
where rp,, and fmk a r e  certain functions of x ,  y,z on 
whichonly the constraints whichensure OkkmTT=O are  im- 
posed, namely, 

Afmr+hoo.  ,k=O, A q m k = O .  (5.11) 
From the components h z  we find 

ZI 
R*1m - ' /2(q1. .m-q*,1) .  

Comparing this expression with (5.9), we obtain the 
equation 

q r r .  m - ~ m , .  i=hom, .-hot, m,, 

which is satisfied by the choice p,,= -h,,.,, and, in 
addition, (5.11) is also satisfied, since ~ h ,  = 0.  Thus, 
no contradictions arise in the values of R,,,, and R::,. 
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Regularization of the energy-momentum tensor and 
particle production in a strong varying gravitational field 
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A generally covariant method is proposed for regularizing the vacuum expectation values of a quantized field 
interacting with a strong varying classical field (smoothing method). The main types of divergence are found 
and a simple algorithm given for calculating finite quantities for the case when an explicit expansion of the 
field operator with respect to quantum modes is given. The smoothing method is used to calculate the energy 
density and pressure of produced particles for a fermion field and a massless scalar field with minimal 
coupling in a Friedrnann space. 

PACS numbers: 1 1.1O.Gh 

1. INTRODUCTION itial vacuum state or vacuum polarization in spaces 
with non-Euclidean topology,'-4 these effects leading to 

Quantum field theory in a classical curved space- nonvanishing vacuum expectation values (0 IT"" 10) of 
time is a natural first approximation to the construc- the energy-momentum tensor of the quantized field. 
tion of a complete quantum theory in which gravitation The most important applications of these effects a re  to 
is also quantized. In such a quasiclassical approach, c o s m ~ l o g y ~ * ~  and to black holes,? where one encounters 
one also encounters problems which a r e  of independent strong gravitational fields that can be treated naturally 
interest such as the production of particles from an in- as classical. 
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The calculation of definite physical quantities (the 
concentration n of produced particles, their energy 
density &, pressure P, etc.) encounters certain diffi- 
culties, since the vacuum expectation values of the cor- 
responding spatial densities diverge, a s  a rule, a t  
large momenta. Besides the terms associated with the 
zero-point fluctuations of the vacuum [and proportional, 
for example, for the energy density to  the integral 
S@kw(k)], which can be eliminated either by direct 
subtraction2 or  by appropriate definition of the normal 
product: there a r e  divergences of other types as well. 
A number of methods have been proposed to eliminate 
these last (see, for example, the review of Ref. 8 and 
also the book Ref. 4). The most convenient for calcu- 
lations a r e  the n-wave method of Zel'dovich and Staro- 
binskir2 and the analogous method of adiabatic regular- 
ization of Parker and F ~ l l i n g , ~  which give simple algor- 
ithms for the necessary subtractions. For  example, 
( 0  I Tuv 10)) regularized by the n-wave method, is2 

t ~ l ~ ~ ( x ) l ~ ) = ~ d ~ k T ~ ~ ( k ) ,  
(1.1) 

T v v  (nm, nk) 1. T:(k)= lim [~ ' ' ' (m,  k)- 
7,-- 

q=o 

It is  obvious that the conservation of Tuv is preserved, 
and also the conformal invariance of the theory. In gen- 
eral ,  the applicability of these methods is restricted by 
the requirement that there exist an expansion of 
Tuv(m,k) in a Taylor series in powers of k" or  a t  least 
the first  terms of such an expansion should exist. In the 
general case, Tuv contains oscillating terms of the form 
ei". Therefore, the point k=w is an essential singu- 
larity, and the expansion (1.1) does not exist. The sim- 
ple example of a massless scalar field with minimal 
coupling in a Friedmann space leads to the following ex- 
pression for the probability of pair production in the 
state k (see Sec. 4 of the present paper): 

- 

I 
(q-qo)sin 2k(q-qo) + I - cos 2k(q-qo) 

4ksqozqa 8k6q:qz 

It is  easy to show that regularization of (n(x)) or  
(~""(x)) by means of an expansion of the form (1.1) is 
here impossible. The other methods of regularization, 
for example, the point-splitting method>*' a r e  also in- 
effective in this case. 

Besides the limited applicability, a shortcoming of the 
existing methods is, in our view, the nonuniqueness in 
the determination of TrrB. For example, the energy- 
momentum tensor of a conformally invariant scalar 
field in a Friedmann space i s  finite after the terms as- 
sociated with the zero-point fluctuations of the vacuum 
have been subtracted.'v3 One can however, define a dif- 
ferent energy-momentum tensor which contains a 
greater number of subtractions than is needed to ensure 
convergence and leads to different results (see Ref. 4). 

In the present paper, we propose a method for regu- 
larizing the particle number density n, the energy den- 
sity E ,  the pressure P, and the other quantities charac- 
terizing the produced particles; it is not associated 
with expansions of the form (1.1). In Sec. 2, we con- 
sider why the divergences ar ise  and give a generally 

covariant method for eliminating them. In Sec. 3, we 
formulate rules for calculating divergent integrals for 
the case when an explicit expansion of the field with 
respect to quantum modes is given. In Sec. 4, we cal- 
culate the energy-momentum tensor for a fermion ( s  
= i) field and a massless scalar ( s  = 0) field with mini- 
mal coupling in the Friedmann metric. We use a sys- 
tem of units in which A= c = 1. 

2. REGULARIZATION OF THE DYNAMICAL 
VARIABLES BY THE SMOOTHING METHOD 

We consider in more detail the origin of the diver- 
gences in the dynamical variables which characterize 
the produced particles, for example, n, E ,  and P. The 
most common formulation of the problem of particle 
production from the vacuum is a s  follows. Let @ be 
some free  (linear) field in a curved space-time satisfy- 
ing the dynamical equations 

where is a self-adjoint differential operator. We take 
two spacelike hypersurfaces C., and El, which can 
serve a s  Cauchy hypersurfaces for Eq. (2.1), and a s -  
sume that El lies in the future of Eo. The field @ is 
quantized by introducing a complete se t  of positive- and 
negative-frequency solutions of Eq. (2.1) on E and ex- 
panding @ with respect to  this set. Denoting, for ex- 
ample, the corresponding solutions by uk(x), we can 
write 

The operators ak (a;) in (2.2) correspond to operators 
of annihilation (creation) of field quanta and satisfy the 
standard (anti) commutation relations 

(By k, we have denoted the set  of discrete or  contin- 
uous indices that define the quantum state of the field.) 
Formally, this scheme does not differ from quantiza- 
tion of the field iP in Minkowski space. The difference 
is that a solution udE) of Eq. (2.1) having a definite fre- 
quency type (positive o r  negative) on X, no longer has it 
on El. This has the consequence that the initial vacuum 
state 10) is a many-particle state with respect to the 
vacuum 10,) on El, i.e., particles a r e  produced from 
the vacuum. The probability of pair production in the 
state k, Ip(k,x) 1 2 ,  can be found either by diagonalizing 
the instantaneous Hamiltonian H(c) by means of a ca- 
nonical Bolgolyubov transformation or  by expanding 
u,(X0) with respect to a new complete se t  of functions 
uk(El) and u,*(c,). (A detailed discussion of the ques- 
tions involved here can be found, for example, in Refs. 
4 and 8.) 

In calculating n, &, and the other characteristics of 
the produced particles, we shall assume that the diver- 
gences associated with the zero-point fluctuations of 
the vacuum have already been eliminated either by di- 
rect  subtraction of the corresponding terms2 o r  by 
introducing a time-dependent operation of normal or-  
d e r i ~ . ~  This last can be expressed in the covariant 
form 
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We find the physical characteristics associated with A 
of the particles produced in the time determined by the 
mutual separation of Co and Z, by taking the average of 
(2.4) with respect to  the initial vacuum (0). The n and 
& determined in this manner can be expressed directly 
in terms of the probability of pair production in the 
state k: 

The other vacuum expectation values ( 0  IN,[T~'(X)] 10) 
(for example, the pressure) a r e  given by more compli- 
cated constructions, but they do not differ fundamentally 
from (2.5). 

Let t be the timelike coordinate determined by the 
hypersurface Z with respect to  which the expansion 
(2.2) of the field with respect to  frequency components 
is given. We shall denote the derivative with respect to  
t by a dot. The particle production is due to the non- 
stationarity of the space-time metric g,,(x) in the four- 
space region 51 bounded by the hypersurfaces Co and 
2,. Thus, the probability amplitude B(k) is  a functional 
of i,,(x): 8 = B[k;i,(x)], and 8 = 0 if g,, = 0 in 0. The 
derivative i,, determines the "intensity of the interac- 
tion" of the field with the classical gravitational 
field. The correction formulation of the problem in the 
theory of interacting fields usually contains the hypoth- 
es is  of adiabatic switching on of the in tera~t ion.~ In the 
present case, this hypothesis means that 5,- 0 a s  t - - m; in the interval -m < t s to there is  a slow variation 
of 2, from zero to the value ~,,(c,); in the interaction 
region to< t s t,, the derivative k,, changes in accord- 
ance with the Einstein equations; finally, in the inter- 
val t, s t < -  the derivative g,, decreases slowly from 
the value i,,(Z,) to zero. It is then possible to define 
correctly the initial and final vacuum states, and the 
adiabaticity of the switching on and switching off proc- 
esses ensures the absence of quantum transitions in the 
intervals (-m, to) and (t,,m). 

The formulation of the problem described at the be- 
ginning of this section does not correspond to adiabatic 
but instantaneous switching on of the interaction a t  to 
and switching off a t  t,. The space-time metric corre- 
sponding to  this formulation is 

The interaction intensity i,, has discontinuities on Z, 
and El. In quantum field theory in flat space-time such 
a situation has been investigated in considerable de- 
tail. In the case of instantaneous switching on of the 
interaction, the well-known Stiickelberg surface diver- 
gences arise,  whereas the physical quantities remain 
finite in the case of "smooth" switching on.' It is  natu- 
ral to assume that in curved space-time too the diver- 
gences a t  large k in expressions of the type (2.5) a r e  
also due to the instantaneous switching on of the inter - 
action, since such switching excites with appreciable 
probability the high-energy modes of the field ih. Then 
to eliminate the divergences from these expressions it 
is sufficient to smooth the process of switching on and 
off of the interaction. 
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It would be very attractive to  combine the conditions 
of smoothness and adiabaticity of the switching on of 
the interaction. However, it i s  not clear whether one 
can define sensibly the metric tensor g,, in the sections 
of adiabatic switching on and switching off. We shall 
restrict  ourselves to the fulfillment of the smoothness 
requirement. For the mathematical expression of the 
corresponding conditions, it is  convenient to  use Bo- 
golyubov's deviceg in the derivation of the Tomonaga- 
Schwinger equation. Namely, we introduce a discontin- 
uous function B,(x) such that 

0, (XI = I  for t>T ,  (x) , 

eX(x> =o for ~ c T , ( x ) ,  

where t = T,(x) is  the equation which defines the hyper- 
surface C. Let g(x) be a smooth function that differs 
from O,(x) = B[t - T,(x)] only within the region It - T,(x) I 
<A. We go over from i,, to the smoothed quantities 

2 a v :  

For  small A ,  the quantity g,, is equal to  i,, in the 
four-region 51 bounded by the hypersurfaces C, and Cl; 
in a layer of thickness A to the left of Co and to the 
right of C, the value of g,, varies smoothly from its 
values on Co and C, to zero, and it vanishes identically 
in the remaining regions. It is  obvious that the corre- 
sponding metric can be defined in such a way that itg 
difference from (2.6) does not exceed a small quantity 
of order A. The excitation of the high-energy modes of 
the field will now be determined by the degree of 
smoothness of the functions g(x) [for example, for ana- 
lytic g(x) the excitation probability for such modes is 
exponentially small]. Taking g(x) sufficiently smooth, 
we can always ensure convergence of quantities such a s  
(2.5). It is  obvious that the proposed covariant regu- 
larization procedure does not change the conservation 
properties of T'" o r  the (possible) conformal invariance 
of the field a. 

3. RULES FOR CALCULATING DIVERGENT 
INTEGRALS 

Eliminating the divergences by means of the smooth- 
ing (2.8), we introduce in general an explicit depen- 
dence on the smoothing functions g(x)  into the ampli- 
tude B. In the region of frequencies k - A" their influ- 
ence cannot be regarded as small. On the other hand, 
it i s  clear that the vacuum expectation values of TuV 
must be determined solely by the variation i,, of the 
physical metric and cannot depend on the method of 
smoothing (or on the method of regularization). There- 
fore, the regularization (2.8) is of little use for indi- 
cating a method of calculating the expectation values 
(0 IN[T~'] (0) which does not depend on the specific form 
of the functions g(x). Since the explicit introduction of 
quantum states and the expansion (2.2) of the field op- 
erator with respect to  the frequency components a r e  
usually associated with the possibility of separating the 
variables in Eqs. (2.1), we shall restrict  ourselves to 
this practically important case. 

Thus, suppose the time and spatial variables in the 
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field equations (2.1) have been separated. The time- 
dependent part  u,(t) of the frequency functions satisfies 
an ordinary second-order differential equation with t - 
dependent coefficients. (We recall that iP is effectively 
a free field.) The probability of pair production in the 
state k can be found in this case from the system of 
equations 

 h he case a= flp + f2 a, /3 = q1 a +  q2fi can be reduced to 
(3.1) by the method of variation of an arbitrary con- 
stant.] The fyct ions  W(k, t) and ~ ( k ,  t) a r e  proportion- 
a l  to BUY (or g,, for the smoothed metric), and O(k, t) 
for the high-energy modes is O(k, t )= kt >> 1. The inte- 
grals of the type (2.5), in terms of which the vacuum 
expectation values of the spatial densities n(x), TUY(x), 
etc., a r e  expressed, behave a s  Ik 1 as 

jdk knlp(k.  t )  1%. 

Since the divergences a r e  associated with the behavior 
of / @  l 2  a t  large k, it is sufficient to  determine a meth- 
od for calculating integrals of the form - 

~ = j d k k n ~ p ( k , t ) ~ ~ ,  (3.2) 
0 

where f l  is a solution of the system of equations 

[we have introduced the notation W(k --, t) = W(t), 
V(k - m ,  t) = ~ ( t ) . ]  

We consider first  the simple case when the "poten- 
tials" V(t) and W ( t )  contain a small parameter and the 
solution of the system (3.3) is to  good accuracy 

If the interaction is swtiched on instantaneously a t  to 
and off a t  t,, 

v ( ~ ) = v ( ~ ) e ( ~ - t ~ ) e ( t , - ~ ) ,  
then fl(k - m) - k", and the integral (3.2) diverges a t  the 
upper limit as kn". Regularizing in accordance with 
(2.8), we replace the 8 functions in f ( x )  by functions 
g(x) which a r e  sufficiently smooth to  ensure conver- 
gence of the integrals J. It is  necessary to distinguish 
the values n = 2m and n = 2m - 1. For  n = 2m, integrating 
by parts in (3.4), we find 

$ = ( ik )  -" j dx PC"' ( x )  ecZs, 

and the required integral is  

J,,,,= 5 dxdy  P ( m ) ( x ) ~ ( m ) ( y )  Jdkcos  k ( x - y ) =  nj &[V'm'(x) 1'. 

We have used the equation 

1 dk cos k z = d  ( 2 ) .  
0 

To separate in J, the contribution from the "physical" 
region to < t < t,, we transform the last  integral: 

and go to  the limit g (x )  - O(x). The divergences which 
then ar ise  can be readily separated and can be elimi- 
nated in a general formr For this, we arrange the re-  
gions of smoothing for V(x) and_ f '2m)(x) in such a way 
that the transition regions for V ( 2 m ) ( ~ )  occur a t  the val- 
ues of x where V(x) = 0, and we go to  the limit g- 0 
f i rs t  for f (x ) .  As a result, we obtain the regularized 
value of the integral J,,: 

The case n = 2m - 1 is somewhat more complicated. 
Integrating by parts,  we obtain a s  in the preceding case 

" cos k ( z - y )  
I ~ , ,  = j X V Y  j d  

0 

= I d x d y  V ( m ) ( y )  [ P ( ~ - " ( ~ )  j dk sin k ( r - y ) +  ( x )  j d k  kF-y)]  
0 1. 

l-cos a (x -y )  
= j d x  dy  V(" ( y )  [PI"'- ' ) (x)  -V'"'(x)Cihlx-yl . 

"-Y I 
Since 

d 
cos h (x -y )=(x -y ) -C ih lx -y I ,  

dx 

we obtain 

=(- )" '+I  j dz dz lnlzl v ( 2 )  P"' (x+z ) .  

In the last integral, we can go to the limit g(x)-  B(x) 
f i rs t  for V(x) and then in V (2m)(x + 2) :  

11 

= (-)"+'j dz lnlzl 5 dx V ( x )  V ~ 2 " ' ( z + ~ ) ~ ( ~ + ~ - t 0 ) e ( t i - x - z )  
4 

Here, (2r) a r e  binomial coefficients; we have used 

the equation B1(x) = 6(x), and also the circumstance that 

Transferring the derivatives from the 6 functions to the 
potentials, we find the regularized value of J,,,: 

1, 

I,,-, =(-)"+I j d z  d y  l n l ~ - ~  I V ( x )  V(zm) (y) +(-)"+I 
4 

Calculating the sum over n, we reduce this expression 
to the simpler form 
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Equations (3.5) and (3.6) give the rules for calculating 
the two standard divergent integrals J,, and Ja-,. 

In the calculation of the vacuum expectat ion values, 
we also encounter divergences of a somewhat different 
form: 

.a 

i n - j d k k n j & ~ ( z ) c o s k ( z - t ) .  (3.7) 
0 

We again distinguish the values n = 2m and n = 2m - 1. 
For n= 2m, integrating by parts in (3.7), we obtain 

Neglecting the integrals over the smoothing regions 
(i. e., the surface terms that diverge in the limit A - O), 
we find 

.a 1, 

i,, = j ctk kzm j d z  v ( 2 )  cos k (2-t: 
(I b 

n (-)' V'""' ( t )  ; t,<t<f, 
= n(-)' fdx V i Z m ) ( z ) 6 ( z - t )  = { 

0 ;  t<to, tl<t' 
(3.8) 

b 

For n = 2m - 1, as  before, we have 

i.e., the regularized value of the integral is 

We now consider the case when the potentials W(t) 
and V(t) are  not small. We introduce a parameter A 
satisfying the condition At >> 1 to divide the integral (3.2) 
into two: 

In the interval 0 a k c  A, we find the amplitude B(k, t) by 
the usual methods of the theory of differential equations 
from the system (3.3), using the unsmoothed potentials 
V and W. To calculate J"', we note that for sufficiently 
large A the solution (3.4) of the system (3.3) is a good 
approximation to the exact solution irrespective of as- 
sumptions about the smallness of V and W. Therefore, 
in the frequency interval A < k < - we use the value 

$ -  j d z ~ ( z ) e - ' ~ ,  

where ? is the smoothed potential. We transform the 
integral J"' as  follows: 

.a )I 11 

~ ( 2 ) - j a k k = 1 p 1 ~ - -  j d k k *  j d z d y  v ( x ) v ( ~ ) c o s ~ ( z - ~ )  
L 0 b 

We have separated in J',' the standard divergent part, 
whose values are given by the expressions (3.5) or  (3.6), 
and taken the smoothing from the potentials in the finite 
integral over the interval (0, A). Substituting this value 
of 5"' in (3.10), we obtain 

Similar calculations can be readily performed for the 
expressions that diverge in accordance with (3.7). 

In the general case of arbitrary V(k, t) and W(k, t), 
the scheme of calculations is still preserved. In the 
interval 0 6 k G X, we find the solution of the system 
(3.1) by using the known unsmoothed values of V and 
W. For values X<k, the functions V(k, t) and W(k, t )  in 
(3.1) can be represented a s  series in powers of k-l, and 
we can use the asymptotic expansion of the solution of 
the system of equations (3.1) with the smoothed poten- 
tials and fi in series in powers of (kt)". Separating 
the standard divergent integrals, which can be calcu- 
lated in accordance with Eqs. (3.5)-(3.9), we obtain ex- 
pressions of the form (3.11) for the regularized values 
of the required vacuum expectation values. 

4. PRODUCTION OF SCALAR AND SPINOR 
PARTICLES IN  A FRIEDMANN SPACE 

To illustrate the regularization method developed in 
the previous sections, we consider the production of 
scalar and spinor particles in the space with metric 

&'=a2 ( q )  (dq2-dx2-dyz-dz2), a ( q )  =aoq (4.1) 

1. Femions. The quantum theory of a soubir ( s  = $) 
field in homogeneous and isotropic spaces has been 
considered on many occasions (see, for example, Ref. 
4). We shall use the results of Mamaev, Mostepanen- 
ko, and fro lo^.'^ In accordance with Ref. 10, the en- 
ergy density and pressure of the produced fermions are 

here, a! and f i  satisfy the system of equations 
kma' 

a*'=- ae-", 
2wZ 

-kma' 
,a' =- a'e 2w, a ( 0 )  =-I, ( 0 )  = 0 

20' 

(We have specified the initial conditions a t  the cosmo- 
logical singularity . ) 

We restrict ourselves to the most interesting case 
ma(q)q << 1. Introducing the parameter X,ma <<A << 1 / ~ ,  
we find for k<A 

s(k<h) ='la-k/2w, u(k<X) -malo. 

The contributions from this region to & and P a re  
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For X<k, the coefficients in (4.3) can be expanded in a 
series with respect to the parameter ma/k [the same 
expansion can be made in the integrals (4.2)]. Calcu- 
lating a! and j3 to terms -(ma/k)3, we find 

mZaZ mZaZ 
a=l-- 

8ikJq += (e-".*" I ) ,  

We have separated the term (m/2k) J d ~ a ' ( x ) e ~ ' ~ " ,  which 
leads to divergences at large k.  To accuracy m4a4/k4 
the integrands in (4.2) are 

, km' [ 2 si;:kq 
k ' o 1 ~ l ~ = - ~ d x d ~ a ' ( x ) a ' ( ~ ) c o s 2 / t ( s - ~ ) + -  - 

4 

- 2 (I-cos 2kq)  5 sin 2kq +5 (1-cos 2kq)  
-- 

kq2 2k2q3 2k3q6 

k'lpIZ k3ma 1 
u =  -(k'wIpI2)-- 

0 2 0  2 
m2a'c f dr a' ( r )  eos 2k (rn) 

2 

I m'a' [ 2 co;2kq sin 2kq 4+eos 2kq 5 sin 2kq + + - - -  
8k k q  2kZq2 4k3q' 1 ' 

Thus, the divergent terms in (4.2) are am2a2, and the 
regular terms are mm4a4. 

We calculate the contributions of the divergent inte- 
grals. The first of them is 

m2 ' 
--J dk j dz dy a' ( x ) a f  ( y )  k cos 2k(x-y)  

* 

[we have used the expressions (3.6) and (3.11), and also 
the fact that a(x) = a ~  on the section of physical varia- 
tion of the metric]. For the second integral, we find 
from (3.9) 

Calculating also the integrals of the terms proportional 
to m4a4, we find the contribution to c and P from the re- 
gion X < k :  

Here, y is Euler's constant. Adding (4.4) and (4.6), 
we obtain 

The region of applicability of Eqs. (4.7) is bounded 
by the inequality maoq2< 1. The produced particles sat- 
isfy approximately the "vacuum-like" equation of state 
P= -c, and 

e+P=-mV12n2<O, but e+3P= (m4/4nZ) In ( l /maoqz)  >O. 

In other words, the weak dominant energy condition is 
violated and the strong energy condition is satisfied. In 
order of magnitude, the c and P of the produced fer- 
mions are equal to the energy density and pressure of 
conformal scalar particles: but they have the opposite 
signs: c U / 2 ) =  -2c('), Pu l z )=  -2pto) (naturally, these 
equations hold only if the fermions and scalar particles 
have the same masses). The values of & and P found 
here differ strongly from the result obtained in Ref. 
10. In this connection, we note that the choice made in 
Ref. 10 of the subtracted terms in accordance with the 
scheme (1.1), 

~ ~ = m ~ a ~ ~ k ~ / 1 6 w ~ ,  u,=-3mJa,"ak/20' , 
does not satisfy the initial conditions s(qo) =u(qo) = 0. 
Therefore, the c and P calculated in Ref. 10 corre- 
spond to a nonvacuum initial state. 

2. Scalar field with minimal coupling. We consider 
a massless scalar field with Lagrangian 

In the metric (4.  I ) ,  the expansion of the field operator 
with respect to the positive- and negative-frequency 

parts is 

where the operators a, and a; satisfy the usual Bose 
commutation relations, and the functions u,(q) satisfy 
the equation 

The Hamiltonian H = J d ' ~ ( - ~ ) ' /  'T: of the field can be 
readily represented in the form 

(Note that in this case the metrical and canonical Ham- 
iltonians are identical.) At the initial time q=qo, the 
Hamiltonian H is diagonal i f  F(qo) = 0, E(qo) = k/a2, 
which corresponds to the following choice of the initial 
conditions for Eq. (4.10): 

At an arbitrary time q, the Hamiltonian H can be 
diagonalized by a canonical Bogolyubov transformation: 

tl) b k ( l ) ) f  p ( k ,  rl)b-k+(ll). 

The coefficients a! and B of this transformation can be 
expressed as follows in terms of the solutions of Eq. 
(4.10): 

Independently of (4.12), a and B can be found from the 
system of f irst-order equations 
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The energy density & = (0  IN,(^) 10) of the produced par- 
ticles and the pressure P= -(O IN,(T,") (0) which they 
produce can be readily expressed in terms of cr and j3: 

The solution of Eq. (4.10) satisfying the initial condi- 
tions is 

Using (4.12), we find the integrands in (4.14): 

'lo? 
ein 2k(q-q.) 

I 
+ I-cos 2k(q-q,) 

*ksqoq ($-$) +- 8k4Jqa * 
sin 2k (q-q.) 

2 Re[aB'e"wF*']-21gl'-- 
krlo 

In accordance with the smoothing method, we use (4.16) 
to calculate the contributions to & and P from the re -  
gion OSkSA: 

+ b sin W (q-q,) 

2'lo(cl-'lo) 

To calculate &(A<k) and P(A:k), we find @and 0 di- 
rectly from (4.13), using the smoothed potentiaL To 
terms (k?~)",  we obtain for j3 

In the second integral we make the change of variables 
x, -x,+x,=x, xl -x,=y,, x, -x3.=y2, and in the third 
integralx, -x2=yl, x,-x,=Y,, x,-x4=y,, x4-x,=y,, 
xl -x2 +x, -x4 +x, =x. Then (4.18) can be written as  

n 

eNhg= I d ~ e " ~ [ ~ + f , + f ~ ] - ~  &ea'lu$(z), 
0 'lo 

q rn 

f ~ ( z )  =- j hi f dxzv(zI) V(zI) V(Z~+X~-Z) ,  
I = 
q 'lo n-a n-rn 

f.(z)=- j & , j  dz' j at, j ~ , V ( z , + x , )  
i *  0 0 

x V(2,-2,) V(z,+z,-2) V(z,+z,+q-2) V(z,+za-2,-2). 

The contribution to & from the region A < k is 

). 'I -5 dkk'j dzdy$(s)g(y)cos 2k(z-y). (4.19) 
0 ' lo  

The first  integral in (4.19) is & J,, where J, is deter- 
mined by (3.6). The second integral in (4.19) can be 
calculated directly. A simple but lengthy calculation 
gives 

a .  I dkka f dzdyg-(z) g (y) cos 2k(z-y) 
0 * 

Thus, &(kc A) = -&(k> A) +o(l/A), and, going to the limit 
A -  *, we find the total energy density: 

One can show similarly that in the considered case the 
concentration n and the pressure P vanish. The ab- 
sence of production of quanta of the massless scalar 
field with the Lagrangian (4.8) in Friedmann models for 
the equation of state p = &/3 of the background matter 
was already noted by Parker.' 

5. CONCLUSIONS 

We conclude with some comments on the applicability 
of the smoothing method. The physical evolution of a 
space-time metric may lead to the appearance of real 
singularities of the time derivatives of g,, (for exam- 
ple, at  singular points of the space-time). At such sin- 
gular points, the smoothing procedure has no direct 
meaning. In this case, one can use the smoothing 
method to regularize divergent quantities a t  any point 
near but not coincident with the singularity. If the reg- 
ularized physical quantities do not have singularities at 
the singular points of the space-time (as, for example, 
& and P in the examples considered in Sec. 4), the re-  
sults a re  obviously also valid at the singularities them- 
selves. Divergence of n ,c ,P ,  etc., a s  the singularity 
is approached indicates instability of the corresponding 
classical metrics with respect to the process of parti- 
cle production. 

The examples considered in the previous section cor- 
respond to the case of a continuous spectrum. It is ob- 
vious that the smoothing method can also be used when 
k form a discrete set of quantum numbers and the di- 
vergent quantities a r e  represented by sums. At the 
same time, in the region of large k, using the well- 
known summation methods, we can always go over from 
sums to integrals, i.e., to the case when the regulari- 
zation rules proposed in Secs. 2 and 3 apply directly. 
In closed spaces, the normal ordering operation (2.4) 
subtracts from the dynamical quantities not only the 
divergences associated with the zero-point fluctuations 
of the vacuum but also the finite terms that arise be- 
cause of the difference between the topology of the 
closed space and Euclidean space. To calculate these 
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terms, one can, instead of using (2.4), make a direct 
subtraction of the corresponding  divergence^.^^ 

The values of & and P calculated in Sec. 4 must in- 
clude the contribution of the actually produced particles 
a s  well as the contribution from the vacuum polariza- 
tion in the varying external field. In the case of a small 
coupling constant (for example, in quantum electrody- 
namics), one can distinguish the effects associated with 
vacuum polarization from the production of real  parti- 
c l e ~ . ~  It is therefore worth considering to what extent 
these contributions can be separated in the present 
case. Weak coupling corresponds to a low interaction 
intensity, Ig ,. I << 1, and the probability amplitude P is  
given by (3.4). Then, for example, the mean energy 
density E: is proportional to the integral J,. Specifying 
the initial conditions a t  the point to= -m and requiring 
there the vanishing of i,, and the higher derivatives, 
we obtain from (3.6) for m = 2 

-i d x  In ( t -x )  [ V ( x )  V" ( t )  -Vf" ( x )  V ( t )  +Vf'(x) V' ( t )  -Vf (5) Vt'(t) 1. 

(5.1) 
It is  obvious that the first  term in (5.1) can be inter- 
preted a s  the contribution to & from the actually pro- 
duced particles, and the second, which is proportional 
to the derivatives of g,, a t  the considered time t ,  a s  
the contribution from the vacuum polarization in the 
varying external field. In the case when V depends on 
k, V =  V(k, t), the problem becomes more complicated, 
and (5.1) gives only the high-frequency asymptotic be- 
havior of the corresponding contributions. [ ~ t  is possi- 
ble that for V= V(k, t) a unique separation in & of the 
contributions from the vacuum polarization and the real  
particles does not exist, as in the case of an arbitrary 
strong field.'] 

The method proposed in Sec. 3 for removing the 
smoothing leads automatically to  subtraction of all the 
surface terms. A more detailed examination of the 
neglected terms shows that in the case n = 2m all  the 
neglected terms diverge in the limit g ( x )  - B(x). For 
odd n = 2m - 1, the neglected surface terms include 
some that diverge and some that remain finite in the 
considered limit. The latter form a bilinear form com- 
posed of products of the potentials V and their time 

derivatives taken a t  the initial to and final t, times. We 
do not know a sensible physical interpretation of these 
local surface terms. 

Note added in proof (December 1 ,  1980).  If the de- 
rivative i,,(to) and a sufficient number of the higher 
time derkatives of the metric tensor g :",'(to) vanish a t  
the initial time to, the smoothing method can be re-  
formulated in terms of renormalization of the constants 
in the generalized Einstein equations. For example, 
for a spinor ( s = Q )  field in the metric (4.1), the corre- 
sponding result is 

where 

In other words, the bare gravitational constant ko is re-  
normalized: 

It is  possible that the requirement of renormalizability 
is necessary for unambiguous physical interpretation 
of the results of p e  regularization. I am grateful to 
A. A .  Starobinskii for drawing my attention to these 
questions. 
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