
'1 Experiments on generation of the second harmonic of light 
in MBBA' indicate a possible nonequivalence of the directions 
n and -n. For simplicity, however, we adhere to the stand- 
ard assumption6 that they are equivalent. 

'B. Ya. Zel'dovich, N. F. ~ilipetski?, A. V. Sukhov, and N. 
V. Tabiryan, Pis' ma Zh. Eksp. Teor. Fiz. 31, 287 (1980) 
[JETP Lett. 31, 263 (1980)l. 

2 ~ .  Mada, Mol. Cryst. Liq. Cryst. 51, 43 (1979). 
'H. Mada, Mol. Cryst. Liq. Cryst. 53, 127 (1979). 
%I. A. Bouchiat and D. Langevin-Cruchon, Phys. Lett. 34A, 

331 (1971). 

5 ~ .  J. Kahn, Mol Cryst. Liq. Cryst. 38, 109 (1977). 
6 ~ .  G. de Gennes, Physics of Liquid Crystals, Oxford, 1974 

(Russ. transl., "Mir", 1977). 
'T. Akahane and T. Tako, Jpn. J. Appl. Phys. 18, 19 (1979). 
*s. M. Arakelyan, G. L. Grigoryan, S. S. Nersisyan, M. A. 

Nshanyan, and Yu. S. Chilingaryan, Pis'ma Zh. Eksp. Teor. 
Fiz. 28, 202 (1978) [JETP Lett. 28, 186 (1978)l. 

'~naliticheskie metody v teorii difraktsii i rasprostraneniya 
voln (Analytical Methods in the Theory of Wave Diffraction 
and Propagation), ed. S. V. Butakova, M., 1970. 

Translated by W. I?. Brown, Jr. 

Characteristic features of the electron spectrum of metals 
with dislocations 

V. D. Natsik and L. G. Potemina 
Physicotechnical Institute of Low Tempemtures, Academy of Sciences of the Ukrainian SSR. Kharkov 
(Submitted 19 June 1980) 
Zh. Eksp. Teor. Fu. 79,2398-2412 (December 1980) 

The theoretical data on the spectrum of electron states localized near edge dislocations are presented in a 
systematic manner and supplemented by new results. The following types of edge dislocations are considered: 
an isolated rectilinear dislocation, a dislocation dipole, a prismatic loop, and a segment of a bent dislocation of 
finite length. A detailed study is made of the problem of concentration broadening of the dislocation energy 
levels and bands in the case of random and quasiregular distributions of these various types of dislocations. 

PACS numbers: 71.55.Dp 

INTRODUCTION tion line, microstructure of i t s  core, and the actual law 

Distortions of the crystal lattice around dislocation 
lines create large-scale deviations of the crystal field 
from i t s  periodic structure in a perfect crystal. In 
metals these distortions produce forces which act on 
conduction electrons and can sometimes alter signifi- 
cantly the nature of motion of these electrons. In the 
simplest cases it is found that electron excitations be- 
longing to a continuous spectrum are scattered by dis- 
locations exchanging energy and momentum: such pro- 
cesses give rise to a dislocation contribution to the 
electrical resistivity and to an electron contribution to 
the drag force exerted on dislocations. However, there 
can be situations in which the influence of dislocations 
on the electron motion is more fundamental, for exam- 
ple, an electron may become localized near a disloca- 
tion line. Localization is known to produce discrete 
levels in certain parts  of the energy spectrum and such 
drastic changes in the structure of the electron spec- 
trum may give r i se  to specific features in the thermo- 
dynamic and transport properties of a metal. 

The concept of a dislocation covers a fairly wide 
class of different line defects of the crystal structure. 
The common feature of all of them i s  the presence of 
a core-representing a certain tube of radius of the o r -  
der  of the interatomic distance within which the defor- 
mation of the original lattice i s  of the order  of unity - 
and an inhomogeneous field of elastic strains decreas- 
ing slowly away from the core. The shape of a disloca- 

governing the decrease of the elastic field can differ 
considerably. This complicates greatly the formulation 
and solution of the quantum-mechanical problem of the 
interaction between electrons and dislocations. It i s  
not possible to obtain a general solution of this problem 
applicable to all types of dislocation ahd in each case 
i t  i s  necessary to study much simpler specific models. 

Many papers have been published on problems of this 
kind in the case of semiconductors and metals. Some 
of them deal with the conditions of formation and 
structure of electron states associated with disloca- 
t ion~' '~;  others are concerned with the scattering of f ree  
electrons on dislocations and i ts  influence on the elec- 
tr ical  conductivity of a metal and on the dislocation mo- 
bility (the necessary references can be found in the 
monographs of Zimans and ~ r i e d e l ~  as well as in the 
review of Kaganov et ~ 1 . ' ~ ) .  

The main methodological difficulties are encountered 
in the analysis of changes in the electron spectrum due 
to dislocations. Kaner and Fel'dmans pointed out that 
an investigation of the spectrum of states localized at 
dislocations should include solution of problems of 
two types: 1) a calculation of the spectrum of an elec- 
tron interacting with a single dislocation; 2)  an analysis 
of the concentration broadening of levels o r  bands in 
such a spectrum due to the overlap of the long-range 
elastic fields of dislocations. In most cases, studies 
have been confined to the spectrum of an electron near 
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an isolated rectilinear edge or  screw dislocation; more 
complex objects -dislocation dipoles and prismatic 
loops-have been discussed only once. The dilatation 
component of the elastic field of edge dislocations is 
found to result always in localization of electron excita- 
tions. Localized states in the energy spectrum corre- 
spond to discrete levels or  bands split off from the 
points of minima in the dispersion law ~ ( p )  of electrons 
in a perfect metal. Some of the states corresponding 
to deep levels a re  essentially of quantum nature and 
they a r e  localized in the immediate vicinity of disloca- 
tion cores. However, near edge dislocations there a re  
always quaSiclassica1 localized states with macroscopic 
radii and these have energies close to the continuous 
spectrum. 

In the case of screw dislocations (at least in the case 
of the investigated models) the localization conditions 
a r e  more stringent and, in particular, quasiclassical 
localized states are  not normally observed. 

The statistical weight of the quasiclassical states is 
considerably greater than those of the states localized 
in the vicinity of w r e s  and, therefore, the former a re  
responsible for the significant features of the physical 
properties of metals resulting from electron localiza- 
tion. Moreover, an analysis of the quasiclassical part 
of the spectrum is easier because i ts  structure is 
governed by the interaction between an electron and the 
elastic field of a dislocation, and it is not very sensitive 
to the structure of the dislocation core about which little 
is known. Therefore, the interest lies mainly in the 
analysis of model problems of the interaction of elec- 
trons with the dilatation component of the deformation 
field of edge dislocations. We shall confine our atten- 
tion to such models. 

In the first  section we shall present systematically 
all the known results and new data on the spectrum of 
electrons localized near edge dislocations of different 
types. The second section deals with the concentration 
broadening of the spectrum of localized states. This 
problem was considered earlier by Kaner and 
Fel'dman3 but they studied only the simplest case of a 
randomly distributed rectilinear dislocation. It should 
be pointed out immediately that the existence of a long- 
range interaction between dislocations prevents the es-  
tablishment of a completely random distribution in real 
cases and i t  i s  more realistic to expect partly ordered 
structures. In the second section we shall analyze the 
concentration broadening of dislocation levels and bands 
for all types of dislocations discussed in the first  sec- 
tion and we shall do this for random and quasiregular 
distributions. 

1. SPECTRUM OF ELECTRONS LOCALIZED AT 
SINGLE DISLOCATION ENTITIES 

An analysis of the electron motion near a dislocation 
in a metal simplifies greatly because one can use the 
deformation potential approximation to describe the in- 
teraction. In this approximation the interaction energy 
is given by the phenomenological relationship 

where r, is a vector describing the position of a dislo- 
cation line; u,, is the elastic strain tensor; A,,(p) is the 
deformation potential tensor depending generally on the 
electron quasimomentum p. It follows from general 
considerations that the absolute values of the component 
of the tensor A,, a r e  of the order of the width of the 
electron band (A - y, where y is the Fermi level). 

A self-consistent allowance for the screening of the 
unrenormalized deformation potential by electrons in a 
metal, which is based on the electrical neutrality con- 
dition, does not alter the coordinate dependence of the 
potential (1) at large distances from a dislocation 
( I  r - r, I >>a, where a is the lattice parameter) and it 
reduces simply to renormalization of the parameter A 
(Ref. 11). The electrical neutrality condition breaks 
down near a dislocation line in a region of dimensions 
of the order of the Debye screening radius, which is of 
the order a in the case of metals. In this region the 
structure of the potential U differs from Eq. (1); in 
particular, Eq. (1) has formally a divergence at 
I r - r, I- 0 and this now disappears. A qualitative 
analysis shows that max 1 U I -A - y. It is usual to as -  
sume that max I U I does not exceed the width of the con- 
duction band, which makes i t  possible to study the in- 
teraction of electrons with a dislocation in the one-band 
approximation. It may be that in some cases this ap- 
proximation is incorrect, but failure to use this ap- 
proximation would have complicated the problem great - 
ly. 

In the case of semiconductors an allowance for the 
screening of the deformation potential by electrons 
alters very greatly the form of this potential.lpa This 
i s  probably the main difference in the formulation of 
the problem of the interaction of electrons with dislo- 
cations in metals from the corresponding problem in 
the case of semiconductors. 

Qualitative ideas on the nature of the singularities 
resulting from the interaction of an electron with a 
dislocation can be obtained simply by assuming that a 
metal is elastically isotropic, allowing only for the 
dilatation part of the strains T r u  ,,nu,,, and neglecting 
the dependence of A,, on the quasimomentum p. In this 
approximatCon the deformation potential is 

The quasiclassical motion of an electron near a dis- 
location i s  described by the ~ a m i l t o n i a n ' * ~ * ~  

R-e (p) + ~ ( r - r , ) ,  (2 

where &(p) is the dispersion law of an electron in the 
conduction band in the absence of a dislocation; 
= -iRV, is the momentum operator. It has been pointed 
out above that dislocations alter radically the nature of 
motion of those electrons which have momenta belong- 
ing in the vicinity of minima p, of the function ~ ( p ) .  
Near these minima the Schr'Minger equation for the 
electron wave function $(r) becomes 

[ ( 6 - ~ ~ ) ' 1 2 m ~ + ~ ( r - r ~ )  11P(r) = ( E - E ~ ) $ ( ~ ) ,  E&=E (PI), (3) 

where m,=m(p,) is the effective mass of an electron a t  
a point p,; for simplicity, we shall assume that the dis- 
persion law in the vicinity of the minima is isotropic. 
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Clearly, the solution of Eq. (3) can be represented in 
the form 

and the functions ~ ( r )  a re  given by the equation 

Further analysis requires the knowledge of the actual 
form of the potential U(r - r,). 
Isolated rectilinear dislocations 

For completeness, we shall begin by recounting the 
results of an analysis of the interaction between an 
electron and a rectilinear edge d i s l ~ c a t i o n . ~  In terms 
of cylindrical coordinates p, cp, and z with the z axis 
directed along a dislocation line and the polar axis 
along the Burgers vector b, and with the coordinate 
origin located on the dislocation line (Fig. I) ,  the po- 
tential U is 

hb . Ih I 1-2v U=U,(p,rp)---smcp, h - 2 - -  
2x l-v 

lhol, 
P 

where v i s  the Poisson ratio. In view of the homogen- 
eity of the potential along the z axis, the motion of an 
electron can be divided into longitudinal and transverse: - .  

The symbol p denotes the conserved electron momen- 
tum along the dislocation. 

It is not possible to find the explicit form of the ' 

transverse part of the wave function X, but the known 
rules for quasiclassical quantization" allow us to de- 
termine qualitatively the structure of the spectrum of 
transverse motion. Clearly, in the case of electrons 
whose transverse energy i s  6, = E-p2/2m, < i,, the 
classically accessible part of space is of limited di- 
mensions: it is governed by the condition (hb/p)sinrp 
2, &, - El and represents a circle of diameter 

lying in a sector defined by 0 < cp < n (see Fig. 1). For 
an electron with the coordinate p and a transverse en- 
ergy less than &,, the size of the classically accessible 
part of the momentum space is governed by the maxi- 
mum value of the momentum 

Consequently, the total number of states with energies 

FIG. 1. Region of electron localization near an isolated rec- 
tilinear dislocation. 

FIG. 2. Dislocation bands in the elec&on energy spectrum. 

below c, is 

Znm, 
N~(8.d- dp[eL-ek-u~ (P. cp) I.  

UI (p, cp) <EL-€, 

The density of states of transverse motion i s  

Equations (7) and (9) yield the spectrum of localized 
states which have split off from the bottom of the valley 
of the function dp) :  

where n i s  an integer. 

Thus, if &< s,, the electron spectrum consists of a 
set  of parabolic energy bands, whose minima a re  dens- 
e r  on approach to the point &, (Fig. 2). The electrons 
belonging to these bands a re  in free infinite motion 
along the dislocation line and in finite motion in a trans- 
verse plane in a region of size D , ( c , ) ~ b ~ n / c , .  Na- 
turally, the dislocation bands retain their individuality 
in those parts of the momentum space where they do 
not intersect branches of the function &(p) or  bands 
split off from other valleys. 

The total density of states localized at a dislocation i s  

n 2nz. 
P." 

where L is the dislocation length; A, ={&,/(&, -& )) is 
the fractional part of the expression in the braces. 

Dislocation dipoles 

Bound states similar to those described above appear 
also near a dipole composed of two rectilinear edge 
dislocations of opposite signs (Fig. 3). The deforma- 
tion potential of a dipole i s  given by a sum of expres- 
sions of the Eq. (5) type. If in mechanical equilibrium 
the length 2'IZd of a dipole is oriented a t  an angle r/4 
to dislocation glide planes, the polar axis being di- 
rected along the Burgers vector and the origin being 
located on the symmetry axis of the dipole (Fig. 3), we 
then find that U is described by the expression 

2d2-pg(cos Zcp+sin 21p) 
U2(p, c y )  =-2hDd p4+4d4-4dapz sin 2rp ' 
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(i.e., a t  distances small and large compared with the 
loop radius R). If the coordinate origin i s  selected at 
the loop center, then a t  large distances Y >> R the po- 
tential U(r) i s  

FIG. 3. Dislocation dipole composed of rectilinear edge dis- 
locations of opposite sign. 

We can easily see that for transverse motion energies 
satisfying the condition E, - &, <<z, = kb/d, the clas- 
sically accessible part of space has the characteristic 
size 

The density of transverse motion states and the spec- 
trum of an electron localized a t  a dipole a re  given by 
the expressions7 

If the dipole length i s  microscopic ( d ib ) ,  the formulas 
in Eq. (14) describe the spectrum practically through- 
out the energy range I &, - &, (<< p where the quasi- 
classical description i s  valid. In the case of dipoles of 
longer length (d >> b) the spectrum of localized states 
has two regions. One of them corresponds to the lo- 
calization of electrons near isolated dislocations in re-  
gions of size small compared with d. The spectrum of 
these states i s  described by Eq. (10) subject to the ad- 
ditional restriction n << d/b. 

The second region of the spectrum corresponds to 
states with localization radii of larger (compared with 
d)  dimensions and the spectrum is described by the 
formulas in Eq. (14). The total density of states in 
these regions of the spectrum is 

Here, 

is the fractional part of the quantity in the braces. 

Circular prismatic dislocations and finite segments of bent 
dislocations 

The systematics of electron states localized a t  bent 
dislocations has a number of special features compared 
with the above cases of rectilinear dislocations: these 
features a re  essentially due to the three-dimensional 
nature of the deformation potential U. The simplest 
illustration of this fact is provided by considering the 
localization of electrons on a circular prismatic loop. 
The explicit form of the coordinate dependence of the 
dilatation field around such a loop is not known every - 
where in space,13 so that we shall analyze only the mo- 
tion of electrons near a dislocation loop and far from it  

The energy range &, - t << kb/R corresponds to the 
part of space which is classically accessible to an elec- 
tron and whose characteristic size is D,(& ) >> R: 

If we use the three-dimensional analog of Eq. (91, we 
find that the density of localized states V , ( E )  and the en- 
ergy levels &, are  described by 

where z ,  =kb/R. Consequently, formation of a disloca- 
tion loop in a metal results in splitting off of a finite 
number of discrete levels described by Eq. (19) from 
the bottom of a valley of the dispersion law &(p) and 
these levels correspond to localized electron states 
around a loop in a region of dimensions given by Eq. 
(17). 

In those cases when the loop has macroscopic di- 
mensions R >> b, there i s  a finite energy range z ,  << & , 
- &<< p,  which corresponds to quasiclassical electron 
motion along a dislocation line in a toroidal region of 
length which is of the same order a s  the loop length and 
of diameter small compared with R. At short distances 
from the loop the deformation potential can be ex- 
pressed conveniently in terms of coordinates with the z 
axis perpendicular to the loop plane and passing through 
i ts  center and with the radius vector F, in the plane of 
the loop: 

The solutions of the Schrbdinger equation (4) with the 
potential (20) exhibiting cylindrical symmetry a r e  states 
with the conserved projection of the momentum on the 
z axis: 

X(r) =efmf-"c~,(f, z), m=0, +i, *2, . . . , (21) 

where a is the polar angle of the vector [. The function 
%m([, z )  satisfies the equation 

Retaining in the above equation the zeroth approxima- 
tion with respect to the parameter R-' and using the 
coordinates 

we can reduce it to the form 

(23) 
where p<< R. This equation i s  identical with Eq. (6) if 
the orbital energy 
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ha ma-'/' -- 
Zm, R' 

is identified with the kinetic energy of motion along a 
dislocation p2/2m,. Consequently, the quasiclassical 
part of the spectrum of the operator on the left-hand 
side of Eq. (23) i s  described, as in the case of a recti- 
linear dislocation, by the expression s , /n .  

We thus find that in the energy range z, << c ,  - c << p 
we can identify an interval in which the total energy c 
represents the sum of energies of motion along the dis 
location line and in a plane perpendicular to this line: 

The lower limit of the energy range is related to al- 
lowance for the curvature of a dislocation line. Clear- 
ly, the change from Eq. (22) to Eq. (23) is possible if 
the next approximation with respect to the parameter 
R" gives a small correction to the potelitial energy. 
We can easily show that this is true if nm<< (R/b)'/', 
i.e., when c, - c , , > > ~ ( b / ~ ) ' / ~ .  At energies c, -& 

s A ( ~ / R ) ~ / ~  , the minimum distances between levels 
with the same values of m and the maximum distances 
between the levels with the same values of n a re  of the 
same order of magnitude. This means that the spec- 
trum of ground states should be characterized by a 
single quantum number. 

Since in the case of electrons with energies A ~ / R  
<< &, - &  << p the classically accessible (for motion) 
region in a cross section perpendicular to the plane of 
a loop i s  small compared with R, it follows that in cal- 
culating the total number of states with an energy less 
than E we can use the approximate expression (20) for 
U([,z) and thus obtain 

Hence, we find that the energy levels E,  are  described 
by 

This range of values of n corresponds to the energies 

The energy-level systematics described by Eqs. (24) 
and (26) corresponds to the following spectral densities: 

v ~ ( E )  

A part of the electron spectrum analogous to Eq. (24) 
can also be identified for a segment of a bent disloca- 
tion line of finite length L <R,  where R i s  the radius of 
curvature of this line. Let us assume that the two 
ends of this dislocation emerge on the surface of a 
crystal; then, the requirement that the wave function 
should vanish on the surface leads to the substitution 
m- mRlr/L in Eqs. (22)-(24). As we go over to a rec- 
tilinear dislocation segment (a segment of a loop with 
an infinite radius of curvature), levels with identical 
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values n and neighboring values of m approach one 
another forming electron energy bands in the field of a 
rectilinear dislocation, as mentioned a t  the beginning 
of the present section. 

2. CONCENTRATION BROADENING OF THE 
SPECTRUM 

The presence of many dislocations in a metal has the 
effect that the deformation potenti* at each point is a 
sum of contributions of all the dislocations. Near an 
isolated dislocation with a radius vector r, the total po- 
tential V(r) can be conveniently divided into the singular 
and regular parts: 

where U(r) i s  the potential of an isolated dislocation 
given by Eq. (1); r, is the radius vector of elements of 
the a-th dislocation line; N is the total number of dis- 
locations in the investigated metal. Clearly, the spec- 
trum of an electron localized a t  a dislocation considered 
on i ts  own depends on the environment, i.e., on the spa- 
tial distribution of its neighbors in a dislocation ensem- 
ble. Since the distribution of dislocation lines in a real 
sample i s  more o r  less  random, the correction o(r) 
should be a random quantity. In general, the presence 
of corrections o modifies the spectrum of individual 
dislocations and complicates greatly the systematics of 
the electron states of a sample a s  a whole. 

There a re  no basic difficulties in describing the con- 
centration effects in those par ts  of the spectrum for 
which the localization radius i s  considerably less  than 
the average distance between dislocations. In such 
cases the correction u can, in the first  approxima- 
tion, be regarded as constant within the localization re -  
gion and i ts  role reduces to a shift of the energy origin 
in the Schradinger equation (3) and in the expressions 
for  the spectra of the type given by Eqs. (lo), (14), 
(19), and (26). The spectrum of a sample with a large 
number of dislocations represents a set  of levels de- 
scribed by the above formulas and shifted relative to 
one another by random amounts o; this effect i s  known 
as the concentration broadening of the spectrum. Such 
broadening disappears for a regular distribution of dis- 
locations and the degree of degeneracy of each level i s  
then N. 

The concentration broadening in the case of a system 
of randomly distributed monotypic rectilinear disloca- 
tions was analyzed by Kaner and Fel'dman.' It should 
be pointed out that an analysis of the concentration 
broadening of the spectrum of electrons localized at 
dislocations is in many respects equivalent to an analy - 
s i s  of the dislocation broadening of the x-ray spectra of 
crystals14: both problems reduce to statistical averag- 
ing of random fields created by dislocation ensembles. 
We shall use methods developed in Refs. 3 fwd 14 to 
describe the broadening of the spectra obtained in the 
preceding section. 

Calculation of the density of tbe distributi~n P(o) of 
raaBaa shifts o reduces to dewat ion  ~f a a r a c t e r i s -  

on F ( x )  related to Paq) by the F m r  trans- .. 



formation: 

It should be noted that the averaging over o is equivalent 
to averaging over an ensemble of dislocation configura- 
tions specified by the density of probabilities in the 
spatial distribution of dislocations. 

In the case of a completely random distribution of a 
large number N of rectilinear dislocations o r  disloca- 
tion dipoles in a sample of cross section S, we find 
that-in the: limit when N -  m and S- .o but the densi- 
ties c,,,=N/S a r e  finite (the symbol 1 refers to single 
dislocations and the symbol 2 refers to dipoles)-the 
characteristic function F,,,(x) can be represented in 
the form3 

For a completely random distribution of dislocation 
loops in a sample of volume a we can easily obtain 
similar expressions: 

here, c, = N / a  is the number of loops per unit volume. 
In all cases the hnctionflx) is dominated by the con- 
tributions from those parts of space where I XU I<< 1; 
consequently, an approximate value of flx) can be ob- 
tained by expanding the integrands as a series in terms 
of this parameter. 

We have mentioned earlier that the hypothesis of un- 
iformly random distributions of dislocations is clearly 
only a very rough approximation to real  situations. In 
this connection, it is interesting to study also the con- 
centration broadening of dislocation levels in the case 
of partly ordered quasiregular dislocation structures. 
For example, let us assume that dislocations form on 
the average a regular structure described by a set  of 
radius vectors R, and that small deviations of the dislo- 
cation coordinates from the sites R, a re  described by 
a Gaussian distribution which is isotropic and the same 
a t  all sites: 

n-152- for rectilinear dislocations; 
n-a/2r;f - for loops. 

We shall assume that the dispersion of this distribu- 
tion i s  fairly small (yo << min R,) and, for simplicity, 
we shall assume that 

Then, the expressions describing the characteristic 
function for quasiregular structures form the following 
chain of equalities: 

We shall now consider each of the above dislocation 
entities separately. 

Isolated rectilinear dislocations 

Using Eqs. (29) and (301, we readily obtain the fol- 
lowing expressions for the density of the distribution of 
shifts of the energy levels in the case of a uniformly 
random distribution of dislocations: 

Here, L is the characteristic size of a sample. This 
distribution differs from that obtained earlier3 by the 
nature of the asymptotic expressions for the wings, 
i.e., in the range where o>>qo. The reasons for the 
deviation of P,(o) from the Gaussian function a re  dis- 
cussed in detail in the work of Krivoglaz et al. (see 
Ref. 14, p. 229). 

In the case of a quasiregular distribution of recti- 
linear isolated dislocations, we find that Eqs. (29) and 
(32) yield the following expression for P,(o): 

1 a2 
p, (a) - exp (- 7 ) ,  q t = A ~ ~ b r o c ~ ~  

Comparing Eqs. (33) and (34) with Eq. (101, we can 
easily see that the concentration broadening conserves 
the energy band structure of the dislocation spectrum 
when dislocation densities satisfy the inequality 

el< ( e l - € )  t/h'eo'b2 (35) 

in the case of a uniformly random distribution and 

in the case of quasiregular distribution. 

Dislocation dipoles 

We shall f irst  consider a uniformly random distribu- 
tion of dipoles and assume that the density of these di- 
poles c, is quite low: c& << 1. At these densities the 
width of the distribution P(o) is governed by the values 
of the function Ax) in the range I x lz, = h I x I b/d  >> 1. 
Then, the value of the function f(x) itself is found by 
integration in Eq. (30) over the regions of space sepa- 
rated from a dipole by distances which a re  large com- 
pared with d :  

Using this expression, we can easily obtain the follow- 
ing formula for P,(o): 
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In the case of a quasiregular distribution of dipoles of 
low density cp2<< 1, we find from Eqs. (32) that the 
distribution of energy shifts i s  given by 

A comparison of Eq. (14) with Eqs. (37) and (38) 
shows that the concentration broadening conserves the 
band structure of the dislocation spectrum at dipole 
densities satisfying the following inequalities: 

in the case of a uniformly random distribution and 

c z a (  (e l -&) JAzN&bdro)'/: e,-eazd; 

C Z ( [  (ek-e)a/Azeohbdro]'~~, zd<ek-e<p 
(40) 

for a quasiregular distribution. 

Dislocation loops 

Finally, we shall estimate the concentration broaden- 
ing of the energy levels of electrons localized on circu- 
lar  prismatic loops of sufficiently low density c3R3 << 1. 
In the case of a uniformly random distribution of loops, 
it follows from Eqs. (16), (291, and (31) that P3(o) is 
given by: 

In the case of a quasiregular distribution of loops, i t  
follows from Eqs. (16), (29), and (32) that 

The loop densities c3 at which the broadening of the 
levels remains less than the separation between them 
should obey-according to Eqs. (19), (241, (411, and 
(42)-the inequalities 

in the case of a uniformly random distribution and 
[z , (e , , -e)  Ivn /  (AsNahbR2ro) "", 
(eI-e)'/"/(A3N,h"bRZr,)", hb/R<ek-e<h(b/R)" (44) 
(8 , -E)  "/ (A,e.hbR?h)", h (b /R)  "<er-e<p. 

in the case of a quasiregular distribution. 

CONCLUSIONS 

In these conclusions it i s  desirable to consider a t  
least briefly the physical phenomena in which electron 
states localize near dislocations can be observed. We 
shall begin by making some comments on the influence 
of dislocations on the thermodynamics of conduction 
electrons. This problem has been studied on many oc- 
c a s i o n ~ ~ ~ ' ~ - ' ~  and it has been found that the classical 

pk p 

FIG. 4. Example of an electron spectrum of a metal in which 
the chemical potential level p lies within the region of discrete 
levels of electrons localized at dislocations: 1) main branch of 
the dispersion law, whose population i s  governed by the chem- 
ical potential level; 2) secondary branch with dislocation levels 
split off from its bottom. 

(smooth) part  of the dislocation contribution to the 
thermodynamic characteristics of an electron gas i s  
usually small and does not have any interesting singu- 
larities. The exception to this rule is the case of an 
electronic transition of order 2.5 near which the dislo- 
cation contribution r ises  considerably. The most in- 
teresting singularity is associated with the possibility 
of appearance of quantum oscillations of dislocation-in- 
duced corrections to the induced thermodynamic quanti- 
ties. l7 This effect ispossible in metals which have sev- 
era l  inequivalent branches of the dispersion law &(p) in 
the conduction band (Fig. 4): in such cases the chemi- 
cal potential level p of electrons may lie within the part 
of the discrete spectrum split off under the influence of 
dislocations from the bottom of one of the valleys and 
the electronic characteristics may acquire an oscilla- 
tory dependence on the external parameters controlling 
the quantity z = &, - p (one of such parameters can be 
pressure). Under certain conditions such oscillations 
can be giant. For example, a t  sufficiently low tem- 
peratures the amplitude of the specific heat oscillations 
for regular dislocation structures may exceed the 
smooth part. We can show that similar oscillations 
a re  exhibited also by the paramagnetic susceptibility 
of the electron gas. 

An interesting effect may also be observed in super- 
conducting metals with the spectrum shown in Fig. 4. 
The temperature of the superconducting transition is 
known to be exponentially sensitive to the density of 
electron states at the Fermi level. In the presence of 
dislocations this density of states has an additional dis- ~ 

location correction whose value a t  the Fermi level i s  
an oscillatory function of the parameter z [see, for 
example, Eq. (11) with & =  p ] .  This should result in 
oscillations of the superconducting transition tempera- 
ture on variation of z (i.e., on variation of the applied 
pressure 1. 

It is shown in Ref. 18 that the absorption of ultra- 
sound by electrons localized near dislocations in metals 
also has an oscillatory dependence on external parame- 
t e r s  controlling the chemical potential level. Similar 
oscillations should occur also for other transport 
properties. We cannot exclude the possibility of the 
appearance of interesting singularities in view of pos- 
sible resonance scattering of free electrons and ther- 
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ma1 phonons by electrons localized a t  dislocations but 
this subject has not yet been investigated. 

It should be pointed out that the oscillatory effects 
mentioned above a re  strongest at sufficiently low tem- 
peratures and for regular dislocation structures. In- 
crease in temperature and the concentration broadening 
of a spectrum of localized electrons, analyzed in Sec. 
2, broaden the oscillatory pattern. The estimates ob- 
tained in Refs. 17 and 18 show that these effects a re  
fairly minute and attempts to discover them should be 
accompanied by special measures to produce ordered 
high-density dislocation structures. 
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High temperature ferromagnetism and the 
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Results are presented of a comprehensive experimental and theoretical investigation of the 
metal-semiconductor phase transition in the Fe,Cr,-, S system at xrr0.5. From an analysis of the structural, 
electrical, magnetic, thermal, and Mlissbauer spectral characteristics it is concluded that the substance 
obtained, Fe,Cr,S,, which possesses a record-high Curie temperature (940°K) in the semiconducting phase, is 
in reality the FeCr,S, spinel with dissolved excess iron atoms. A model of the electronic structure is proposed 
and explains qualitatively the experimental data. The cause of the metal-semiconductor transition is splitting 
of the spin subbands upon ferromagnetic ordering. 

PACS numbers: 71.30. + h, 75.50.Bb, 72.20.Nz, 71.70. - d 

1. INTRODUCTION 

The peculiarities of the electronic and crystalline 
structure of transition-metal sulfides a re  due to the rich 
diversity in their electrical and magnetic properties. 
The main cause of this diversity is the complexity and 
"mobility" of their electronic structure, which is pri- 
marily associated with the lower electronegativity Of 

sulfur compared, for example, with oxygen. In particu- 
lar, in a number of the indicated compounds a se t  of 
distinctive magnetic properties is observed; these a re  
connected with the development of magnetic ordering 

and the presence of a metal-semiconductor phase tran- 
sition. Since a basic reorganization of the electronic 
structure of the material occurs during the metal-semi- 
conductor phase transition, investigation of compounds 
which combine magnetic ordering with such a transition 
provide unique opportunities-for example, for detailed 
study of the role of the electronic subsystem of the ma- 
terial in the development of magnetic ordering. The 
high-temperature character of the metal-semiconductor 
phase transition of sulfide compounds compared with 
vanadium oxides' makes the investigation of transition- 
metal sulfides important with a view toward applica- 
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