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It is shown that an instability resulting in a number of cooperative threshold optical phenomena appears in a 
system of atoms or molecules in a resonator under double optical resonance conditions. This instability is due 
to the high-frequency Stark effect caused by the collective field. When the parameters of the exciting 
resonance fields exceed a certain critical value the stationary state of the system becomes multivalued. 
Transitions between the various stable states occur by jumps representing a tirst-order kinetic phase 
transition. The dependences of the optical characteristics of the system on the intensities of the exciting field 
are hysteretic, indicating that the system exhibits an optical memory. Under certain conditions the"atoms + 
field" system exhibits spontaneous oscillations resulting in self-modulation of the radiation emerging from the 
resonator when the intensities of the exciting fields are fixed. An analysis is also made of the case when a 
combination process results in amplification of one of the resonance fields by the medium. It is found that 
there can be a hard oscillation regime in which a field of finite amplitude appears abruptly in a resonator. 

PACS numbers: 32.60. + i, 33.55. + c, 33.40.H~ 

Recent years have seen an upsurge of interest in co- 
operative optical phenomena in light-excited quantum 
systems which have a distinguishing characteristic that 
multiple stable states appear when the parameters of 
a given system exceed certain critical values. These 
phenomena include optical bistability in resonators with 
saturable dispersive optical b i ~ t a b i l i t y , ~ . ~  
effects occurring in lasers  with a nonlinear absorber 
inside the r e s ~ n a t o r , ~ - ' ~  vibrational bistability in opti- 
cally excited molecular gases,"-'3 carrier-density bi - 
stability in optically excited  semiconductor^,'^ etc. 
This range of phenomena i s  very interesting from the 
practical point of view-because they can be used in 
optical memory cells, optical amplifiers, limiters, 
etc.15-19-and also from the theoretical point of view- 
because all these phenomena a re  examples of 'dis- 
sipative structures* that appear in open systems far 
from a state of thermodynamic equilibrium. 20-24 It i s  

E ,  of frequency 52 close to the resonator mode i s  in- 
jected into the resonator. We shall consider the case 
of such pumping intensities which do not yet saturate 
the transition in question. The internal field E of fre- 
quency A2 can then be considerably stronger than E ,  
when the Q factor of the resonator i s  high. The reso- 
nator field i s  governed also by the induced polarization 
of the medium. The internal field shifts the atomic 
levels a s  a result of the high-frequency Stark effect. 
This shift then alters the degree of absorption of the 
pump field E, which governs the induced polarization. 
This provides feedback which can result in an instability 
of the system. A specific manifestation of this feed- 
back depends strongly on the relationship between the 
widths of the pump wave and of the atomic levels, and 
on the detuning of the central pump frequency from the 
relevant transition under double optical resonance con- 
ditions. Two typical situations a re  shown in Fig. 1. 

easy to show that the common cause of all these effects 
Figure l a  corresponds to the case of a narrow-band 

i s  the existence of feedback in a system resulting in 
quasimonochromatic pump wave whose central fre- 

various instabilities. In each of the examples given 
quency is a,= w,, + A (w,, are  the frequencies of the 

above1-l4 the ability of a system to absorb the energy of 
atomic transitions) and whose spectral width is much 

an external agency depends on the degree of i t s  non- 
less  than the widths of the two excited atomic levels 2 

equilibrium which itself i s  governed by the absorbed 
and 3. It is well known that in the presence of strong 

power. For example, in the absorptive optical bista- 
b i l i t ~ l - ~  this feedback is due to a saturation effect which 
reduces the absorption in a resonator a s  the field in- 
creases. 

We shall draw attention to the fact that under double 
optical resonance conditions the high-frequency Stark 
effect gives rise to a specific feedback mechanism that 
produces several new cooperative threshold optical 
phenomena. 

FORMULATION OF THE PROBLEM AND 
QUALITATIVE ANALYSIS 

1 
We shall consider a system of three-level atoms or  a b 

molecules (to be specific, we shall speak of atoms) FIG. 1. Double optical resonance  in  a three-level quantum 
placed in a resonator tuned to one of the atomic transi- sys tem.  The intermediate level  ( a )  o r  the upper level  ( b )  i s  
tions subjected to optical pumping E, corresponding to pumped. The  components of the  S ta rk  absorption band doublet 
another transition. An additional electromagnetic field are shaded  T h e  s p e c t r a l  profi le  of the  pump i s  shown black. 
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resonance radiation corresponding to the 2-3 transition 
the light-absorption band 9, splits into two components 
whose widths a r e  of the order of the widths of the levels 
2 and 3 and which a re  separated by an interval that in- 
creases on increase in the field E. Since the levels 2 
and 3 a re  not populated in the absence of pumping, the 
polarization of the medium a t  the frequency S'i is not 
possible only as a result of a combination process in- 
volving absorption of the pump field. We can thus see 
that the refractive index of the medium and of the ab- 
sorption coefficient at this frequency a r e  governed by 
the pump absorption. For simplicity, we shall assume 
that the empty resonator and the external field E,  are  
tuned exactly to the atomic transition frequency (51 
= w,). Then, the pump-induced change in the refrac- 
tive of the medium alters the optical length of the reso- 
nator and detunes the resonator from the frequency w,,. 
This effect and the appearance of the absorption at the 
frequency 9 reduce the internal field E in the resonator 
for a constant value of E,. We shall show how an in- 
stability appears in this situation. Let the field E be 
such that 9, > A (9, = Id,,E ( 5 ,  where d,, is the dipole 
matrix element). Then, a slight increase in E in- 
creases even more the separation between the compo- 
nents of the pump absorption band, reduces this ab- 
sorption, and consequently causes a further rise of the 
field E. An instability appears and i t  then becomes 
stabilized because of the finite value of the transmis- 
sion coefficient of the mirrors.  The instability ap- 
pears when the field E, exceeds a critical value cor- 
responding to the condition QR z A. In weaker fields E i  
such that 9, < A  the state of the system is stable. An 
allowance for the field losses in the resonator mirrors  
gives rise to a threshold of the appearance of the insta- 
bility not only in respect of the value of the field E, but 
also in respect of the intensity of the pump field. The 
appearance of the instability when the external agencies 
exceed the threshold values is typical of 'triggerw 
systems far  from equilibrium undergoing a first-order 
kinetic phase The resultant set of stable 
states of the system will be called, stressing i ts  origin, 
the Stark multistability. 

A qualitatively different situation (Fig. lb) can ap- 
pear a s  a result of pumping via the 1-3 transition (the 
resonator is still tuned to the frequency w,,). In this 
case we can expect amplification of the field E a s  a 
result of absorption of the pump wave if certain rela- 
tionships a re  satisfied between the relaxation times of 
the levels 2 and 3. This amplification increases on in- 
crease of the pump absorption. We can easily see that 
in this case again an instability appears and i t  is as -  
sociated with a characteristic self-tuning of the system 
to a resonance with the pump field. Let us assume that 
a narrow-band pump wave i s  detuned somewhat from 
the 1-3 transition, a s  shown in Fig. lb. The process 
of pump absorption increases the internal field and this 
results in an increase in the interval of the Stark doub- 
let components. Then, the detuning between the pump 
frequency 9, and, for example, the upper Stark com- 
ponent (F'ig. lb) decreases and this results in a reso- 
nant increase of the pump absorption and in a further 
r ise  of the internal field. Such an instability becomes 

stabilized when the system is completely resonance- 
tuned (51, =A). It is interesting to note that a similar 
effect can occur even in the absence of external radia- 
tion of frequency -w,, when the internal field appears 
only a s  a result of absorption of the pump wave. In 
contrast to the usual lasing, representing a second- 
order kinetic phase t r a n ~ i t i o n , ~ ~ ' ~ ~  the effect in ques- 
tion can be regarded-as shown below-as a new ex- 
ample of a first-order kinetic phase transition in an 
optical amplifying medium. 

PRINCIPAL DYNAMICS EQUATIONS OF A SYSTEM 
AND CONDITIONS OF STABILITY OF STATIONARY 
STATES 

Complications associated with the appearance of 
standing waves in a resonator with parallel mirrors  
will be avoided by considering a ring resonator, a s  
shown in Fig. 2. Mirrors 3 and 4 will be regarded a s  
perfectly reflecting, whereas mi r ro r s  1 and 2 will be 
considered to have finite transmission T and reflection 
R coefficients (R + T = 1 1. For simplicity, the atomic 
levels will be regarded a s  homogeneously broadened 
and the thermal motion of atoms will be ignored. The 
equations for the density matrix of the medium o,, then 
have the following form in the resonance approxima- 
tion (52, - w,,, !2 - w,) 

where 
a,r+0,2+~,,=1, 

ha=hji ( i Z j ) ,  A,j=Aji', 

h?,=o?, exp (iQ,t),  ?.,,=a,, esp ( iQt) ,  

hsl=orl e x p [ i ( Q , t Q ) t ] .  

Here, 4,=9,-w,,, h,=Q-w,,, 4 , = 4 , + 4 = 9 ,  
+ 9 - w,,, A,, = dl&,/&, and A, = d ,&/ti. The quanti- 
t ies w,,, w,,, w,, and y,,, y ,,, y,, a re  the reciprocal 
longitudinal and transverse relaxation times of the 
relevant transitions. The system of equations (1 )-(6) 
is written down on the assumption that the temperature 
of the system under investigation is insufficient for  the 
thermal excitation of the atomic levels. 

The amplitude of the internal field E(z,t)  satisfies 
the reduced Maxwell equation 

Here, k = a / c ,  N is the density of atoms, and b(z, t )  is 

FIG. 2. Sample (shown shaded) placed in a ring resonator. 
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the amplitude of a wave of the polarization of the me- 
dium of frequency 51 : 

We shall ignore attenuation of the pump field in the 
medium. Equations (1)-(8) form a closed system 
which can be solved allowing for  the boundary condition 
on the mirror 1: 

where is the total optical path in the empty resonator 
and L i s  the length of the sample containing the inves- 
tigated substance (Fig. 2). In the stationary case, we 
have 

9 ( z ,  t ) = [ x ' ( E ) + i X N  ( E )  ] E ,  E = E ( z ) ,  (10) 

where x = X' + ix" is the polarizability of the atoms at 
the frequency 51. 

We shall assume that the medium i s  not too dense and 
the resonator not too long so that the change in the am- 
plitude of the light wave E a s  a result of a single trip 
through the resonator is small. Therefore, the me- 
dium has a significant influence on the field only if 
T<< 1 (i.a, when the Q factor of the resonator i s  high) 
and this will be assumed in our treatment. We shall 
integrate Eq. (7) with respect to the coordinate z from 
z = 0 to z = L in the stationary case and we shall use the 
smallness of the change in E(z) in taking the polariza- 
tion 9' outside the integral for E = E(0). We shall use 
the boundary condition (9) to obtain 

E =  
T'"E, 

I -R exp ( i k 8 )  [I-2nkNL(x1'-ix') ] 
' 

We shall assume that the resonator is tuned almost ex- 
actly to the frequency 52, i.e., kC = 2i7m + 0 ( m  i s  an in- 
teger and @<< 1). It i s  convenient to go over to equa- 
tions for the modulus and the argument JI  of the field 
E (E = Bei*). It readily follows from Eq. (11) that 

Since the quantities XI($) and X" ($) are  complex non- 
linear functions of g, Eq. (12) can have more than one 
solution and this means that there can be many station- 
ary states. However, not every solution of Eq. (12) 
corresponds to a stable state of the system. In inves- 
tigating the stability of stationary states it i s  neces- 
sary to return to the secular equations (1)-(8), linear- 
ize them near each of the solutions, and apply the 
standard Hurwitz-Routh criterion." However, in o r -  
der to obtain clear results, we shall investigate only 
the case of a high-Q resonator when the atomic relaxa- 
tion time i s  much shorter than the characteristic time 
-Y/cT of a change in the field in the resonator. Then, 
the polarization of the medium follows adiabatically the 
field E in accordance with Eq. (101, where however E 
is time -dependent. Integrating again the secular equa- 
tion (7) for z from z = 0 to z =Y and applying the condi- 
tion (9), we obtain-subject to the same assumptions 

a s  in the stationary case-the equations 

The stationary solutions of the system (14) a re  natur- 
ally identical with Eqs. (12) and (13). The stability 
conditions of these solutions a re  

d P ( & ) / d a > @ ,  P(8)=8"1+2nNkLT-'~' '  ( 8 )  1, (15) 
dQ ( I )  / d 8 > @ .  (16) 

It should be noted that the condition (15) has a simple 
physical meaning: a state is stable if near this state 
the power dissipated by the internal field increases on 
increase in the field. The condition (16) identifies re-  
gions of a positive slope of the function Q(%) which oc- 
curs  in the 'equation of state" (12). A further analysis 
of Eqs. (12) and (13) cannot be made without the knowl- 
edge of the explicit form of the polarizability x($). 

CRITICAL EFFECTS AND STARK MULTlSTABlLlTY 
IN  THE CASE OF PUMPING TO AN INTERMEDIATE 
LEVEL 

For simplicity, we shall assume that y,, =y,, = y and 
52 = w,, (4, = A,, = A). Employing the assumption that 
the pump is weak, we shall find steady -state solutions 
of Eqs. (1146) in the lowest order with respect to E,, 
with exact allowance for the field E .  We can easily 
demonstrate that o,, - 1; on the other hand, a,, cr o,, 
= A, ,a  E and A , , a  A,, a Ep. Dropping in Eq. (4) the 
term with A,,, we shall solve simultaneously Eqs. (4) 
and (5). Substituting the result in Eq. (6) and employ- 
ing Eqs. (1)-(3), we then find that 

lds21"d12"Ep' [ (A>-QnZ) 2+2y2 (AI+QR2) +, , ' ] -1  x(.)= 
hysz ti' 

The real and imaginary parts of Eq. (17) a re  generally 
nonmonotonic functions of I, a consequence of the 
high-frequency Stark effect. This nonmonotonic be- 
havior is manifested clearly if A d y and then both 
XI($) and ~ " ( g )  have extrema a t  51, - 1 A I. If I A I<< y, 
we have X ' Z O  and X" decreases monotonically on in- 
crease in $. consequently, we shall consider the 
cases I A 1 << y and I A J7> y separately 

Case I A 1 << y. We shall introduce dimensionless 
variables 

1  Et 1  E ,  
z = -- (Et-TW) , y, = -- 

T'" 8. T'" X. ' 

where $, i s  the saturation field of the 2-3 transition 
and E, is the amplitude of the field of frequency SZ= w, 
emerging from the resonator via the mirror  2. It fol- 
lows from Eq. (12) that 
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FIG. 3. Threshold phenomena in the I A I -x y ,  0 = 0, p = 1 
case: a) graphical solution of the "equation of state" ( 1 9 )  for 
three values of the parameter Cl = 1, 5 ,  15 ( curves 1, 2 ,  and 
3, respectively ); b) bifurcation diagram; c) hysteretic depen- 
dence of Et on yi for C l=  15; d) hysteretic dependence of Et on 
C1 for yi -. 3. The arrows identify kinetic phase transitions. 

We shall determine first  the stationary states of the 
system corresponding to 8= 0 .  A graphical solution of 
Eq. (19) obtained for this case is shown in Fig. 3a for  
three values of the parameter C,(E,). At pump inten- 
sities lower than the critical value (curve 1) this equa- 
tion has one root. When the quantity E, (parameter C,) 
exceeds i t s  critical value, this equation can have three 
solutions (curve 2). When E, is sufficiently high (but 
E, is fixed), Eq. (19) again has just one root (curve 3). 
In accordance with the stability criterion (161, the root 
x, (Fig. 3a) on the part of curve 2 with a negative slope 
is unstable. Since for x'= 0 and 8 = 0 the inequality (16) 
results automatically in satisfaction of the condition 
(151, the roots x, and x, on par ts  with a positive slope 
a re  stable. The bifurcation diagram of the system is ' 

shown in Fig. 3b. In the case of the parameters lying 
outside the wedge bounded by thick lines (bifurcation 
lines) Eq. (19) has one solution, whereas outside i t  i t  
has three solutions, one of which is unstable. The oc- 
currence of two stable states of the system is mani- 
fested by the double-valued hysteresis of i t s  optical 
characteristics. Figures 3c and 3d show the depen- 
dences of the amplitude E, = ~'~'1 of the field trans- 
mitted by the resonator on y, in the case when C, 
- - const (Fig. 312) and when C,(E,) for yi  = const*(Fig. 
3d). When the values of the parameters a r e  y, (Fig. 
3c) o r  C: (Fig. 3d) the system undergoes an abrupt 
transition from one stable state to another. Near these 
values the optical properties of the system a r e  non- 
analytic functions of the external field intensities, i.e., 

these properties cannot be represented by expansions 
as power ser ies  of deviations from such values. In- 
deed, i t  i s  easy to show that, for  example, close to  Ei+ 
(Fig. 3c) we have 

where E, (El+'+ 0) - E, (E:+) - 0) is the magnitude of the 
jump (discontinuity). Thus, near these values of the 
parameters the observed properties of the system can- 
not be deduced by perturbation theory from the magni- 
tude of the interaction with external fields. 

In the specific case when jl<< 1, Eq. (19) i s  formally 
identical with the equation of state describing optical 
bistability in a resonator with a saturable absorber?-4 
However, the parameter C, describing the behavior of 
the system is then proportional to the pump intensity 
and is controlled by this intensity, whereas in the case 
described in Refs. 1-4 it i s  governed solely by the 
density of atoms. If fl<< 1, the threshold of the disap- 
pearance of such a bistability is naturally the same as 
inRefs.  1-4, i.e., CC: =4. If jl i l  and 8 = 0 t h e  be- 
havior is basically still the same but the magnitude of 
the threshold decreases. For example, if jl= 1, we 
find that Cf: = 2. 

A basically new situation may ar ise  when 0 z 0. An 
increase in 181 at a fixed value of C, results in a grad- 
ual disappearance of the characteristic kink exhibited 
by the Q($) curve and in narrowing of the region where 
the inequality (16) i s  disobeyed. Since the inequality 
(15) is independent of 8, it follows that when 8 exceeds 
a certain value the regions with a positive slope of the 
curve Q ( $ )  may become unstable since they lie in the 
region where the criterion (15) i s  violated (Figs. 4a and 
4b). A bifurcation diagram corresponding to this situa- 
tion is shown in Fig. 4c. As before, inside the wedge- 
shaped regions there a r e  three stationary solutions 
and outside i t  there is only one solution. The thick 
line is also a boundary of the appearance of saddle-type 
stationary states. Within the region bounded by the thin 
line the system has unstable nodes o r  foci. Thus, for 
example, in the shaded region of the parameters there 
is a single unstable stationary state. All the phase 
trajectories (paths) of the system of nonlinear equations 
(14) beginning from the unstable equilibrium state move 
away from this state with time. On the other hand, i t  
follows from Eq. (14) that in the case of sufficiently 
high values of BP we have $<O, i.e., the phase trajec- 
tories cannot escape to infinity either (this is physically 
evident from the dissipative nature of the system). As 
is known," in a situation of this kind we can expect limit 
cycles in the phase plane; Figure 4d shows the results 
of a numerical integration of the system (14) for pa- 
rameters lying within the shaded region of the bifurca- 
tion diagram in Fig. 4c. A limit cycle (represented by 
a closed thick line in Fig. 4d) can be observed and it  
surrounds a state of unstable equilibrium identified by 
a point. All the phase trajectories beginning inside and 
outside the cycle approach i t  asymptotically with time. 
The existence of a limit cycle results in amplitude- 
phase self -modulation of light emerging from the reso- 
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power absorbed by such saturable substances varies 
monotonically. 

FIG. 4. Self-modulation of the field in a resonator ( I  A I<<y, 
6 * 0, 8 = 1 ). a ) ,  b) Appearance of an instability zone of sta- 
tionary states of the system ( C ,  = 25). The curves in Fig. 4b 
correspond to different values of i b :  1) 2; 2) 9; 3) 14. The 
zones of instability with respect to y i  a r e  shown shaded. c) 
Bifurcation diagram ( e = 10 ). The shaded region shows the 
range of existence of the only stable state. d) Limit cycle 
(closed thick curve) in the phase plane of the system ( C, -. 20, 
yg= 17 ,  ip= l o ) .  The point represents an unstable equilibrium 
state. The thin curves a r e  examples of phase trajectories. 
e) Time dependence of the amplitude of light emerging f rom 
the resonator and corresponding to the limit cycle in Fig. 4d. 

nator when the intensities of the external fields E, and 
E, a re  constant. Figure 4e shows the time dependence 
of the amplitude of the field emergingfrom the resonator 
and this dependence corresponds to the limit cycle in Fig. 
4d. The time orderingwhichappears inthe systemwhen 
the externalagencies exceed criticalvalues represents a 
time-dependent dissipative s t r u ~ t u r e . ~ ~ ' ~ '  

It should be noted that the instability zones asso- 
ciated with the presence of a falling region in the de- 
pendence of the absorbed power on the field t? cannot, 
for fundamental reasons, appear in the models of opti- 
cal bistability with saturable absorbers,14 because the 

Case I A y .  To be specific, we shall assume that 
A > 0. It follows f rom Eq. (17) that the medium be- 
comes strongly polarized in the 51, - A case. We shall 
also bear in mind that if 51, -A, then the 2 -3 transi- 
tion is saturated. Separating the principal terms of 
the polarizabilities ~ ' ($1 and xl'(k??) near their extrema, 
we shall write down the equation of state (12) in the 
form 

Here, 

4 IdazIEt 
I=-- 

1 IdszlE; 
T'h h* Y ' = T , b r .  

In the case under consideration when 6<< 1, we find 
that 1 x"/X' I << 1 (Cz/C, -6). Therefore, we can have a 
situation when C2/6' << 1 , but C2/6' 2 1 (6 >> Cz 2 6'). 
Then, 

This equation can have more than one solution because 
of the nonmonotonic nature of the expression in the 
brackets of Eq. (21) in a region of width -6 near x =  1. 
Interesting singularities appear for 0 <@ <2CZ/b2. 
Then, the expression in Eq. (21) vanishes twice as a 
function of x so that Eq. (21) has not only three but 
five stationary solutions depending on El (Fig. 5a). 
However, the only stable roots a r e  those lying on re-  
gions with a positive slope of the curves in Fig. 5a. 
Physically, the occurrence of three stable states i s  
associated with the fact that on increase of the internal 
field because of the nonmonotonic dependence XI($) for 
the specified values of di and C, the condition of reso- 
nance transmission of light through the resonator 
(equality of the optical path to an integral number of 
wavelengths) is obeyed twice. In the usual dispersive 
bistability associated with the saturation effect4*= the 
value of X' depends on $ monotonically and this can re- 
sult in just one tuning to a resonance. 

The hysteresis of the amplitude of the light emerging 
from the resonator as a function of the fields E, and E,,, 
which appears in this case, a r e  illustrated in Figs. 5b 
and 5c. It should be noted that a similar hysteresis i s  
observed also when the pump frequency (i.e., A) i s  
varied and the external field intensities a r e  fixed. 

If c 0 and A > 0, the polarization of the medium 
simply results in an additional detuning of the system 
from resonance and in this case the number of stable 
states does not exceed two (Fig. 5a). The threshold of 
appearance of the Stark multistability cannot be found 
in an analytic form in the case of an arbitrary relation- 
ship between the quantities @ and 6. Using the small- 
ness of the parameter 6, we can obtain explicit expres- 
sions for the threshold in the following two limiting 
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FIG. 5. Threshold phenomena in the 1 A l >>y ( 6 =  0.1) case. a) Graphical solution of the "equation of state" ( 2 1  ) obtained for 
different values of the parameters: 1) 2c2/g2= 8, ih= 3; 2) 2C2/82=41 b = 3 ;  3) 2C2/g2= 2 ,  += 3; 4) 2c2/g2= 2 ,  b =  -3. The 
points on the x axis identify the stable solutions. b) Hysteretic dependence of E, on yr for 2C2/62= 8, $= 3. C )  Hysteretic de- 
pendence of El on C2 for yl= 1 . 2 ,  += 3. 

cases: 

If C, 2 6, we have to  allow for the contribution of ~ " ( g )  
to  Eq. (20) but this does not result in any qualitative 
changes. 

CRITICAL PHENOMENA UNDER CONDITIONSOF 
FIELD GENERATION IN A RESONATOR 

We shall consider the case shown in Fig. l b  when the 
upper level 3 is pumped. The polarizability of atoms 
a t  the frequency Q = w, then has the form 

It is clear from E;q. (23) that in this case the quantity 
~ " ( $ 1  can become negative and this amplifies the elec- 
tromagnetic field of frequency Q. As before, we shall 
consider separately the cases I A 1 << y and I A lr> y .  

Case I A ( , > ~  (A>O),E,=O. We shallassume, for 
simplicity, that a resonator is tuned to the frequency 
w,. We shall introduce dimensionless variables 

It then follows from Eq. (12) that if E, = 0, we find that 

XU (x) =O, y (x) = I  - 2Er - 2C3 
( ~ - 1 ) ' + 6 ~  ( X + I ) ~ + ~ ~  ' (25) 

(22) 2Ca 
- ] x-0. 

[m- (x -1 )2+62  ( ~ + i ) ~ + b ~  (26) 

1 nNkL Idazl' Id,,12Ep2 y c,=------. 
2 T try,, h2 AS 

yontrivial solutions of Eq. (25) a r e  possible only if 
C, > 0 (w,, >w,,), when the medium is active [X"($) < 01. 
Figure 6a shows the dependen_ce y (x) _obtained for var- 
ious values of the parameter C,. If C , < 5: (25: / 
6, = 1) (curve I ) ,  Eq. (25) has only the trivial solution 
x = 0. If C, = c, an additional solution is obtained. 
For < C, < C*, Eq. (25) has two nontrivial solutions 
(curve 2) and one solution for 6,  > C, (C* JO. 25) (curve 
3). The appearance of these additional roots reflects 
the possibliity of generation by this system of a field of 
frequency -w,, governed by Eq. (26). We can easily 
show that only the larger of the roots of y (x) = 0 cor- 
responds to stable oscillation. The trivial solution 
x =  0 is stable for C, < C* and becomes unstable for 
C3a c*. 

In the derivation of Eqs. (25) and (26) we have used, 
for the sake of simplicity; an expression for the po- 
larizabilities x ' ( I ) ,  ~ " ( g )  at a frequency 52 = w,. This 
approximation is valid if the shift of the oscillation 
frequency is I w - w, I<< -A.  It follows from Eq. (26) 
that 

. - .  

@-I o-US, I P / c T - ~ C ~ / ~ ~ ,  

i.e., i t  is essential that 
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FIG. 6. Threshold phenomena in the course of pumping of the 
upper level in the I A I >> y ( 6 = 0 .1  ) case. a) graphical solu- 
thon>f the equat%ny(x)= 0 [ s e e  Eq. (25 ) l :  1) 2C3/62= 0.5; 2) 
2C3/fi2 = 1 . 5 ;  3) C3 = 0 .3 .  b) Hysteretic dependence of Et on 

C3. 

On the other hand, the condition 8 =9T<< 1 used above 
leads to the inequality 

Oscillation appears if C3 -6. Therefore, a s  long a s  

T d C l  and T ~ y P l c ,  (29) 

we can ignore the difference of the oscillation frequency 
from w,. 

Figure 6b shows the dependence of the field ~''~8 of 
frequency_-d3, emerging f rom the resonator on the pa- 
rameter C3_(pump intensity). It i s  clear from Fig. 6b 
that i f  C3 > CF , the emitted field may appear abruptly 
beginning from a finite value, in contrast to  the usual 
lasing when the field r ises  continuously from zero when 
a certain threshold i s  exceeded. Moreover, the ab- 
sorption of the pump field changes abruptly at the mo- 
ment of appearance of oscillations and the dependence 
of the absorbed power on the intensity of pumping also 
shows a hysteresis. 

The conventional lasing can be interpreted a s  a 
second-order kinetic phase transition. 22'24 The hard 
excitation of oscillations corresponding to Fig. 6 
represents a first-order kinetic phase transition. Only 
a few examples of such transitions in the generation of 
light in active media a r e  known at  present. 7'10827 

Case I A I < <  y .  We can easily show that if E, = 0, only 
the soft oscillation regime, which does not differ quali- 
tatively from the conventional lasing, can be observed. 
However, an interesting critical effect appears i f  E, 
+O. We shall consider only the most interesting situa- 
tion when the pump intensity ensures the possibility of 
generating an internal field at a frequency -u,. We 
shall also assume that the frequency of the external 
field differs little from the oscillation (lasing) frequen- 
cy. If E, is sufficiently small compared with the inten- 
sity of the generatedfield 6, the dynamics of changes inthe 
field E will naturally represent a superposition of oscilla- 
tions of twofrequencies: the internal oscillationfrequency 
and the frequency of the external field, which results in 
beats of the intensity of light transmitted by the resonator. 

FIG. 7. 

However, as is well known f rom the theory of nonlinear os - 
cillationsZ6 when a self-oscillatory system is subjected to 
an external harmonic force, frequency lockingoccurs when 
the force exceeds a certain thresholdvalue: the oscilla- 
tions of the system a r e  then synchronizedwiththe oscilla- 
tions of the external force. Let us  assume that Ei exceeds 
this lockingthreshold. We canthen seekasolutionof an in- 
ternal f ield of frequency n. The equation for the amplitude 
of the internalfield has the form of Eq. (12) whereX1< 0 
and x'= 0. If E, > E? (Figs. 7a and 7b), Eq. (12) has 
one stable stationary solution g* lying near $# and cor- 
responding to oscillations of the system locked (syn- 
chronized to the external field E ,. When E, is reduced 
right down to E y ,  the stable solution merges with the 
unstable one and it  disappears. If E, < E r  , the locked 
solutionof amplitude - gt i s  impossible and then oscil- 
lations with two periods appear in the system. The 
locking threshold E? corresponding to small values of 
9 can be found by substituting $= gc in Eq. (12): 

We have considered critical phenomena in double 
optical resonance from the dynamic point of view. In 
the presence of several stable states a system ex- 
hibiting such a resonance assumes in a determined way 
one of these states in accordance with the previous 
history of changes in the parameters of the external 
agency. As is well known, fluctuations causing transi- 
tions from one state to another play an important role 
in systems with more than one equilibrium state. 
Therefore, after a sufficiently long time, we can only 
speak of the probability of finding a system in one o r  
another equilibrium state and the statistical approach 
is needed. In the case of optical bistability this prob- 
lem has been considered in the case of q u a n t ~ m ' ~ * ~ ~  and 
t e ~ h n i c a l ~ ~ * ~ '  noise. This program may be realized 
also for a range of phenomena described in the present 
paper: for example, one can employ the method of the 
Langevin equations. However, since in the majority 
of the cases considered here the dispersive effects 
a re  important, the condition of detailed equilibrium is 
not obeyed in the relevant Fokker-Planck equation3* 
and this makes i t  difficult to solve i t  even in the steady - 
state case. Then, the probability of fluctuation-induced 
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transitions can be found only by asymptotic  method^'^.^^ 
that require extensive numerical calculations. 

CONCLUSIONS 

We have considered a number of new cooperative 
threshold optical phenomena which appear in a system 
of three-level atoms or molecules because of the high- 
frequency Stark effect caused by the collective field. 
The thresholds of these critical phenomena depend on 
the intensities of both exciting fields and, in contrast 
to Refs. 1-4, these thresholds a re  controllable. This 
may be of interest in the construction of multifunction 
optical devices with tunable parameters. In contrast 
to the saturation effects which underlie the phenomenon 
of optical bistability in a system of two-level absorb- 
e r ~ , ' ~  the high-frequency Stark effect results, under 
double optical resonance conditions, in a nonmonotonic 
dependence of the refractive index of the medium of the 
power absorbed by the medium on the field intensity. 
Then, the number of stable states of the system may 
exceed two even when the induced change in the optical 
length of the resonator i s  much less  than the wavelength 
of light. The monotonic behavior of the absorbed power 
results in spontaneous oscillations of the 'atom + fieldu 
system. 

The effects discussed above should be detectable ex- 
perimentally. The requirements to be satisfied in such 
detection a re  in practice no more stringent than those 
in the case of observation of bistability in resonators 
with saturable absorbers. The latter effect has al- 
ready been observed experimentally under nonextremal 
conditions (see, for example, Refs. 5 and 35). 
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