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In flat space-time, fields with higher spins have a gauge freedom. If this freedom is used to impose a complete 
set of gauge conditions, the number of independent potentials of the free field can be reduced to two. There is 
a similar gauge freedom in a curved world, i.e., in the presence of an external gravitational field. However, as 
is shown in the paper, this freedom cannot in general be used to satisfy a complete set of gauge conditions 
constituting a covariant generalization of the gauge conditions in flat space-time. Thus, because of the 
interaction with the external gravitational field, gauge conditions corresponding to the elimination of 
"longitudinal" and "scalar" particles can be introduced only in special cases. The class of external 
gravitational fields admitting such a possibility is found. It is shown that for the considered fields (spins 1, 
3/2,2) the restrictions on the external gravitational field are essentially the same. 
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5 1. INTRODUCTION .T,,u*=o, (1.5) 

The interaction of physical fields with an external 
gravitational field leads to a number of interesting and 
important effects such a s  amplification of classical 
waves and quantum particle production. Physical fields 
in an external gravitational field a r e  described by gen- 
erally covar iant wave equations, the generalization of 
the corresponding equations in flat space-time. As in 
a flat world, these equations have a certain gauge 
freedom. In other words, they admit transformations 
of the potentials that leave the basic equations un- 
changed. The presence and correct exploitation of the 
gauge freedom a re  important for both technical and 
fundamental reasons. At the technical level, the gauge 
conditions make it possible to simplify the original 
equations significantly and reduce the number of un- 
known functions. At the fundamental level, the gauge 
freedom makes it possible to separate the physical de- 
grees of freedom and interpret solutions correctly. 

It is well known that in flat space-time the Maxwell 
equations 

are gauge invariant under the transformation 

where A is an arbitrary function of the coordinates and 
the time. This means that if the functions A, a re  a 
solution of Eqs. (1.1), then so  a re  the functions A,. 
The gauge freedom is usually employed to make A, sat- 
isfy the conditions 

and, in addition, to make one of the components vanish, 
for example, 

The condition (1.4) can be expressed in the invariant 
form1' 

where uu is some vector field. It takes the value uu 
=(I ,  0,0,O) when the subsidiary condition is chosen in 
the special form (1.4). Thus, in flat space-time one 
can always find a vector field ufi(which is not unique) 
such that any solution of Eqs. (1.1) can be made by a 
choice of A to satisfy the conditions (1.3) and (1.5) 
(more precisely, it can be mapped onto the class of 
solutions for which these conditions a r e  satisfied) in 
the whole of space-time or, at least, in some region. 
The conditions (1.3) and (1.4) reduce the number of in- 
dependent components A' to two, so that the physical 
significance of these conditions is that they eliminate 
the "l~ngitudinal'~ and "scalar" photons (see, for ex- 
ample, Refs. 2,3). Note that in the case of a plane 
monochromatic wave propagating, say, in the positive 
direction of the x axis the elimination of the two "un- 
physical" components can be achieved by means of (1.3) 
and the use of an isotropic (or even spacelike) vector 
uW in (1.5), for example, the vector up= (1, -1,0,0). 

In the presence of a gravitational field, i.e., in 
curved space-time, it is natural to take a s  the gauge 
conditions for the electromagnetic field the generally 
covariant generalizations of Eqs. (1.3) and (1.5) and the 
analogous equations for the fields of other spins. In the 
present paper, we consider whether the gauge invari- 
ance of the equations guarantees the possibility in every 
gravitational field of making an arbitrary solution of 
these equations satisfy a complete set of gauge condi- 
tions of the type (1.3) and (1.5). We shall see that, in 
contrast to flat space-time, the gauge freedom cannot, 
in general, be used to ensure simultaneous fulfillment 
of conditions of the type (1.3) and (1.5). Although these 
cond it ions can be satisfied simultaneously for any solu- 
tion and in any space-time a t  one time, i.e., on an a r -  
bitrary initial hypersurface 2, they cannot in general 
be satisfied simultaneously off c.*' As an illustration, 
let us imagine a space-time possessing two asymptot- 
ically flat regions and an intermediate region with 
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curvature. Then, in general, an initial state defined a s  
vacuum for the "longitudinal" and "scalar" particles in 
one of the asymptotically flat regions will not be such 
in the other. Evidently, this corresponds to the ap- 
pearance of nonradiative components of the field due to 
the interaction with the curvature (for the occurrence 
of effective electric charges in curved space-time, see 
Ref. 4). Of course, a strong gravitational field can lead 
to more radical consequences such a s  the production of 
real particles (all the gauge conditions being satisfied 
moreover everywhere), but this effect must also evi- 
dently be taken into account in the construction of quan- 
tum field theory in an external gravitational field. 

Although conditions of the type (1.3) and (1.5) cannot 
be satisfied simultaneously in the general case, this 
can happen in some spaces. The main burden of the 
present paper is to determine the class of external 
gravitational fields in which an arbitrary solution of 
the wave equations can be made to satisfy a complete 
set of gauge conditions through the use of the gauge 
freedom. This class of spaces is very important, since 
the study of physical fields in such spaces will at least 
make it possible to avoid the complications associated 
with the impossibility of reducing the number of un- 
known components of the field. In the literature hither- 
to only fields of the lowest spins (0 and $), for which 
there is no gauge freedom, have been considered, or 
alternatively spaces with a very special background 
metric in which the fulfillment of a complete set of 
gauge conditions is indeed possible; finally, it has 
sometimes been assumed incorrectly that such gauge 
conditions can be satisfied on any background. 

As wave equations, we consider the generally covari- 
ant equations for fields of spin 1,3/2,2, the linear ver - 
sion of Einstein's equations on an arbitrary curved 
background being used in the last case. We find the re- 
quirements that must be imposed on the vector uu if it 
is to be used in a condition (1.5) that holds simultan- 
eously with the condition (1.3). A remarkable unity and 
similarity of the considered fields is the fact that the 
basic equation for uu in all three cases is the same3': 

where a" and b a r e  a vector and a scalar. The inte - 
grability conditions of Eqs. (1.6) constitute the basic 
restriction on the background metric. 

An arbitrary space-time does not admit a vector field 
u, satisfying Eqs. (1.6). Some characteristics of 
spaces in which u, exists [E~s .  (1.6) can be integrated] 
a re  determined and analyzed in Ref. 6; the explicit 
form of the metric is given in Ref. 7. 

The fields of various spins a re  considered in turn, 
the main facts relating to the derivation and investiga- 
tion of Eqs. (1.6) being given in 62, which is devoted to 
the electromagnetic field; they are  not repeated subse- 
quently. For greater generality, we consider the wave 
equations with sources, and then the desire to make a 
solution satisfy the conditions (1.3) and (1.5) leads to 
restrictions on the functions describing the sources, 
although their complete vanishing is not required. The 
vector field u,, which could be interpreted [in accord- 

ance with (1.3) 41.511 a s  the four-velocity of observers 
that eliminate the "longitudinal" and "scalar" particles, 
will not be restricted by the norm sign, and for com- 
pleteness we consider also the cases of an isotropic or 
spacelike vector. 

In the final 65, the method we have developed is used 
to make the linearized Kerr solution satisfy the TT 
gauge. 

$2. THE ELECTROMAGNETIC FIELD (SPIN 1) 

In a curved space-time, the equations of electrody- 
namics for the four-potential 

API1 iv-Av,.: ,-R&=Z, (2.1) 

a re  invariant under the gauge transformation 

X,=A,+A,,. (2.2) 

By a suitable choice of A and for any A,, one can make 
A, satisfy the condition 

h ,,=o (2.3) 

or the condition 

AIIuV=O, (2.4) 

where u, is an arbitrary vector field. However, in gen- 
eral, it is not possible to achieve simultaneous fulfill- 
ment of the conditions (2.3) and (2.4). 

Suppose that by the choice of A an arbitrary solution 
of Eqs. (2.1) has been made to satisfy the condition 
(2.3). The remaining gauge freedom is contained in 
functions satisfying the equation 

A,, $&=o. (2.5) 

The general solution of this equation is determined by 
two functions of three variables-the initial data for A 
on some hypersurface C. We require that on C 

where nu is the vector of the normal to C. The system 
of equations (2.6) for the initial data A I and (A, ,,nu) I 
is always solvable. Thus, besides the condition (2.31, 
we can always achieve (2.6), which exhausts the gauge 
freedom (2.2) if we do not count the two functions of 
two variables that arise on the solution of (2.6). How - 
ever, the fulfillment of the condition (2.4) off C depends 
on the propagation equations for A,uu. To obtain these 
equations, we multiply (2.1) by uu, use (2.3), and re- 
write the obtained equation in the form (omitting the 
bar above the potentials) 

(A#) ,".'- [2A,  .u'.'+A,u": v~v+R,uuAv] =I,,u@. (2.7) 
The null initial data (2.6) for Auup will guarantee ful- 
f illment of A,up = 0 off C ,  if the second-order equation 
(2.7) is linear and homogeneous in A ,ub. This is pos- 
sible if and only if the right-hand side of (2.7), which 
does not contain A ,, vanishes, 

z,u+=o, (2.8) 

and the term in the square brackets, which contains the 
functions A, and their first  derivatives, is a linear 
combination of the expressions A;,, A,uU, and (A,uU);,. 
We multiply these expressions by 2b, -c, and 2a', re- 
spectively, where b and c a r e  arbitrary scalars and a" 
is an arbitrary vector; we then add the obtained quan- 
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tities and require that their sum be equal to the term in 
the square brackets. This gives the equation 

Since, by hypothesis, A ,  is an arbitrary solution, the 
coefficients of A, and A,,, must vanish separately: 

up,.-u,a,-bg,=O, (2.9) 
u,,, :'-2u,,,aV+R,,uv+cu,=0. (2.10) 

I f  Eqs. (2.9) and (2.10) could be solved always, the 
gauge vector u ,  (perhaps, not unique) would exist in an 
arbitrary space-time, and any solution A ,  could be 
made to satisfy the conditions (2.3) and (2.4) sirnultan- 
eously. However, Eqs. (2.9) and (2.10) are not in gen- 
eral integrable. The conditions of their integrability 
lead to restrictions on the space-time metric, and we 
now analyze these restrictions. 

We note first that the condition (2.4), which we 
achieve, indicates that the vector u ,  is defined up to 
multiplication by an arbitrary scalar. For this rea- 
son, Eqs. (2.9) and (2.10) preserve their form under 
the substitution ii,=au,. and an appropriate renotation 
of a,, b ,  c. Second, since the right-hand side of (2 .9)  
after multiplication by uY is proportional to u,, the vec- 
tor field U ,  defines a geodesic congruence. Third, 
since the tensor uc,u,;,, vanishes identically as a con- 
sequence of (2.9), the vector u ,  differs from a gradient 
vector only by a scalar factor.' 

Using this last property, we introduce 1 ,  = em%,, 
where ' 

lw"-L;,,-0. (2.11) 
Substituting u,= eul, in (2.9), alternating with respect 
to the indices p and v, and using (2.111, we find 

where d is an arbitrary scalar, and Eq. (2.9) takes the 
form 

l,,y=ml,lv+ng,v, (2.12) 
where rn =deu and n= bemu are arbitrary scalar func- 
tions. We introduce further the norm of the vector u,: 
uUuu=ip2. Differentiating this equation and using (2.9),  
we obtain 

from which it follows that if u ,  is isotropic ( p =  O ) ,  then 
b = 0 and n = 0; if u,  is not isotropic, then 

We reduce the nonisotropic vector field to unit norm. 
Suppose v ,  = pm1uU (upuu = A); then 

v,,,=p (g,rv,v,).  (2.13) 
In what follows, it is convenient to consider the cases 
of isotropic and nonisotropic uu separately. 

Isotropic gauge vector 

An isotropic gauge vector satisfies the equation 

L..=mZ&. (2.14) 
Equation (2.14) described an geodesic null congruence 
with the following kinematic characteristicsQ: zero ro- 
tation, zero expansion, and nonzero shear. 

Substitution of (2.14) in (2.10) leads only to the con- 
crete expression for c without in any way restricting 
the vector I , .  Thus, the restrictions on the metric are 
exhausted by Eqs. (2.14). 

The conditions of integrability of these equations are 

and serve as a basis for the Petrov classification of the 
required spaces ( for  more detail, see Ref. 6).  It fol- 
lows from this investigation that in nonflat spaces the 
vector I ,  must be a multiple of a null principal direc- 
tion of the Weyl tensor, i.e., it is unique except per- 
haps for metrics of type D, in which there are two such 
directions. In flat space-time, there exists an un- 
countable set of fields of gauge vectors I,. One can 
find the form of the Ricci tensor of spaces admitting 
the vector field (2.14) ( for  more details, see Ref. 6):  

where B ,  is an arbitrary vector. 

Nonisotropic gauge vector 

We take Eq. (2.9) in the form (2.13). It describes a 
geodesic congruence possessing zero rotation, zero 
shear, and nonzero expansion. The Ricci tensor of 
spaces admitting the vector field (2.13) has the form6 

where P,, is the Ricci tensor of the three-dimensional 
space orthogonal to the vector vu: P,uu = 0. 

Substitution of (2.13) and its consequences in (2.10) 
leads to the concrete expression for the factor c and, 
in addition, to the relation 

This relation makes it possible to introduce.the vector 
w, = eeuU satisfying the equation 

where q =pee is a scalar function restricted by the con- 
dition 

Indeed, i f  the reduction of Eq. (2.13) to the form (2.19) 
is to be possible, /3 must satisfy the equation /3,,=ipv,. 
The conditions of integrability of this equation are 
identical to (2.181, and, therefore, such a B can always 
be found. Thus, the restrictions on the metric are ex- 
hausted by Eqs. (2.19) and (2.20). 

Spaces that admit the vector field (2.19), (2.20) are 
said to be equidistant spaces. (See Ref. 10 for the rea- 
son for this designation and some properties of these 
spaces.) 

The Petrov classification of equidistant spaces and 
the question of the uniqueness of the gauge vector w, 
are considered in Ref. 6. We shall merely say here that 
the admissible background spaces include some metrics 
of type I ,  and the vector w, in the general case (q#O) is 
unique. 
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53. FERMION FIELD (SPIN 312) 

In flat space-time, the equations of a field of 3/2 spin 
(we omit the spinor index) 

~ ~ ( $ , ~ - a , ~ )  =o (3.1) 

a re  invariant under the gauge transformation $, = JI, 
+E,,  with arbitrary four-spinor E. Using this trans- 
formation in the case of arbitrary JI, one can make $, 
satisfy the condition 

y%=o. (3.2) 

Then contraction of (3.1) with yY automatically leads to 

The remaining gauge freedom is determined by four 
functions of three variables-the initial data E 1, for the 
equations Y'E,, = 0. These functions can be chosen such 
that on 2 

In a flat space one can always find a vector uu (for ex- 
ample, with constant components in Lorentz coordi- 
nates) such that off C as well" 

l$ll~p=O. (3.4) 

The generally covariant generalization of Eqs. (3.1) 
is4 

y"(%;'-$';") =o. (3.5) 

These equations remain unchanged under the gauge 
transformation 

$r=1Pr+e.rt (3.6) 

i f y L I ( ~ ~ y ~ , - ~ ; , ~ v ) = ~ ~ , V y Y ~ = O ( i . e . ,  invacuumspace- 
times, R,, = 0). In a nonvacuum space-time, Eqs. (3.5) 
do not admit (3.6) and, in addition, they are,  in gen- 
eral, incompatible," since their integrability conditions 
have the form 

However, Eqs. (3.5) can admit a restricted class of 
solutions on a nonvacuum background, i.e., the class of 
solutions satisfying (3.7), and we include these solu- 
tions in our study. 

We now establish the conditions under which the 
gauge freedom (3.6) (on a vacuum background) can be 
used to ensure that an arbitrary solution of Eqs. (3.5) 
can be made to satisfy simultaneously the conditions 
(3.2) and (3.4) and 

.For a nonvacuum background, we investigate the possi- 
ble existence of solutions satisfying (3.21, (3.41, and 
(3.8) without relating this to gauge freedom. 

It is more convenient to work with equations of sec - 
ond order for $,, so a s  to be able to follow more read- 
ily the analogy between the conclusions in the case of 
this field and the fields with spins s = 1 and s = 2. The 
f irst-order equations (3.5) will be satisfied if they hold 
on the initial hypersurface. Differentiating (3.5) co- 
variantly with respect to a and multiplying from the left 
by yo, we obtain the second-order equations 

~v~'-$v,..r+R,pa@~-R~.yvyu$9-'/~~P-~, (3.9) 

where crud =i(y(IY3 -pya). 

Proceeding a s  in 02, we use (3.6) to achieve (3.8). 
We use the remaining gauge freedom contained in the 
equation E;,;" = 0 to ensure that on C 

Equations (3.10) can be solved for the functions c 1, and 
&,,nV I C. Moreover, they can be determined from Eqs. 
(3.10) up to eight arbitrary functions of two variables, 
which express the gauge freedom that still remains. 
We shall use these functions in what follows. 

For nonvacuum spaces, for which the gauge freedom 
(3.6) does not occur, we consider the functions for 
which (3.8) and (3.10) a re  satisfied a priori. 

The initial conditions (3.10) guarantee fulfillment of 
(3.4) off E if the propagation equations for ?,uu a r e  lin- 
ear and homogeneous. Contracting (3.9) with uu  and 
using (3.8), we find (omitting the bar over the poten- 
tials) 

Therefore, the term in the square brackets in (3.11) 
must be a linear combination of the expressions 
JIP; ,, JI,,uP, and (JI,uu);,. Multiplying these expressions 
from the left by the matrices 213, C, and 2AV, respec- 
tively, adding them, and comparing the result with term 
in the square brackets, we obtain the equation 

The matrix coefficients of JI,;, and JI, must vanish 
separately. Taking their trace and introducing the no- 
tat ion 

a'=*/, Sp A', b=l/,  Sp B, c=-l/,  Sp C, 

we obtain equations that a re  identical to (2.9) and (2.10). 
The traceless parts of the matrices B, C, and A" do 
not lead to any new restrictions over and above the con- 
ditions (2.9) and (2.10). Thus, solutions of Eqs. (3.9) 
satisfying the conditions (3.8) and (3.4) exist is space- 
times that admit a vector field uw satisfying Eqs. (2.9) 
and (2.10). 

We now consider the possibility of satisfying the con- 
dition (3.2). We recall that we are interested in solu- 
tions of the first-order equations (3.5) for which the 
solutions of Eqs. (3.9) must satisfy (3.5) on 2. We 
multiply (3.5) by yY and use (2.9). We obtain the equa- 
t ion 

u * ( ~ v ~ )  ;r=O. (3.13) 

We now multiply (3.5) by y' and use (3.8). We obtain the 
equation 

yv(y%) ;"=a (3.14) 

It follows from (3.13) and (3.14) that if on a two-dimen- 
sional surface C' belonging to C 

then on the complete hypersurface C we shall have 
(yu$,)Ic=O, (y"JI,);,nU),=O. Null initialdata for y'$, 
on guarantee fulfillment of the condition (3.2) off Z 
since the propagation equation for yw$, that follows 
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from (3.9) when (3.8) is used has the form 

With regard to the condition (3.15), it can always be 
achieved on a vacuum background by using the remain- 
ing gauge freedom, i.e., by a suitable specification of 
four of the eight functions of two variables. [ o n  a non- 
vacuum background, we assume that the condition 
(3.15) is satisfied a jwiori.] 

Thus, solutions of Eqs. (3.5) satisfying the conditions 
(3.2), (3.4), and (3.8) exist in space-times admitting the 
vector field (2.9), (2.101, and on a vacuum background 
admitting such a vector field an arbitrary solution of 
Eqs. (3.5) can always be made to satisfy the conditions 
(3.2), (3.4), and (3.8) by using the gauge freedom. 

On a nonvacuum background, the solutions of Eqs. 
(3.5) must, besides everything else, satisfy the condi- 
tions (3.7). Since we regard (3.2), (3.4), and (3.8) as 
constraints that distinguish the physical degrees of 
freedom, (3.7) must be satisfied without leading to ad- 
ditional restrictions'on $,. The form of the Ricci ten- 
sor of spaces admitting an isotropic or nonisotropic 
gauge vector uu is known [see (2.16) and (2.17), re- 
spectively]. Substituting this form in (3.7), we find that 
in the case of isotropic uu the vector Bu must be pro- 
portional to uu ,  which restricts the class of admissible 
metrics, but still retains among them representatives 
of spaces in the Petrov type 0 ,  N ,  and 111. In the case 
of nonisotropic u u ,  the Ricci tensor must have the 
form R,, = (YU,U, + pg,, with arbitrary a and P ,  which 
restricts the admissible metrics to type 0 ,  i.e., to 
conformally flat spaces [the solution of Eqs. (3.5) on 
such a background was used in Ref. 111. 

$4. WEAK GRAVITATIONAL FIELD (SPIN 2) 

Small corrections h,, to the Minkowski metric q,, 
satisfy the linearized E inste in equations 

where 

Equations (4.1) are invariant under the gauge transfor- 
mat ion 

with arbitrary vector 5,. I t  is well known1-l3 that in a 
space without sources, i.e., for T ,  = 0,  the plane-wave 
solutions of Eqs. (4.1) can be made to satisfy the follow- 
ing conditions by virtue of the gauge freedom (4.2): 

where the vector uY is usually chosen in the form uY 
= (1,0,0,0).  Eight of these conditions are independent. 
Thus, there remain only two independent ("physical") 
components of the field $,,. In 05, we shall return to  
the question of the gauge conditions for arbitrary (not 
necessarily plane-wave) solutions of Eqs. (4.1); here 
we shall consider the generalization of Eqs. (4.1) to  the 
case of a curved background space-time. 

Replacing the metric g,, by g,, + h,, and the energy- 
momentum tensor T,, by T,, + 6T,,, we write the linear 

version of the E instein equations R ,, - $ g,, R = T ,, in 
the form 

-rpU.;a;" + Ow :o:v + $V ;a;" - gwv$aB;o,s 

+ 2R,,,6,$"' + R ~ ~ $ ~ ~  + R ~ ~ $ , .  + gr,.Roe$a6 - R$Jlpv = 26Tpv. (4.3) 

A consequence of (4.3) is the equation 

-$,.,a-2~s,~,~+4Ras$"8-R$=2gpV6TIIV. (4.4) 

Indices are raised and lowered and covariant dif feren- 
tiation performed by means of the background metric 
guu.  

Equations (4.3) are invariant under the following gauge 
transformation with arbitrary vector tU:  

Let us consider the conditions under which an arbitrary 
solution of Eqs. (4.3) can be made to satisfy the follow- 
ing conditions simultaneously by virtue of the transfor- 
mations (4.5): 

An important difference between Eqs. (4.3) and the 
equations for other fields is that the right-hand side of 
(4.3) depends, in general, on the gravitational vari- 
ables $,,. This occurs because the energy -momentum 
tensor contains not only variables such as the density, 
pressure, velocity components, etc., that describe the 
matter but also the metric and, perhaps, its derivatives 
as well. For this reason, $,, arises on the variation of 
T,,. For each definite T,,, once it has been decided 
which variables are material variables, the dependence 
of 6T,, on I),, can be written down explicitly. W e  pre- 
fer to work with Eqs. (4.3) in general form,  assuming 
only that the energy -momentum tensor depends on the 
metric and not on its derivatives. (Below, we shall 
also consider definite examples of T,, corresponding to 
pure radiation and an ideal fluid.) Then 6T,, can be 
represented in the form 

where t,, contains the background metric and the per- 
turbations of  the material variables, and T,, contains 
a linear combination of the $,, with certain coefficients, 
which are as yet undetermined and depend on the back- 
ground values of  the material variables and the back- 
ground metric. 

As before, we first  use the gauge freedom (4.5) to 
achieve (4.6). The remaining gauge freedom is de- 
scribed by the equations 

Eu a+EaR,a=O 
and consists of eight functions of three variables-the 
initial data 5 ,  1, and (5,,,nU) I,. These gauge functions 
can be chosen in such a way that for arbitrary z),, and 
uu the following conditions are satisfied on C:  

$.yub I x=O= ($,,"+EW v+pv,p-gvvEa .) uY I., 
(OpVuv) ,nu 1 .=0=[ (*,,+ E..v+Ev p-g,,,8" .) uvl,Bnsl ,. (4.10) 

Moreover, the initial data 5 ,  l c  and ((,,,nu) (I: are de- 
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termined from (4.10) up to eight arbitrary functions of 
two variables. 

The null initial data (4.10) for $,,u" guarantee fulfill- 
ment of (4.7) off 2 provided linear homogeneous propa- 
gat ion equations for $ ,,uV follow from (4.3). Multiplying 
(4.3) by uv and using (4.6), we obtain the equation (omit- 
ting the bars above the potentials $,,) 

The right-hand side of Eqs. (4.11), which does not con- 
tain $,, at  all, must vanish: 

and the term in the square brackets must be repre- 
sented by a linear combination of the expressions 
($a,~v);6, $ a v ~ Y .  Multiplying them by 2aUa6, 2bUa, 
cUa,  respectively, adding, and comparing the result 
with the term in the square brackets, and setting the 
coefficients of $,,;, and $a6 equal to zero separately, 
we obtain the equations (which a r e  symmetrized with 
respect to 0 and j3 because of the symmetry of qa6, 
which is  indicated by placing the indices CY and 0 within 
brackets) 

Equations (4.13) a r e  equivalent to the system of 
equations 

where a, and m u  a r e  arbitrary vectors and b is an a r -  
bitrary scalar. Note that Eq. (4.15), which is  a r e -  
striction on the background metric, is identical to 
(2.9). It is more convenient to analyze (4.14) and the 
possibility of satisfying the condition (4.8) separately 
for isotropic and nonisotropic uu. 

Isotropic gauge vector 

We represent Eq. (4.15) in the form (2.14). Substi- 
tuting (2.14) and its consequences, and also (2.16) and 
(4.16), (4.17) (with appropriate new notation) in (4.14), 
we can find the actual expressions for the coefficients 
cz (which is not important for us) and, moreover, de- 
rive a connection between At: la and the remaining 
quantities: 

where pO, is  an arbitrary tensor. Thus, if the struc- 
ture of quantities T,, in (4.9) for the given energy-mo- 
mentum tensor satisfies the relation (4.18), Eqs. (4.14) 
do not lead to any restrictions on the background me- 
t r ic  additional to (4.15). 

We now consider the possibility of satisfying the con- 
dition (4.8). Decisive here is  the following circum- 
stance. Although for arbitrary vector field u, al l  the 
eight equations (4.10) a r e  independent and require the 

use of all  eight gauge functions of three variables if 
they a r e  to be satisfied, for vector field 1, satisfying 
Eq. (2.14) only six of Eqs. (4.10) a r e  important. The 
two remaining equations a r e  satisfied a s  a consequence 
of them provided one gauge function of two variables is 
suitably chosen. Thus, two gauge functions of three 
variables remain in reserve and can be used to specify 
on C null initial data for $ (for the details, see Ref. 7): 

Thus, in spaces admitting the vector (2.14) the gauge 
freedom can be used to satisfy not only (4.6) but also 
the conditions (4.10) and (4.19). For this reason, one 
can weaken the requirements on A:: l o  by permitting the 
term in the square brackets in (4.11) to contain a s  well 
d,$, where d, is  an arbitrary vector. Then instead of 
(4.18) we obtain 

where s, and pz are ,  respectively, an arbitrary vector 
and an arbitrary tensor. On the other hand, the propa- 
gation equation (4.4) for $ contains by virture of (2.16) 
a combination of the expressions $,,uU and $, and also 
the terms 2gWt,,+ ~ A E ~ ~ & ~  on the right-hand side. 

The null initial data (4.10) and (4.19) guarantee ful- 
fillment of (4.7) and (4.8) off C and do not require any 
additional restrictions on the background space apart  
from the fulfillment of Eqs. (2.14) if the variation of 
the energy-momentum tensor satisfies Eqs. (4.12) and 
(4.20), and also 

and 

with arbitrary vector and scalar functions f a and s. 

An example of an energy-momentum tensor for which 
(4.20) and (4.22) a r e  satisfied automatically is the pure- 
radiation tensor 

where it is assumed that the unperturbed value of k, is  
equal to the gauge vector I,, k, = 1, + 6k, .  Taking p and 
ku to be material variables, we obtain a decomposition 
of (4.9) in the form 

from which (4.20) and (4.22) follow directly. 

On a vacuum background (T,, = O), the relations 
(4.12), (4.20), (4.21), and (4.22) a r e  satisfied trivially. 

Nonisotropic gauge vector 

We represent Eq. (4.15) in the form (2.13). Substi- 
tuting (2.13), (2.19), (4.16), and (4.17) in (4.14), we 
find the concrete expressions for the coefficients c;  
(which we do not need) and, in addition, the relation 

where pz is  an arbitrary tensor. 
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We now consider the condition (4.8). Multiplying (4.6) 
by vu and using (2.13), we obtain 

($;fl) ;.*p$Bv~'~v-p$=O, (4.24) 

from which it follows that when p#  0 the condition (4.8) 
is satisfied by virtue of (4.6) and (4.7). But if p =  0, 
then a s  in the case of an isotropic gauge vector it is  
possible to satisfy Eqs. (4.10) by using six gauge func- 
tions of three variables, which leaves two to satisfy 
(4.19). Then the condition (4.23) is  weakened and takes 
the form 

A,,"@v" = ' 1 2  v U P 8  - '1, 6zp:  - *It 6:py + *,,ga6 + pNavP + p:va. (4.25) 

From Eq. (4.4) we also find that we must have 
t,.g""=o, (4.26) 

A P ~ = z P " ~ + ~ ~ v ~ + ~ u ~ + s ~ " ~  (4.27) 

with arbitrary f a and s. Thus, in spaces that admit 
the vector field (2.13) we can satisfy the conditions 
(4.6)-(4.8) by using the gauge freedom, and Eq. (2.13) 
exhausts all  the restrictions on the background metric 
if the variation of the energy-momentum tensor satis-  
fies (4.25) and (4.27). 

We consider the energy -momentum tensor of an ideal 
medium: 

T,= ( e+P)  k,k,-Pg,,, k,k'=l,  

where k,=v,+ 6ku,v,vu=l.  Regarding E ,  P, and kw a s  
material variables, we obtain (4.9) in the form 

Comparing (4.28) with (4.25) and (4.27), we find that in 
this case there a r e  additional restrictions on the back- 
ground metric, namely, p,a must be proportional to 
va, which gives a condition identical to (2.20). In addi- 
tion, pa6 must be proportional to va, vB, and ga6. The 
same restrictions ar ise  when the background space is 
a vacuum space. Equations (2.13) and (2.20) return us 
to the equidistant spaces considered in 82. 

55. WEAK GRAVITATIONAL FIELD ON A FLAT 
BACKGROUND 

An important special case of the equations for a weak 
gravitational field is  provided by the equations (4.1) on 
a flat background. As follows from the results of 84, 
in this case the gauge vector up always exists, and, 
therefore, any solution of these equations without 
sources can be made to satisfy the conditions (4.6)-(4.8) 
in some space-time region a t  least. The conditions 
(4.6)-(4.8) a r e  called the TT (transverse traceless) 
gauge. It is  easy to show that any plane-wave solution 
o r  sum of such solutions can be reduced to the TT 
gauge.'*13 With regard to  other solutions, it has been 
asserted that they do not satisfy the TT gauge. The 
linearized Kerr solution is given a s  an example.' We 
shall show that this solution can nevertheless be made 
to satisfy the TT gauge in complete agreement with the 
results obtained in 84. 

In Lorentz coordinates, this solution has the form1 

where r = ( ~ ~ + ~ ~ + z ~ ) " ~ .  Using (5.1) to  find the compo- 
nents JI,,, we obtain 

The condition JIV,;, = 0 is satisfied for the solution (5.2) 
automatically. The gauge transformations that do not 
violate this condition a r e  described by the equations 

og,=o.  (5.3) 
The solutions of these equations a r e  determined by the 
initial data on the hypersurface ~ ( t  = 0): 

& I E = ~ P ( ~ ,  y. z ) ,  f u ,  o ~ = = T P ( x ?  y? z). 

As gauge vector, we choose u w = ( l ,  0,0,O). The gauge 
functions f ,  and rp, can be specified in such a way that 
on t=O 

To see  this, we substitute in (5.4) the actual values of 
(5.2), and also t,,,, 1, = G,, obtaining the following 
system of equations: rpo = - ~ / r ,  

div cp=O, 

Afi -(div f) ,, - (4M/r ) , ,  = 0, div f=-3M/r. (5.6) 
As one would expect, not all  of the equations (5.5) and 
(5.6) a r e  independent. A special solution of the system 
(5.5) is 

To solve the system (5.6), we represent the three-di- 
mensional vector fi in the form fi = f + f j2', where 
curl f " I =  0 and div f "'= 0. We then obtain a special 
solution for f ': 

and an equation for f (:I: 

We choose the boundary conditions for Eq. (5.7) in 
the form 

dir f"' I .=,"=0. (5.8) 

Since it follows from Eq. (5.7) that A div f "'=0, the 
boundary conditions (5.8) ensure div f "'=0 every- 
where. Equation (5.7) with the boundary conditions (5.8) 
has a unique solution for r <  ro and r> r,. Thus, the 
conditions (5.4) are2atisfied. The propagation equa- 
tions a&,, = 0 and UJ; = 0 ensure fulfillment of the condi- 
tions JI,, = 0 and I)= 0 off C. 

We now carry through to the end the calculations pro- 
posed in Ref. 1. The components of the curvature ten- 
s o r  for  the solution (5.1) a r e  equal to 

RoMm=-l/~hoo, mr, Ronm='/z(hom. n-hor, n k ) .  (5.9) 

In the TT gauge they can be expressed in terms of h:: 
as follows. 

By virtue of the gauge invariance of the curvature ten- 
so r  on the flat background, (5.9) must be identical to 
(5.10). From the f i rs t  equation, we find 
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where rp,, and fmk a r e  certain functions of x ,  y,z on 
whichonly the constraints whichensure OkkmTT=O are  im- 
posed, namely, 

Afmr+hoo.  ,k=O, A q m k = O .  (5.11) 
From the components h z  we find 

ZI 
R*1m - ' /2(q1. .m-q*,1) .  

Comparing this expression with (5.9), we obtain the 
equation 

q r r .  m - ~ m , .  i=hom, .-hot, m,, 

which is satisfied by the choice p,,= -h,,.,, and, in 
addition, (5.11) is also satisfied, since ~ h ,  = 0.  Thus, 
no contradictions arise in the values of R,,,, and R::,. 

We thank 1. D. Novikov and the participants of the 
Seminar on Gravitation and Cosmology a t  the P. K. 
Shternberg State Astronomical Institute for helpful dis- 
cussions. 

'1 The gauge condition is  derived in such a form in the Ref. 1 
in connection with the equations for weak gravitational waves. 
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Regularization of the energy-momentum tensor and 
particle production in a strong varying gravitational field 

A. A. Khar'kov 
EIectrotechnical Institute, Novosibirsk 
(Submitted 9 July 1980) 
Zh. Eksp. Teor. Fiz. 80,19-34 (January 1981) 

A generally covariant method is proposed for regularizing the vacuum expectation values of a quantized field 
interacting with a strong varying classical field (smoothing method). The main types of divergence are found 
and a simple algorithm given for calculating finite quantities for the case when an explicit expansion of the 
field operator with respect to quantum modes is given. The smoothing method is used to calculate the energy 
density and pressure of produced particles for a fermion field and a massless scalar field with minimal 
coupling in a Friedrnann space. 

PACS numbers: 1 1.1O.Gh 

1. INTRODUCTION itial vacuum state or vacuum polarization in spaces 
with non-Euclidean topology,'-4 these effects leading to 

Quantum field theory in a classical curved space- nonvanishing vacuum expectation values (0 IT"" 10) of 
time is a natural first approximation to the construc- the energy-momentum tensor of the quantized field. 
tion of a complete quantum theory in which gravitation The most important applications of these effects a re  to 
is also quantized. In such a quasiclassical approach, c o s m ~ l o g y ~ * ~  and to black holes,? where one encounters 
one also encounters problems which a r e  of independent strong gravitational fields that can be treated naturally 
interest such as the production of particles from an in- as classical. 
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