition matrix: 

In this formula the matrices L,,,(h)are operators inc':@ 
C : @ 8 . .  . @ C: and act non-trivially only in e0 C$ 
[cf. (7)], while the trace is taken with respect to the 
space e. 

3. The transition to the limit of a system with an in- 
finite number of degrees of freedom (N- m) is essen- 
tially different for E = -1 and c = 1. The reason i s  that 
such a transition N - m is physically of interest when 
the spectrum of the Hamiltonian H is non-negative. 
Therefore in the discrete and bounded spectrum of H 
(when N < .o) we a r e  concerned only with the vicinity of 
the lowest eigenvalue a s  N - m. 

If E = -1, thenthe minimum eigenvalue of H corresponds 

to the bare  vacuum 

s o  that the renormalized energy operator H + N has 
positive excitation energies as N - .a. 

Proceeding as in the spin-$ case (M= 2) and the case 
of the non-linear SchrMinger e q ~ a t i o n l * ~ * ~ ,  i.e., regu- 
larizing the operator T,(A) by using i t s  vacuum average 

we a r e  led to the following result: the generating func- 
tion of the integrals of motion as N - .o becomes Dh). 
The commutation relations take the form 

Let us say a few words about the region in which the 
quasi-momenta A, vary. As N- m the first  of the equa- 
tions of the se t  (32) splits off and the following variants 
a r e  possible. If there a r e  no identical numbers among 
the Jt, all A, lie on the line Im A, =*. If, however, 
some of the numbers Jt a r e  the same, the m quasi- 
momenta :, corresponding to them tend, as N -- m y  to 
the values 

k=i ,..., m. 

Such a set  i, describes a bound state of rn magnons, and 
the eigenvalue D(A) has the form 

ha-h-iml2 
D(h)c . ,  ( X I ) .  . . cmmlXm)  lo)= ho-h+im,2 C.,(Xl).  . . Cam(Xm) 10). (36) 

The eigenvalues of the Hamiltonian H + N and of the 
momentum a r e  equal to 

If we consider the operators A,(A), 

A. (h )  =C. ( h ) D  (A) -', (38) 

we get, using the commutation relations (34), 

~ . ( h ) ~ e ( p )  = S d d ( h - p ) A o ( ~ ) A d ( h ) ,  (39) 
a (-A) S$ ( A )  a rd.cd 0.). (40) 

The operators A,(&) realize a Zamolodchikov algebra1' 
for the magnons and S is the magnon scattering opera- 
tor  (one can vexify this also directly by studying the 
coordinate representation of the wave function). 

We note that we can diagonalize the Hamiltonian (2) 
when we add to i t  the operator H,: 

The parameters h, describe M - 1) emagnetic fields." 

4. We consider now the limit N- m in the case c = 1. 
The vector 10) corresponds to the largest eigenvalue 
and we a r e  not interested in it. We denote by (a) the 
vector corresponding to the lowest eigenvalue ("filled 
vacuum*, antiferromagnetic state). 
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Following Sutherland12 one can show that 1 GI) i s  char- 
acterized by the following occupation numbers n, and 
quantum numbers J?) : 

M-k 
nh-- 

M 
N,  l/:~-l,"' +1; k - i , 2 , .  . . , M-I. (41) 

In the limit a s  N - - the numbers n, -- - and the quasi- 
momenta densely fill the axis. We change to a contin- 
uous characteristic of the quasi-momenta-their oc- 
cupation density: 

For the p ,h)  which characterize the ground state 151) 
we get from the set (32) a set of integral equations:12 

+- I j K 1 ~ ( h - p ) p ~ ( ~ ) d ~ = ~ 0 ' ( 2 h ) 8 , 1 .  (43) 
-m 

The Fourier transform ;;,(k) of the solution p,(A) has 
the form 

We show that in the limit N--  .o the generating func- 
tional of the integrals again becomes D(A). Indeed, for 
sufficiently small X the contribution to the eigenvalue 
t h )  from a h ) N  will be of order e x p [ ~ ~ e  In a ( h ) ]  and all 
terms in U(A) a re  exponentially small compared to the 
last one : 

In the limit a s  N -  - the sum changes into an integral 
with density p,(A): 

The function I(A) obtained here i s  the generating func- 
tion for the values of the densities of the higher inte- 
grals in the ground state 151). As in a normal antifer- 
romagnet,aO the excitations a re  described by a change 
in the distribution of the quantum numbers J:') .  The 
simplest excitation 

leads, as N-- 00, to an addition to (43) in the b r m  of an 
inhomogeneous term N"6h -~,)6,,, and for p,,h,A,) 
we have 

pa (A, t )  -pi (A) +N-'R1k(h-L). (46) 

where 

Re(h) = ( ( I + K )  -')a(h) 

i s  the resolvent of the integral Eq. (43). The energy 
and momentum of such an excitation are  the following: 

+- 
ek(ho) = j 01(2h) Rkl (h-ha)dh, 

-- (47) 

There a re  thus M - 1 excitation branches. 

We now turn to the scattering of excitations. In the 
limit N -  w, n,- - we a re  unable to study the coordi- 
nate representation of the wave function. However, 
the right-hand sides of the periodicity conditions, Eqs. 
(32), have the meaning of the scattering phase of a 
magnon of type I with momentum A:') by the other mag- 
nons. Proceeding as  in Korepin's paper8 we get for 
the phase shift of the scattering of the I-th excitation by 
the m -th 

2-8 

cpl,(h-p) =2n 5 (&,6 ( v )  - R l m ( v ) )  dv, 
E 

For the corresponding S-matrix we can also con- 
struct a Zamolodchikov algebrala: 

To do this we determine the operators a, (X), d, h ) ;  
j = 1, . . . , M - 1 and how they operate upon the state 
with a fixed set of quasi-momenta: 

(52 
The commutation relations between the operators 

creating the excitations C(1, X) and the operators a,(p) 
have the form 

a,(p-ik/2)C(1, h) =a,, r (p-h)C(l ,  h )ak(v - ik /2 ) ,  
+- +- 

(53) 

ln ah,, ( p )  = ln a ( p - A  - Rh-i 1 (h)dh- j ( 1 )  ln a ( ~ - h ) d h .  (54) 
-- -- 

The generators of the Zamolodchikov algebra a re  the 
following operators : 

A,(h)  =C(l ,  h)a,-'(A-il/2) <Qla,(h-il/2) IP). (55) 

5. The formalism developed in the preceding sec- 
tions can be naturally applied to multi-component sys- 
tems. As an example we consider the chiral Gross- 
Neveu model. This i s  a relatively invariant field- 
theory model in a two-dimensional space-time with 
four-fermion interactions. The model i s  determined 
by the Langrangian 

9= jdz( i i6rpaw+g( (+$)'-(+rB9)')). 

The operators Gb(y) have not only a spinor in- 
dex a, /3= 1,2, but also an isotopic (color) index a, b 
= 1,2, . . . , M and satisfy the anti-commutation relations 

The Hamiltonian of this model 

H=Sdz (igr.+~.rp,.-i~~+a,~,.+4gg,,+~~+$Lb~U) (56) 

was diagonalized in Refs. 14, 15 by means of the coor- 
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dinate Bethe Ansatz for  the case of the isotopic number 
of colors M = 2 (Andrej and Lowenstein2' have also con- 
sidered the case of arbitrary M). The eigenstates of H 
a re  parametrized by the momenta k= (k,, k2,. . . , k,), 
the spirality u s  (ul, us, . . . , uN), where u, = *I, and the 
isotopic vector F which will be defined below. The 
eigenstates a re  constructed from the non-physical 
vacuum 1 0) : $,, 10) = 0 and have the form 

The wave function x is a superposition of N! plane 
waves 

where p is a permutation of N numbers, p: (1,2, . . . , N) - (pl, p2,. . . ,fix), and the coefficients F(p)  describe 
the way x depends on the isotopic indices and a r e  con- 
nected with one another through the two-particle S- 
matrix. 

The S-matrix depends only on the spiralities u, = * 1 
of the colliding  particle^:^^*^^ 

P,, i s  the permutation operator [see (3)I. 

Denoting the coefficient corresponding to the identity 
permutation simply by F we get from the periodicity 
condition for the wave function vector equations for the 
set of momenta k (L i s  the size of the section where the 
periodic problem i s  considered) 

exp (ikjL) F=Z,F. (58) 

The operators Z, = S,+U . . . SN,SU . . . are  con- 
structed from the two-particle S-matrices and they are,  
a s  was noted in Ref. 5, a particular value of the trace 
of the transition matrix for an inhomogeneous lattice of 
N sites (see section 2). Hence, the eigenvectors of 2, 
can be constructed according to the proposed scheme 
for any M. 

For finite L andN we shall have M - 1 sets  of quasi- 
momenta~ j ( ' ) ,  j = 1 , 2 , .  . . ,n,; 1=1,2, . .  . ,M - 1 which 
satisfy the set  of Eqs. (32) with small changes in the 
first  equations: 

Using this set to determine (for given L,  N, o,, n,, 
J?)) the momenta k, we find the energy and momentum 

of the state: 

To  get a Hamiltonian which is semi-bounded from 
below we introduce an ultra-violet cut-off A ( 1  k, I A) 
and we define the physical vacuum as the stat'e with the 
lowest energy with this cut-off. The number of fer-  
mions in the ground state will then be connected with 
A and L : N - AL. We are  interested in the field-theo- 
retic limit: N, L,  A- -. In that limit the ground 
state is described by the densities p,h) of the quasi- 
momentum A(') distribution. We can find this from the 
set  of integral equations: 

As in the case of an antiferrornagnet, one possible 
kind of excitation is connected with the variation of 
some set of numbers J' ( ' ) ,  and this leads in the limit 
considered to the appearance of a 6-function in the in- 
homogeneous term in Eq. (60). The difference between 
the quasi-momentum density in the excited and the 
ground state is, a s  before, determined by Eq. (46), the 
resolvent in which we can evaluate explicitly: 

I +- sh ( k  (M- j ) /2 )  sh (kl12) 
R ~ ~ ( A )  =R,, (h)  = - J eibA+IblJ2 dk, j>l. (62) 

2n -- sh (kMI2) sh ( k / 2 )  

The energy and momentum of the excitation a re  de- 
termined a s  the difference between their values in the 
excited and the ground states: 

The model studied i s  asymptotically free, i.e., when 
we remove the cut-off g- 0 and in the spectrum of the 
model there appear massive excitations (mass gen- 
eration) :l4,l5 

E~ ( 8 )  =ml ch 8, p, ( 8 )  =ml sh 8, 8=2nhlM, (63) 
sin (nllM) 

ml=mO , 1=1,2, .  . . ,M-1, (64) 
sin(nlM) ' 

there is also a massless branch corresponding to non- 
isotopic excitations. 

The phases for the scattering of the massive excita- 
tions with one another are ,  a s  before, given by Eq. 
(49): 

Here 8= 8, - 8, is the difference in the speeds of the 
colliding particles. When I ,  m = 1, M - 1 the answer is 
the same a s  the one obtained earlier22*23 by the method 
of factorizing the S-matrix. 

In conclusion i t  seems to us to be appropriate to 
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enumerate relatively simple generalizations of the 
models considered to which one can apply completely 
the formalism developed above. 

1. The generalized Heisenberg ferromagnet with 
fermions. The operator of the linear problem on the 
lattice will be 

where P,, is the permutation operator in the 2,-spaces 
C' W CY. The first M - 1 elements of the base in CY 
are even and the last element is odd, i.e., the gauge 
is @f - 1,l). 

2. The non-linear matrix schr6dinger equation with 
gauge (see also Ref. 5) 

where J ,  is an n x m matrix, all rows of which are even 
and a number p of columns is odd (i.e., those columns 
consist of anti-commuting elements). The R-matrix 
has the usual form (101, but P is  the permutation oper- 
ator in CY W C where M =n+m,  the gauge of the 
space i s  (n + m -p,p). Apart from the initial momenta 
k,, the eigenfunctions of the trace of the monodromy 
matrix are parametrized by two sequences of quasi- 
momenta. 

3. The matrix generalizations of the ~ e l a v i n ' ~  and 
Andre j and ~owensteinl~ models : 

where the J,(x,t) are spinors with respect to the Lo- 
rentz group in the 1 + 1 space and are n x m matrices, 
and the matrices ha are generators of the fundamental 
representation of the SU(n) group. The Lagrangian is 
invariant under the transformations $-- U$V, U cSU(n), 
VE SU(m). The conditions for the factorization of the 
two-particle S-matrix, guaranteeing the possibility of 
applying the formalism developed here, are  fulfilled if 
one of the equations: 1) gl =g4=0;  2) g,=g,=gl=O; 
3) g,=g,=g4=0 i s  valid. 
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