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A general method is developed for the investigation of an RF field in a metal plate from whose surface 
electrons are diffusely reflected. It is shown that the field in the plate, whose thickness greatly exceeds the 
extremal displacement of the electrons during one cyclotron period, is expressed in terms of the field in the 
semi-infinite metal. General expressions are obtained for the distribution of the field and of the impedance of 
the plate in the case of antisymmetrical excitation. These expressions yield the dependence of the slowly 
varying part of the impedance, of the Doppler-oscillation amplitude, and of the Gantmakher-Kaner 
oscillation amplitude on the constant magnetic field for both strong and weak fields. 

PACS numbers: 68.20. + t, 78.70.Gq, 78.20.L~ 

Interest in how the character of electron reflection perimental situations. It is also demonstrated that the 
from a surface influences the kinetic properties of a results  of the preceding studies,'-= whose validity is 
metal has greatly increased of late. In particular, more restricted, a r e  particular cases of the formulas 
many reports have been published of investigations of of 83. The discrepancies between the different papers 
the penetration of a radio-frequency field through a a r e  discussed in 04. 
metallic plate placed in a perpendicular magnetic field. 
The reason for this interest is that significant differ- 81. FIELD IN A SEMI-INFINITE METAL 
ences were observed between specular and diffuse re-  

1. In the case of diffuse reflection of electrons from flection under conditions of Doppler-shifted cyclotron 
a surface, the field distribution E(5) in a semi-infinite resonance (DSCR). Whereas for specular reflection the 
metal, is determined in circular polarizations by the problem of propagation of an electromagnetic field in a 

plate is relatively easy to solve. in the case of diffuse integro-differential 

reflection the is much more complicated. dge(E) 
Many approximate methods of solving this problem in 7 + j K (E-E') eo (St) dS1-0 

the case of diffuse reflection have been developed in 
d E  8 

different papers, with contradictory results. This gave with the boundary conditions 

r i s e  to lively discussions. The authors of Refs. 1-5 eo(0)  =I, e,(m) =O. 
assume that the oscillations of the plate impedance a r e  

Here eo(C) = E(S)/E(O); 5 = 2az/u; z is the coordinate 
due to penetration of dopplerons and of Gantmakher- 

measured along the inward normal to the surface; u is 
Kaner "waves" present in the infinite metal. On the the maximum electron displacement during the cyclo- 
other hand, the authors of Refs. 6 and 7 state that the 

tron period, 
major role is played by the "surface-current oscilla- 
tions" (SCO) cbniected with the Sondheimer effect and K ( 6 )  =L+(E), s,(c)  =TiHo,(c)/nec, E=oneu2/ncH, (2) 
with the presence of surface-conductivity branch points 

a+(5) is the nonlocal conductivity in the infinite metal 
"which a r e  not related to the penetration of an electro- for the corresponding circular polarization: H i s  the 
magnetic field different from the skin wave into the in- constant magnetic field perpendicular to the surface; 
terior of the metal."' 

o is the frequency of the electromagnetic wave incident 
It is shown in the present paper that the R F  field in a on the metal; n is the density of the conduction elec- 

metallic plate whose thickness exceeds greatly the trons. To simplify the notation, we omit here and else- 
electron displacement during one cyclotron period can where the * subscripts of the functions E, e,, and K. 
be expressed in elementary fashion in terms of the field Representing the function e0(5) in terms of its Four- 
in the semi-infinite metal and in terms of its impedance. ier  transform 
This problem is solved in general form in 82. It i s  
preceded by 81,  devoted to the study of the field in a 1 " 

e 8 ( t )  - - 5 eO(q)edqcdq, 
semi-infinite-metal. Although this problem poses no 2n- _ (3) 

difficulty in principle and can be solved by the Wiener- and taking the Fourier transform of Eq. (I), we solve 
Hopf method, we have included $1 for the following the latter by the known Wiener-Hopf method 
reasons. First ,  it contains the simplest and shortest 
method of finding the field distribution. Second, it is e o ( n ) = - & ~ ~ ( 4 ) ,  

q-t'l 
( 4 4  

used to introduce the basic notation and to derive the 
relations needed in the succeeding section. The general 

q"q' 
Tz(q)=-T,(q) ,  

D ( q )  
(4b) 

formulas of the theory a r e  used in 83 to derive simple 
expressions for a number of limiting cases; these ex- D(q)  = @ - K ( q ) .  (5) 

pressions describe the most frequently encountered ex- D(q)  is the left-hand side of the dispersion equation 
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that corresponds to Eq. (I), and K(q) is the Fourier 
transform of K(b) [and is even because K(b) is even]. 
The functions T, and 7 ,  a r e  given by 

where 1Im ql < & < q .  We chose in (7) a band of width 2& 
containing not a single root of the dispersion equation. 

2. We consider a frequency region and magnetic-field 
region satisfying the inequalities w <<v<< d,, where w, 
i s  the electron cyclotron frequency and u is the f re-  
quency of the collisions of the electrons with phonons 
and impurities. We consider a metal model in which 
the displacement of the electrons a s  a function of the 
longitudinal momentum has one extremum (maximum). 
If other groups of ca r r i e r s  a r e  present, we assume 
their displacements to be small  compared with the max- 
imum electron displacement u and describe their con- 
tribution to the conductivity in the local approximation. 
In this case the function K(q) has two branch points, and 
the cuts from them a r e  best drawn a s  shown in Fig. 1. 
We put y = v /w , .  

In the upper half-plane of the first  sheet, the disper- 
sion equation (5) has in the considered model two roots 
for  minus polarization (we denote them by q, and q,), 
and one root q, for plus polarization. The entire analy- 
sis that follows will be for minus polarization, and the 
corresponding formulas for plus polarization a r e  ob- 
tainable in similar fashion. 

The functions ~ , ( q )  and ~ , ( q )  can be continued analy- 
tically to the entire q plane. It follows then from (7) 
and from (4b) that ~ , ( q )  is a regular function having no 
zeros in the upper half -plane, while in the lower half - 
plane it has zeros at the points -9, and -q,, a pole at 
the point -iq, and a cut from the branch point q =  1 -iy. 
The function ~ , ( q )  is regular and has no zeros in the 
lower half plane, while in the upper one it has poles at 
the points q, and q,, a zero a t  the point i q ,  and a cut 
from the branch point q =  - 1 +iy. We note that from 
(4) and (7) follows the relation 

where e,q is  regular in the lower half-plane, and e,(-q) 
in the upper. We note also that since T, and 7, tend 
to unity a s  q -a, e,(q) decreases like -i/q at large q. 

We deform the contour of integration with respect to 
q in (3) in the upper half plane. The field e,(b) i s  then 

FIG. 1. Positions of branch points of the function K(q) and of 
the cuts (thick lines) in the complex q plane for minus (a) and 
plus (b) polarization. The thin lines show the integration 
contours Ci and C I .  

a sum of the contributions from the poles a t  the points 
q, and q, and from the integral along the edges of the 
cut : 

The integration contour C, (as well a s  C , )  i s  shown in 
Fig. 1. 

Formulas (9)-(11) determine the spatial distribution 
of the field. The expression for the surface impedance 
of a semi-infinite metal ise 

where q, = wu/2rc. 

In what follows, we shall need an asymptotic expres- 
sion for e, at 5>> 1. In this case go(&) is of the form 

where gsp(6) i s  the Gantmakher-Kaner component (GKC) 
for specular reflection of the electrons. 

3. We now transform the expression (q +zTJ)T,(~) that 
determines a l l  three coefficients a,, b,, and c,. We in- 
tegrate in (7) by parts and deform the integration con- 
tour to overlap the cut in the lower half-plane. This 
produces also contributions from the poles at the points 
z = -ql, z = -q2, and z = -iq. As a result we get 

The calculation can be continued only if the actual form 
of the nonlocal conductivity K(z) is known. 

If ID(O)I << I(dD/dq2),,1, the small root q, i s  easily ob- 
tained from the dispersion equation 

This condition is realized in strong magnetic fields 
(&<< I), and also for a compensated metal in the entire 
range of fields where y<< 1. In this case it i s  con- 
venient to represent the function under the logarithm 
sign in expression (7) for r l(q) in the form 

As a result of the inequality ID(O)) << 1 a/, the logarithm 
of the first  factor in (16) differs noticeably from zero 
only at small  z, and can therefore be replaced under 
the integral sign by ln[(z2 - q,2)/z2] . This makes it pos- 
sible to calculate the integral of the first  two factors in 
(16): 
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Since the characteristic region of variation of the func- 
tion D1(z)/z2 is of the order of unity, it follows that a t  
small  q the integral in (18) is approximately equal to 
i ts  value a t  q = 0, and the latter is given by half the 
residue a t  the point z = 0. Taking this residue and re -  
cognizing that D1(q1)= 2qlo, we obtain finally for a, 

To calculate the two other coefficients b, and c,, we 
integrate in (18) by parts, a s  before, and deform the 
contour: 

An even greater simplification i s  possible in the case 
of strong fields. At small  5 the value of a! is close to 
unity, and consequently a,= 1. In addition, the deriva- 
tive of the logarithm in (20) differs noticeably from 
zero only in a narrow vicinity of the point z = 1 -iy. We 
can therefore put z = 1 - iy  in the logarithm ln(z - q) and 
take the logarithm outside the integral sign. The re -  
maining integrand is an odd function. Next, since the 
ratio Dl(z)/z2 decreases more rapidly than l /z a t  large 
z ,  the integral along the edges of the cut is equal to 
half the sum of the residues at the poles of the integrand 
on the first  sheet, multiplied by 2ni. Thus, the expres- 
sion for I(q) takes the form 

The existence of a second solution of the dispersion 
equation (6) is due to the abrupt increase of the non- 
local conductivity s(q) in the vicinity of the DSCR, there- 
fore at small  5 the second (doppleron) root q2 is close 
to -1. It follows therefore that we must put q =  -1 in 
(21) and (19) when calculating b, and c, determined by 
expressions (10) and (13). As a result we get 

Since q, is close to -1, and the function D(q) changes 
abruptly in this region, b ,  is much less  than unity. 

52. FIELD IN PLATE AND IMPEDANCE 

1. There have been many theoretical studies of the 
distribution of an electromagnetic field in a plate under 
conditions of strong spatial dispersion and of diffuse 
scattering of the electrons. Noteworthy among them 
a r e  a cycle of original papers by ~araff"-" and an 
interesting paper by ~ h e r e b c h e v s k i ,  Kaner, and Na- 
berezhnykh.13 Various general methods of solving the 
problem were developed in these papers. However, 
just a s  most general methods, they have a number of 
shortcomings. All the cited studies end up with itera- 
tion procedures, and it is difficult to identify the phy- 
sical parameter with respect to which the iteration is 
carried out (an exception is Ref. 10). In addition, it is 
extremely difficult to obtain concrete results  by the 
methods developed in Refs. 10-13. 

In our pre~edingpapers l '~  we purposefully confined the 
analysis to limiting cases, with the natural phy sical para- 
meters of the problemas the guidelines. The first  tobe con- 
sidered was the case of a strong magnetic field, for the 
following reasons. First ,  the properties of the pene- 

trating components in strong fields a r e  determined by 
a small  group of resonant electrons and depend on the 
character of the singularities of the nonlocal conduct- 
ivity, but not on the details of the Fermi  surface. A 
quantitative comparison of the results  of the theory and 
experiment i s  therefore possible. Second, in strong 
field both the physical picture of doppleron excitation in 
the GKC and the final expressions for the field and im- 
pedance distributions turn out to be  simple and illustra- 
tive. Finally the difference between the radiowave 
penetration in the case of diffuse and specular electron 
reflection from the surface manifests itself particularly 
in strong fields . 

Another approximation used in our con- 
cerned the plate thickness d. The value of d was assumed 
large compared with the attenuation lengths of a l l  the 
field components, s o  that multiple reflections of the 
various components from the plate surface could be 
neglected. 

We obtain below a solution f ree  of the foregoing re-  
strictions on the magnetic field and on the plate thick- 
ness. Nonetheless, just a s  in the preceding studies, we 
use in the solution of the problem a large physical 
parameter, L = 2nd/u, the ratio of the plate thickness to 
the characteristic electron displacement during one 
cyclotron period. Under these conditions the field in 
the plate i s  a superposition of different field compo- 
nents in the semi-infinite metal; this is natural, since 
the components a r e  formed at distances on the order of 
u from the surface. 

The field distribution in the plate of a metal in which 
the electron trajectories have no points wWre the 
longitudinal electron velocity is reversed, other than 
the points of reflection from the plate surface, is de- 
termined by the following integro-differential equation 
11: 

To simplify the solution of this equation we must use 
the parameter L. It i s  known that it i s  much more con- 
venient to use iteration procedures in integral equa- 
tions than in differential equations. However, since a 
great variety of integral equations can be based on (23), 
our task is to choose the equation most suitable for our 
purpose. 

2. Our procedure is the following. Obviously, the 
general solution of (23) can be represented a s  a linear 
superposition of a solution symmetrical about the point 
5 = L/2 and an antisymmetrical solution. Since the in- 
tegral equations for both cases a r e  obtained in similar 
fashion, we construct here the equation satisfied by the 
antisymmetrical solution. 

We consider the antisymmetrical function 

where e(5) satisfies an equation defined on the straight 
line 0<5<- :  
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We emphasize that by definition this equation yields the 
values of the function e(<) at L 3 0 if the value of e(5) at 
5 < 0 i s  specified by an external condition. Since K(1;) 
is an even function, the function ea(5) on the segment 
0 5 -C L satisfies a condition that coincides with (25). 
We choose the values of the function e(6) at b < 0  such 
that the equation satisfied by ea(5) goes over into Eq. 
(23) on the segment 0 -( 5 g L. It is necessary for this 
purpose that the function ea(S) vanish in the regions 

< O  and S ' >  L. It i s  obvious from (24) that if we impose 
on the function e(5) the condition e(6 < 0) = e(L - L), our 
requirement is  satisfied. As a result, Eq. (25) takes 
the form 

d'e - - + I  ~ ( f - ~ ' ) e ( f ' ) d ~ ' = - j  K ( f + c r ) e ( L + f ' ) a ' ;  
dEZ 

(26) 
0 

in the integral with respect to 5' from -a to 0 we have 
made the change of variable 5 - -5'. After changing the 
integration variable, Eq. (26) now contains only the 
values of the function at points 5 2- 0. Therefore this 
function can be redefined at 5 < 0. As is customary in 
the Wiener-Hopf method, we specify it in the form 

If we now use a Green's function that satisfies the equa- 
tion 

and the boundary conditions 

then Eq. (26) can be rewritten in the form 

Since the function ea(5) defined by (24) and (29) is con- 
structed to satisfy Eq. (23) on the segment 0 4 t s L, it 
constitutes the antisymmetrical solution of this equa- 
tion. 

We note that the symmetrical solution of (23) satisfies 
the relations 

e.(S) = f ( f ) + l ( L - C ) ,  - (30) 
f (C) = e o ( f )  + S d c r ~ ( f , 6 ' )  S d : " ~ ( f ' + ~ " ) f  (L+s"). 

D e 

3. We solve now Eq. (29). ~ a r a f f ' ~  obtained for the 
Green's function G(5, b') the expression - 

G ( t ,  f f ) =  j d s 1 e o ( s + t ) e 0 ( s + ~ ' ) - e o  ( s )  eo(s+5- t ' )  I .  (31) 
0 

We substitute (31) in (29) and express eO(L) and K(5) in 
terms of their Fourier transforms. Calculating the 
integrals with respect to 5' and 5" with allowance for 
the formula 

we represent Eq. (29) in the form 

where 

is regular in the lower half-plane and decreases like 
l /q a s  q -a with ImqN > Imq' > Imq. 

We deform the contour of integration with respect to 
q" in the lower half-plane. Since e0(qe) is  regular, the 
integral with respect to q" is determined only by the 
pole q" = q. As a result we have 

We deform now the contour of integration with respect 
to q to overlap the cut in the lower half plane. Since 
(p(q) and eo(q) a r e  regular in this half-plane, we can add 
to K(q) any regular function. It is convenient to replace 
K(q) by -D(q) + (q - qf)(q - q,) where q, i s  any convenient 
constant. After this substitution we return the contour 
of the integration with respect to q' to its initial form. 
We move it next above the contour of integration with 
respect to q'. The resultant contribution from the pole 
at the point q = q' yields zero in the subsequent inte- 
gration with respect to q', by virtue of the regularity 
of cp(q) in the lower half-plane and by virtue of (8). 
As a result we represent (33) in the form 

where Im q > Im q' 

Since the expression in the curly brackets in (34) is  
a regular function of q' in the lower half-plane, and the 
function eo(-q') has poles at the points -9, and -9, and 
a cut from the point 1 - i y ,  we can express e(5) in the 
form 

where 

Substituting (35) in (32), we obtain 

We note that a l l  the transformations above were exact. 
We make now the first  approximation, using the fact 
that L is a large parameter. If L >> 1, only a small 
range of values of q', close to unity, is  significant in 
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(38), and we obtain 

We substitute now (39) in (37) and (37) in (40), and wr ite 
the expression for C in the form 

I eo(q)eiqc { aeiq*: 
C-1- lim- Idq- - [-D(q)+ (q-1+iy) (q-q,) ] 

c . .~  2n q-I+iy q-q 

where the arbitrary constant q, for each of the terms 
of the function was chosen in the most convenient fashion, 
namely q,, q2, and -1 +iy. In addition, we added under 
the integral sign an coordinate-dependent exponential s o  
as to be able to deform the integration contour in the 
upper half plane independently for each term. 

Because of our choice of the constants q,, the second 
terms in the square brackets yield upon integration 
eo(f) with different coefficients. Inasmuch as in accord 
with (8) the product D(q)eo(q) is regular in the upper 
half-plane, the integrals of the first  terms a r e  deter- 
mined by the respective zeros of the denominators 
(q - ql), (q - q2), and (q + 1 -iy). Next, since by defini- 
t ion 

we have the relation 

Similar relations must be used also to calculate the 
residues at the poles q, and (-1 + i y ) .  As a result, (41) 
takes the form 

Calculating in the same manner the integrals in (36a) 
and (36b), we obtain two more equations of the system 
that determines the coefficients a ,  b, and C: 

Substituting a ,  b,  and C in (37) and (391, we obtain cp(q). 
Next, substituting p(q) in (34) and using transforma- 
tions similar to those in the derivation of (43), we get 

This expression, together with (24), determines the 
field distribution in a plate under antisymmetrical ex- 
citation. 

We have thus proved that a t  6 3  1 the coordinate de- 
pendences of the field components a r e  the same a s  for 
the field components in a semi-infinite metal. In ad- 
dition, the coefficients of the various components depend 
on L in accord with the coordinate dependence of the 
penetrating components. 

4. From (46) we can calculate the plate impedance 

By virtue of (29) and of the boundary conditions ( l a )  we 
get e(0) = 1 in (28a). The value of e(L) i s  determined 
from (46) at 5 = L. Deforming the contour in the upper 
half-plane and using the analytic properties of eo(q), the 
condition LC< 1, and Eqs. (43)-(45), we obtain 

e (L) -ae'qlL+be'qs+Cgo(L). (48) 

To calculate the denominator in (47) we need the deriva- 
tive e1(5), which is obtained by differentiating (46) di- 
rectly: 

The value of e'(L) i s  calculated in analogy with (48): 

Using (49), we write the expression for e'(0) in the form 

The term proportional toA isAel,(0), and the term 
proportional to B equals ie,(O)B, i.e., iB . Next, since 
the product of e,(q) by the expression in the square 
brackets decreases like l/q2 a s  q --a, we can put C = 0 
directly in the remaining integral, and deform the in- 
tegration contour into the lower half plane. Since the 
function eo(q) is regular there, this integral i s  deter- 
mined by the poles a t  the points -q,, -q,, and (1 - iy). 
Using (8) and (42), we obtain ultimately 

et(0) -Ae,'(0)+iB-f[q,ae'~~+qlbe~L-(i-i~)Cgo(L)]. (54) 

Substitution of (48), (50), and (54) in (a?), with allowance 
for (52), leads to the following expression for the plate 
impedance: 

Thus, expression (55), together with relations (53), 
(53), (43)-(45), (19), (13)-(15), and (12), solves the 
plate-impedance problem in general form, subject to the 
only assumption L>> 1. An analysis of the obtained 
solution for different limiting cases will be presented 
in the next section. 

We have calculated above the wave distribution and 
the impedance for antisymmetrical excitation of the 
plate. Obviously, we can solve (30) in similar fashion 
and obtain the field in the case of symmetric excitation. 
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One-sided excitation is described by a superposition of 
the functions e,(L) and e,(L): 

53. PLATE IMPEDANCE. LIMITING CASES. 

1. Parabolic lens method. We compare first  the r e -  
sults obtained by the method developed above with the 
known ~ o l u t i o n " ~  for a compensated metal whose elec- 
tron Fermi surface takes the form of a parabolic lens, 
and is hole Fermi surface i s  a cylinder parallel to the 
lens axis. In this case the function D(q) for minus po- 
larization is given by 

This function has no branch points, so  that the GKC de- 
fined by (11) is equal to zero. Next, since D(z) has a 
pole at the point z = 1 -zy, the functionI(q) given by (15) 
is equal to -In (1  - i y - q). Substituting this function 
and (14) in (19) and calculating D'(q,) and D1(q2), we find 

The solution of the system (44)-(45) i s  

Substitution of (52), (53), (58), and (57) in (55) leads to 
the expression 

This expression for the plate impedance coincides with 
formula (29) from our preceding paper2 if we put in the 
latter p = 0 (diffuse reflection). 

2. Strong magnetic fields (5 << 1). It was shown in 
$1 that a,= 1 and b,<< 1. Recognizing that on a metal 
surface the sum aO+bO +gO(L) of a l l  the field compo- 
nents is  equal to unity, we obtain g,(L) C< 1 [since 
d-o(~)<<&(0)]. This enables us to solve the system (43)- 
(45) by successive approximations. As a result we get 

Substituting (52), (53), and (60) in (55) and expanding 
(55) in small terms proportional to b, and go(L), we 
obtain 

where b, and co a r e  determined by (22). 

Similar formulas for the impedance of a compensated- 
metal plate were obtained earl ier5 from simple physical 

considerations. We note in addition that expressions 
(61) and (62) go over in the limit of a thick plate into 
formula (13) of Ref. 2. This formula was used also in 
Refs. 3 and 4. 

3. Thick plate. We consider the impedance of a plate 
whose thickness is much larger than the attenuation 
lengths of a l l  the field components. In this case it is 
seen from (52) and (53) that B << 1,andA .= 1, while ex- 
pression (55) for Za takes the form 

Za=2Z, I --Z,B . ) ( 4nqo (63) 

From the system (43)-(45) it follows that a =ao, b =bo, 
and C = 1, therefore 

Expressions (63) and (64) a r e  valid in a wide range of 
magnetic fields and go over in the strong-field limit 
into formula (13) of Ref. 2. 

4 .  Case of small oscillations. We consider now the 
situation when the impedance oscillations connected 
with the doppleron root q, and Cgo(L) a r e  small either 
because of the small  amplitude o r  because of the strong 
damping of the corresponding field components. In this 
case, just a s  in the preceding section, we solve the sys- 
tem (43)-(45) by successive approximations, and expand 
the expression for Za in ser ies  in b and C. This yields 

a lD' (q  ) e'q,L -' x 1 - 0  I 291 1 * (65) 

Z, = - -ie,' (0) +a;D' (q,) e'QaL ( (66) 

Expressions (65) and (66) a r e  quite general. They de- 
scribe the most frequently encountered experimental 
situations. 

In the case 

lqtlalq2l~ l q i l a i  (67) 

expressions (65) and (66) a r e  noticeably simplified: 

The conditions (67) a r e  satisfied, for example, for a 
compensated metal in the entire range of magnetic 
fields, with the exception of a narrow vicinity of the 
doppleron threshold. If, however, the plate thickness i s  
such that the effect of Kao and Fisher15 is  observed in 
it is in afield noticeably stronger than the doppleron thres- 
hold field, then formula (68) is  valid in the entire range 
of fields, including the vicinity of the threshold. In 
strong fields ( 5  << 1) the inequalities (67) a r e  satisfied 
also for uncompensated metals; in this case (68), natur- 
ally, goes over into (61). 

Unfortunately, in more general cases the solution of 
the system of algebraic equations (43)-(45) is quite 
cumbersome we were unable to present the expression 
for the impedance in compact form. 
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54. DISCUSSION 

1. In 8 2 we solved with great degree of rigor the 
problem of electromagnetic wave propagation in a 
metal plate, in a rather general case subject to a single 
restriction-the displacement of the electrons within 
one cyclotron period along the magnetic field must be 
much smaller than the plate thickness. We note that in 
contrast to  the previously proposed general methods, 
ours is noticeably simple. If the distribution of the 
field in the semi-infinite metal i s  known, all  that is 
necessary is to solve the system of linear algebraic 
equations (43)-(45) for the coefficients a ,  b, and C and 
to substitute them in the expressions for the field and 
for the impedance. From the structure of Eqs. (43)- 
(45) it is seen that the three field components-skin, 
doppleron, and GKC-interact with one another, and it 
is precisely this interaction which determines the ratio 
of the amplitudes of the different components. 

It i s  simplest to interpret this interaction in the strong 
field region f << 1, where the wave vectors of the dop- 
pleron and of the GKC a r e  quite large, and the amplitude 
of the skin-effect component exceeds all  others. Let us  
demonstrate this. When waves of amplitude &b a r e  in- 
cident on the two sides of the plate with oppositely di- 
rected electric fields (antisymmetric excitation), the 
field distribution in the metal i s  given by 

Substituting here the expression for e(5) and recogniz- 
ing that 5 << 1, we get 

where 2, is given by (61) and (62). This expression i s  
valid everywhere except in narrow regions near the 
plate boundaries. We can similarly obtain for the field 
in the case of symmetric excitation 

The field distribution under one-sided excitation i s  
6 = ( ~ ( 5 )  + gS(5))/2. Let us consider this distribution 
for a sufficiently thick plate (Im q,L> Im q,L> 1): 

Expression (73) allows us  to draw the following con- 
clusion. A doppleron (as well a s  a GKC) excited on the 
left side of the plate, when reflected from the right 
side, generates a skin-effect component that oscillates 
a t  the same phase as the doppleron and has an ampli- 
tude much larger than the field of the passing dopple- 
ron. It i s  the field of just this skin-effect component 
which is registered in experiment. The amplitude of 
the doppleron oscillations is therefore considerably 

enhanced by diffuse reflection of the carr iers ,  com- 
pared with the specular reflection, and the enhance- 
ment increases with increasing magnetic field. We 
emphasize that, as seen from (73) the enhancement due 
to the skin-effect component takes place to the same 
degree in the case of GKC reflection. Similar conclu- 
sions can be drawn from (70)-(72) for symmetric and 
antisymmetric excitation. In Refs. 1 and 2 similar 
conclusions were drawn starting from a simpler analy- 
sis based on the fact that the propagating doppleron and 
GKC interact in strong fields only with electrons moving 
in the same directions a s  the field component, and do 
not interact with oppositely directed electrons. It is  
precisely this circumstance which leads to a radical 
difference between the specular and diffuse reflections 
of these components. 

2. The approach proposed in Refs. 1-3 to the solu- 
tion of the problem of plate excitation was later criti- 
cized in Ref. 6, where it was stated that no consistent 
account of the plate boundaries was taken in Refs. 1-3, 
and a s  a result the two new oscillatory effects were not 
included. The formulation of the problem in the pre- 
sent paper is no less  rigorous than the method pro- 
posed in Ref. 13. At the same time the rigor and sim- 
plicity of our calculations a r e  greatly superior to the 
calculation method developed in Ref. 6 on the basis of 
the method of Ref. 13, Nonetheless, our present re-  
sults agree with those of Refs. 1-3, but not with those 
of Ref. 6. 

Let us compare in greater detail the results  of Refs. 
3 and 6, disregarding the terminology employed. In 
Ref. 3 we considered only pure diffuse and pure specu- 
lar  reflection of the carr iers ,  whereas in Refs. 6 and 7 
the character of the reflection was arbitrary.  We 
therefore se t  the specularity coefficient p in the ex- 
pressions of Ref. 6 equal to zero, and compare the re-  
sultant expressions with the corresponding expressions 
of Ref. 3 for the diffuse case. No consideration was 
given in Ref. 3 to the range of fields in which 5" 1, 
while in Ref. 6 only estimates a r e  given for this region. 
The results  of Ref. 6 in the field region Lt2<< 1 agree 
with those of the much ear l ier  study.3 In the inter- 
mediate field region l/L<< .$,<< 1 the results  of Refs. 6 
and 3 a r e  strikingly different. The absence of sym- 
metry in expressions (3.6) and (3.7) of Ref. 6 and the 
absence of a smooth matching of the expressions (3.6), 
(3.7) and (3.5) in the field region L5'" 1 suggest that 
e r r o r s  crept in when the rather cumbersome method of 
Ref. 13 was used in Ref. 6. A careful study of Ref. 6 
shows that the roots of the dispersion equation were 
not correctly located there in the complex plane. This 
led apparently to incorrect signs in a large number of 
expresssions, and ultimately to e r r o r s  in many of the 
results of Refs. 6 and 7, in particular, to an incorrect 
magnetic-field dependence of expressions (3.6) and (3.7) 
of Ref. 6. At the same time, if the method proposed in 
Refs. 1 and 2 is used then, knowing the field distribu- 
tion in a semi-infinite metal, the results  of Refs. 6 and 
7 for pure diffuse and pure specular reflections in the 
case of antisymmetric, symmetric, and one-sided ex- 
citation can be derived on a single page without any dif- 
ficulty whatever. 
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A new method for precise measurement of NMR shifts is developed. By stabilizing the specimen temperature 
against an NMR signal having a temperature sensitive shift (this made it possible to keep the specimen 
temperature constant to within about 0.01 'C), controlling the stability of the NMR line shape, and regulating 
the frequency of the modulating oscillator using an automatic frequency control circuit with input from the 
NMR signal, we achieved an accuracy of 8X lo-' ppm (0.006 Hz for a spectrometer working frequency of 80 
MHz) in measuring shifts for specimens having an external reference standard, and of 2X lo-' ppm (0.0015 
Hz) for specimens having an internal reference standard. This accuracy exceeds the resolving power of 
commercial NMR spectrometers by a factor of about 100. Such accuracy in measuring shifts makes it possible 
to measure magnetic susceptibilities of substances in solution with a sensitivity 100 times that achievable with 
the known Evans NMR method, to record contact and pseudocontact shifts that are strongly masked by 
exchange processes, and to investigate weak temperature dependences of chemical shifts and spin-spin 
interaction constants. This opens up new prospects for investigating the structures of metal-containing 
macromolecules (enzymes, nucleic acids, etc.) and coordination compounds, and intermolecular and 
intramolecular interactions. Apparatus for precise measurement of NMR shifts is described. 

PACS numbers: 76.60. - k 

In high resolution nuclear magnetic resonance, a con- 
siderable part  of the information on the structure of the 
investigated compound is extracted from the shifts of 
the resonance signals. By the shift we mean the rela- 
tive position of the resonance line with respect to that 
of the reference signal on the frequency axis of a plot 
of the NMR spectrum. 

The reason for differences in the values of the NMR 
shifts for nuclei of the same isotope may be differences 
in the chemical structure of the investigated substances 
(the so-called chemical shift), differences in the na- 
tures of the van der Waals interactions of the investi- 
gated molecules with one another and with solute mole- 
cules, and contact and dipole-dipole interactions of the 
resonating nuclei with paramagnetic centers (contact 
and pseudocontact shifts). When the reference sub- 
stance is contained in an isolated microampoule (a so- 
called "external reference") the geometry of the speci- 

men and the values of the bulk static magnetic suscepti- 
bilities of the principal and reference solutions strongly 
affect the measured shifts. '** The picture is some- 
times complicated by chemical exchange of the resonat- 
ing nuclei between magnetically inequivalent states. '*'p4 

In accordance with what was said above, measurements 
of NMR signals a r e  used to identify chemical com- 
pounds and to establish structural formulas of sub- 
stances in organic chemistry, to investigate the confor- 
mation of complex molecules, to investigate structures 
of coordination compounds and the dynamics of chemical 
exchange, and to measure the static magnetic suscepti- 
bilities of substances in solution (the Evans method2). 

The shifts a r e  usually measured in relative units-in 
parts per million (ppm). The magnitude of the shift in 
ppm is calculated from the formula 
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