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Self-focusing of light in nematic liquid crystals as a method 
of investigation of the orienting effect of a free surface 

6. Ya. Zel'dovich and N. V. Tabiryan 

P. N. Lebedev Physical Institute, Academy of Sciences, USSR 
(Submitted 18 July 1980) 
Zh. Eksp. Teor. Fiz. 79,2388-2397 (December 1980) 

The huge optical nonlinearity of the mesophase of a nematic liquid crystal (NLC), recently predicted and 
observed by the self-focusing of light, and caused by reorientation of the NLC director under the influence of 
light fields, is discussed. A calculation is carried out of the nonlinear advance of phase and of the optical 
power of the nonlinear lens for a layer of NLC oriented by means of one or two surfaces. Proposed 
experiments would enable one to obtain quantitative information about the orienting action of a free surface. 
Methods of increasing the accuracy of the experiment are discussed. Expressions are also obtained for the 
power of the nonlinear lens in a number of specific problems on external self-focusing of light in NLC. 

PACS numbers: 42.65.J~ 

1. INTRODUCTION periment  . 
A huge optical nonlinearity of the oriented mesophase 

of a nematic liquid c rys ta l  (NLC) was  recent ly p re -  
dicted theoretically and observed experimentally.' T h i s  
nonlinearity is caused by reorientation of the  NLC di- 
rector by the electric field of the light wave. In the  ex- 
periment,' the  original uniform planar orientation of 
the NLC was preserved  because of the r igid orientation 
of the  d i rec tor  on the rubbed sur face  of the cell walls.  
A suitable depar tu re  

of the d i rec tor  f r o m  the unperturbed direction lowers  
the energy of interaction with the light wave but leads 
to the appearance of a positive energy of nonuniform de- 
formation 

where  K is a Frank  constant ( see  below). Minimization 
of the sum of these  energ ies  leads t o  a local equation 
f o r  bn, whose solution w a s  c a r r i e d  out' with allowance 
f o r  the rigid pinning of the d i rec tor  a t  the  boundaries 
and gave a completely sat isfactory agreement  with ex- 

P a p e r s  of ~ a d a ' "  d i scuss  theoretically a possible  
mechanism of the or ient ing effect of a f r e e  NLC sur face  
(that is, f o r  example, the  boundary between the  NLC and 
a i r ) .  T h e  point is that t h e r e  is a p r e f e r r e d  orientation 
of the NLC d i rec tor  with respec t  to such  a f r e e  sur face ,  
and th i s  orientation may b e  different f o r  different speci-  
f ic shapes  of the NLC ( s e e  Refs. 4 and 5). The  degree  
of rigidity of the  orientation along such  a p r e f e r r e d  
direct ion can b e  character ized2 by the orientation-de- 
pendent p a r t  of the sur face  energy density, 

~[erg/cm'] -0. (6~)' 

( see  below f o r  a m o r e  exact definition). F r o m  the  con- 
s tan t s  a, and K we can f o r m  a quantity of dimensions 
length, l=K/ua. If the  total  thickness  L of the  cell is 
much l a r g e r  than 1, i.e., if L>>K/o,, then the  effect of 
the sur face  may b e  considered to b e  pract ical ly  a r igid 
pinning of the director .  If, on the contrary,  L<<K/u, 
(o r  equivalently, if a, - O), the f r e e  sur face  exerts no 
influence a t  all on the orientation of the director .  
~ a d a ' ' ~  notes  that so f a r  no methods are known f o r  ex- 
perimental  measurement  of the value of the orientation- 
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dependent part of the surface energy, that is of the 
constant a,, and he also points out the importance of in- 
formation about the value of this constant. 

The present paper is  devoted to calculation of the re- 
orientation of the NLC director by a light field and of 
the corresponding nonlinear advance of phase of the 
light wave, for 0 so, <m. Measurement of this advance 
of phase in two experiments-with one free surface and 
without it (that is, in a cell closed on both sides)-makes 
it possible to isolate the orienting effect of a f ree  sur-  
face and thereby to measure the constant a,. 

2. SYSTEM OF BASIC EQUATIONS 

We write the f ree  energy F of unit volume of the NLC 
in the form6 

i 1 1 F = -K, ,  (div n) a+ - K,, (n  rot n)'+ - ~ , , [ n  rot n]'- %(IIE) (nE'). 
2 2 2 . 16n 

 ere'^,,, K,,, and K, a r e  the Frank constants (in dynes), 
and En = E l  - E ,  is the anisotropy of the dielectric con- 
stant of the NLC at  optical frequencies. We treat  the 
value of E, and the modulus of the order parameter s 
a s  constants over the whole volume of the NLC. As is 
well known, departure of s and of 6, from a constant 
value can occur only in surface layers of thickness of 
order cm and therefore does not affect the optical 
properties a t  radiation wavelength A-0.5.10-' cm? 

The complex amplitude E(r)  of the electric field of a 
monochromatic light wave is  connected with the real  
field-intensity vector by the relation 

E real (r 7 t )  =0,5 (Ee-'*'+'kr+E.e'*'-'L'). 

The f ree  energy A of unit surface must have the form 
of a function possessing a minimum at the value 

ne;=cos Elo. 

where 0, is  the most favorable value of the director 
angle, and where ex is the normal to the surface. If, 
following Refs. 2 and 3, we retain only terms of no high- 
e r  than the second order in n, and if we furthermore 
exclude terms linear in n and -n, the expression for 
the n-dependent part of the surface energy takes the 
form 

(ne.) ,. (2) 

Then only two possible values a r e  obtained for the most 
favorable angle: 8, = 0 for a, < 0 and CI, = 90" for a, > 0. 
The energy is of course independent of the azimuth cp 
of the director orientation, because of the absence of a 
preferred direction. 

We note that according to some experimental 
data,' the value of the angle of exit of the direc- 
tor a t  the surface may differ from the favorable 
one Oo = 0 or 8, = 90". MadaZs3 explains this fact on the 
basis of minimization of the total f ree  energy F + A .  
Values of the favorable angle 0, different from 0 or 90" 
a r e  obtained from the theory, with allowance for van der 
Waals interaction, only because of anisotropy of the di- 
electric properties of the medium with which the nema- 
tic is in contact? In this connection there i s  all the 
more interest in a test of the consequences of the hypo- 
thesis expressed by equation (2). 

FIG. 1. Schematic representation of an experiment for 
observation of self-focusing in a plane cell with NLC. The 
poIarization vector e of the light wave lies in the xz plane; the 
wave is  propagating in the cell with wave vector k. In the plane 
z= 0, the orientation of the director is prescribed by rubbing 
o r  appropriate treatment of the wall of the cell. The transpar- 
ent material of the wall i s  hatched. The free surface of the 
NLC is  in the plane z = L. 

The total f ree  energy of a NLC filling the region 
0 z L (Fig. 1) will be 

The variational equations have the form 

3. LOCAL SOLUTION AND MINIMIZATION OF THE 
TOTAL ENERGY 

We shall suppose that upon the NLC layer, of thick- 
ness L, there i s  incident an almost plane light wave, 
with a transverse inhorilogeneity dimension a much 
larger than L; that is, a >> L. We shall treat  the effect 
in the first  nonvanishing approximation with respect to 
IEI2, assuming the light field sufficiently weak. Fur- 
thermore, nonvanishing effects a r e  obtained only for the 
extraordinary wave, whose polarization we shall suppose 
to lie in the xz plane. We shall consider two specific 
versions of the geometry of the experiment. 

1. Let the NLC layer have a planar'orientation, and 
let a, > 0. In the plane z = 0, we shall suppose the di- 
rector to be rigidly pinned in the direction of the x axis. 
Then n,, =ex, and in the approximation linear in Bn(z) 
=n-n,, we have 

The solution of equation (4a) under the boundary con- 
ditions (4b) and (4c) has the form 

Here we have introduced the notation 
0. 

A = 5 ( ~ e , )  (Ee,), g=L -. 
8n K,i 

It is  easily verified that the solution (5) actually mini- 
mizes the total f ree  energy (3). 

2. Let the NLC layer be homotropically oriented, n,, 
=ex, and furthermore let a, < 0. Then the equation for 
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FIG. 2. Behavior of the perturbations bn+ G) and 6n.G) of the 
director in a cell of thickness L ,  in relative units, for various 
values of the parameter 5: 1, 6 = 0; 2, 5 = 1; 3, 5 = -. 

6n = ex6n,(z) has the form 

66% E. 
-Kaa - = --(EeJ (re.),  

dz" ( 6 4  

d8n. 
[~ : : -+ lo l6~ ]~ ,=0 ,  d2 (6b) 

8&(z=o) =o. ( 6 4  

The solution of (6a) under the boundary conditions (6b) 
and (6c) has the form 

A 2+1%l 611=e=6&(z) -ez-z (- L-z) . 
2Kaa l+lel (7) 

This solution also, of course, minimizes the total 
energy (3). Graphs of the functions 6nx(z) o r  bn,(z) for 
parameter values 5 = 0, 5 = 1, and 5 =- a r e  shown in 
Fig. 2. 

The case in which the director has rigid planar pin- 
ning on one surface and rigid homotropic on the other 
is considered in Appendix 1. 

4. NONLINEAR ADVANCE OF OPTICAL PHASE, AND 
DISCUSSION OF EXPERIMENTAL POSSIBILITIES 

The correction to the tensor dielectric constant be- 
cause of the reorientation 6n of the director is 

The change 6k of the wave vector of the light wave, in 
the first  order in 6Eik, can be written in the form 

0: 
6k =. - e,b~,~e,, 

2c2k 

where e is the unit polarization vector of the electric 
field. 

Since the path traversed by the wave in the medium is 
~ / c o s  a (where cr is the angle of refraction; see  Fig. I), 
the correction to the phase of the light wave is 6p 
= L6k/cos a. Taking also e=  ex cos a +e,sin a, we get 

L 
6q-~:ff - - ~ I E I ' .  

4c(e.)" cos a (8) 

Here for planar orientation 

sin2 a cos' aL2 
E2 = I  

24nK,, 

and for homotropic orientation 

We have presented the result (8) in the form of an 
expression that contains an effective constant of non- 
linearity &iff. An expression of the type (8) would be 
obtained if one were to take for the permittivity of a 
scalar medium 

as i s  done in nonlinear optics. In our case, the "con- 
stant" &, itself depends on the thickness of the medium 
( E ~ "  L'). Here we assumed that the inhomogeneity di- 
mension a of the field IEI2 perpendicular to the beam. 
was much larger than the value of L/sin a ;  that is, that 
a >> l / s i n  cr . The nonlinear-lens properties for self - 
focusing in a NLC, when a <<  s sin a, a r e  considered in 
Appendix 2. 

It follows from (8)-(10) that the nonlinear advance of 
phase depends substantially on the parameter 5 .  The 
case 5 -00 corresponds to rigid pinning of the director 
even a t  a f ree  surface. The other limiting case, t; - 0, 
corresponds to truly f ree  orientation of the director on 
this surface. It is easy to verify that 

In other words, for the same thickness L, a layer of 
NLC with a single truly f ree  surface shows four times 
a s  large a nonlinearity a s  a layer with two surfaces that 
rigidly pin the director. 

A method of measurement of the effective constant E,, 

on the basis of the effect of external self-focusing of the 
light (according to measurement of the angular diver- 
gence of the beam in the f a r  zone), was used experi- 
mentally and described earlier.' Also possible is direct 
measurement of the optical advance of phase, by known 
methods of interferometry that may give a quite high 
accuracy of measurement of the phase. 

It is important to emphasize that measurements for 
two cases-with two rigidly pinning surfaces and with 
one-make it possible to isolate the effect of a f ree  
surface on the orientation of the NLC in the purest 
form; that is, without substantial influence of the e r r o r s  
in measurement of E,, a ,  E'L2, the total power of the 
light beam, and other absolute values. 

Thus in the present paper there is presented a method 
of measurement of the influence of a f ree  surface on 
the orientation of the NLC director, on the basis of a 
measurement of the nonlinear optical advance of phase. 
We emphasize that the apparatus required for these 
experiments reduces, except for the cell with the NLC, 
to an easily accessible low-power continuous laser, for 
example helium-neon. Also of interest i s  a test of the 
hypothesis of absolutely rigid pinning of the director on 
a rubbed surface. This method also permits investiga- 
tion of the influence of surface-active substances and, 
generally, any liquids that can be brought into contact 
with the surface of a NLC. 

In conclusion, the authors sincerely thank E.I. Kats, 
N.F. Phipetskii, A.V. Sukov, and Yu.S. Chilingaryan for  
valuable discussions. 
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FIG. 3. Schematic diagram of self-focusing of light in a cell 
with NLC, with distorted director orientation. In the plane z 
= 0, the director n(r) is oriented along the x axis; in the plane 
z = L, along the z axis. 

APPENDIX 1 

Propagation of light in a layer with distorted orientation 

We consider a cell of NLC one wall of which pre- 
scribes a rigid planar orientation of the NLC director 
(in the direction of the x axis), the other wall a rigid 
homotropic orientation. The distortion of the director 
field within the volume of the cell can be described by 
the angle O(r) that the director vector n makes with the 
normal to the cell plates (the z axis) a t  the point with 
coordinate z, 

n= {G, n,) = {sin OO(Z) ,  cos 80 ( 2 ) )  

(see Fig. 3). On such a cell let there be incident, in the 
direction of the z axis, a light wave polarized along the 
x axis (a wave polarized along the y axis would pass 
through such a medium as it would through a homo- 
geneous medium with index of refraction &it2 and would 
not produce nonlinear effects). 

The field in the NLC, in the approximation of geo- 
metric optics, will have the form 

dz' 
- i w t ) .  (11) 

E.(z) =del". , E,(z)=-(e . , lez , )E,(z)  

(a treatment of the geometric optics of anisotropic 
media will be found, for example, in Ref. 9). Here 

e,,=e. sin 0, ( z )  cos 0 , ( z ) ,  

e,=e,+e. cos2 0 , ( z )  

a r e  the components of the tensor dielectric constant of 
the NLC, 

To investigate the self-focusing of light in the scheme 
described (Fig. 3) and to estimate the magnitude of the 
nonlinearity, we take Kll =K, ,  = K in formula (1) (the 
Frank constant K,, describes distortion of the twist 
type, which is absent in the geometry of our experi- 
ment). This approximation enables us to present in 
analytic form the basic results  of the theory. 

The equation for e(z), describing the character of the 
director-field distribution in the presence of a strong 
light wave, takes the form 

dz8 ( z )  - - 8 . [ s i n 2 8 ( 1 ~ . 1 ' - 1 ~ . 1 ~ )  + cos Ze(BB;+E.'E,) 1. (13) K-- 
dza 16n 

Writing B(z) = @,(z) +68(r), where 6B(z) is  the perturba- 
tion of the director behavior by the light field, and 
using the expression (12) for the components of the 
field, we get, in the approximation linear in 68, 

Here F ( q q  dedotes the elliptic integral of the 
second kind, and K(&,/E~~) = F(u/2, is the complete 
elliptic integral. In the derivation of this formula it 
has also been taken into account that in the single-con- 
stant approximation, e,(z) = qz and that for our problem, 
q=n/2L. 

The nonlinear advance of phase in the cell of thickness 
L, as follows from the expression ( l l ) ,  is 

o ' sinqzcos qz 
8~ = ; - e a ( e h & ~ " J  (eL+e=cia..ri)x 60 (2) dz.  

0 

Substituting in this formula the expression (14), we get 
for 6@ 

where P = c ( E ~ ~ & , ) " ~  1AI2/8n is the power density of the 
beam. Comparison of the value of 60 with the value of 
the nonlinear advance of phase 60 in the planar 
orientation of the cell, for 6--m and a! =45", gives 
b@/6@,,  = 2.2 for the following NLC parameters: EL 
= 2.3; ell = 3.3; n, = 1.7. 

In the case of weak anisotropy, -c 1, the expres- 
sion (16) for the nonlinear phase advance reduces to the 
form 

This expression can also be derived directly from for- 
mula (13) and the equation 

by assuming that in the case of weak anisotropy E ,  
= const and E ,  = 0.  In this case the nonlinear advance of 
phase i s  about 2.15 times weaker than for planar orien- 
tation of an NLC layer ( 5  -m and a! = 45") of the same 
thickness L. 

APPENDIX 2 

Nonlocality of response of NLC and its effect on optical 
nonlinearity 

We consider the following experimental geometry 
(Fig. 4). The NLC director is directed along the 2 axis, 
and i ts  orientation is maintained by an external mag- 
netic field H, s o  that n, l(H. A light wave is  propagated 
along the x' axis, which makes an angle a! with the x 
axis, and is polarized in the xz plane (the extraordinary 
wave). Here we shall consider propagation of a narrow 
beam; that is, of a beam for which the transverse in- 
homogeneity dimension a is much less  than the thick- 
ness Lof the NLC layer, o r  more accuratelya << L/sin a! 

(Fig. 4). In this case the perturbation 6n of the direc- 
tor field by the light wave will be a function of all  the 
spatial coordinates, 6n= 6n(r). 
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and for small  z t  (for a Gaussian beam, lzt)  "a) we can 
write 

d26n -= BIE(z')'I2. 
dz" 

FIG. 4. The problem of the self-focusing of a beam with trans- 
verse dimension a<<. L .  The coordinate systems are chosen 
as follows: the x axis is  perpendicular to the cell plates; the y 
axis coincides with the y' axis and i s  perpendicular to the plane 
of the figure; 

The equation that determines 6n = e,6n in the single- 
constant approximation K i i  =K has the form 

%dl= pz-- e. sin a cos a 
' B =  

8nK ' 

Here x, = X I ,  - uL is the anisotropy of the magnetic sus- 
ceptibility, e is  the polarization vector of the electric 
field of the light wave, and E =eE.  The expression (17) 
is obtained from the variational equations (3) with al- 
lowance in the free energy (1)for a term F H =  -x,(n, H)'", 
which describes the orienting effect of the magnetic 
field. 

We write equation (17) in the coordinate system 
x'y'zt obtained by rotation of the x and z coordinate 
axes about the y direction through angle a. Taking into 
account that 6n is independent of x', i.e., neglecting at- 
tenuation of the beam, we get 

We consider f irst  the case of propagation in the medium 
of a str ip beam; that is, a beam of the form 1 ~ 1 '  
= IE(z')I2. Then equation (18) can be written in the form 

The solution of equation (19) has the form 

If the magnetic coherence distance I, = l/p is much 
larger than the field inhomogeneity a ,  I ,  >>a, then from 
(20) there follows 

Thus in the case l,>>a, the perturbation of the di- 
rector field by the light wave is determined by the 
whole energy of the wave and is independent of the form 
of the light field IE(zt)12. The value of d26n/dzt2, which 
determines the focal length of the nonlinear lens for a 
paraxial beam, is 

The second term in (21) can be estimated a s  

j I E ( ~ " )  I 2  dzn= I E  (z '=o) 12a, 

Thus for a paraxial beam, aberrationless self-focus- 
ing occurs when IEI2 = const. It is not difficult, however, 
to obtain an exact expression for 6n(z) and therefore for 
d 'bn(z)/dz2 in the case of a Gaussian beam, in explicit 
form, from the expression (20). 

We shall discuss the nonlocal character of the res-  
sponse of a NLC under the action of a light wave of the 
more general form 1 ~ 1 ~  = IE(yt, z')lZ. 

The solution of equation (18) has the form 

where i ~ p ) ( i z )  = ~K,(Z)/U is a zero-order Hankel func- 
tion of purely imaginary argument. Hereafter, since we 
a r e  interested in the effect of the nonlocality of the r e -  
sponse on the self-focusing of the light beam, we neg- 
lect the term p26n on the left side of equation (18). A s  
we have already seen in the treatment of the one-di- 
mensional case, this may be done when the inhomo- 
geneity dimension of the field is much smaller than the 
magnetic coherence distance. Thus for consideration 
of the self-focusing of a narrow light wave, we shall 
start  from the equation 

which is correct in the beam region. 

Let the light field have a radially symmetric form of 
IE(y', zt)I2. Then equation (22) in polar coordinates 
takes the form 

whence it follows that aberrationless self-focusing oc- 
curs when ( E ( ~ ) I ~  = const. This corresponds to a light 
wave whose intensity i s  constant within a circle. Then 
the value of d26n/dp2, which determines the focal length 
of the nonlinear lens, is 

We shall make some numerical estimates of the focal 
length f of the nonlinear lens. In the paraxial approxi- 
mat ion, 

where A is the wavelength of the light in a vacuum and 
where 6@ is the nonlinear advance of phase, 

O L  
6 0  = --2e. sin a cos a8n. 

2cn. cos a 

Using equation (23), we get 

where P =cn , l~1~/8n  is the power density of the beam. 
For &, = 1, (Y =45', L = 10" cm, K =4.5 dyn, and 
P = 1 W/cm2, we get f = 2.2 cm. 

121 4 Sov. Phys. JETP 52(6), Dec. 1980 B. Ya. Zel'dovich and N. V. Tabiryan 1214 



'1 Experiments on generation of the second harmonic of light 
in MBBA' indicate a possible nonequivalence of the directions 
n and -n. For simplicity, however, we adhere to the stand- 
ard assumption6 that they are equivalent. 

'B. Ya. Zel'dovich, N. F. ~ilipetski?, A. V. Sukhov, and N. 
V. Tabiryan, Pis' ma Zh. Eksp. Teor. Fiz. 31, 287 (1980) 
[JETP Lett. 31, 263 (1980)l. 

2 ~ .  Mada, Mol. Cryst. Liq. Cryst. 51, 43 (1979). 
'H. Mada, Mol. Cryst. Liq. Cryst. 53, 127 (1979). 
%I. A. Bouchiat and D. Langevin-Cruchon, Phys. Lett. 34A, 

331 (1971). 

5 ~ .  J. Kahn, Mol Cryst. Liq. Cryst. 38, 109 (1977). 
6 ~ .  G. de Gennes, Physics of Liquid Crystals, Oxford, 1974 

(Russ. transl., "Mir", 1977). 
'T. Akahane and T. Tako, Jpn. J. Appl. Phys. 18, 19 (1979). 
*s. M. Arakelyan, G. L. Grigoryan, S. S. Nersisyan, M. A. 

Nshanyan, and Yu. S. Chilingaryan, Pis'ma Zh. Eksp. Teor. 
Fiz. 28, 202 (1978) [JETP Lett. 28, 186 (1978)l. 

'~naliticheskie metody v teorii difraktsii i rasprostraneniya 
voln (Analytical Methods in the Theory of Wave Diffraction 
and Propagation), ed. S. V. Butakova, M., 1970. 

Translated by W. I?. Brown, Jr. 

Characteristic features of the electron spectrum of metals 
with dislocations 
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The theoretical data on the spectrum of electron states localized near edge dislocations are presented in a 
systematic manner and supplemented by new results. The following types of edge dislocations are considered: 
an isolated rectilinear dislocation, a dislocation dipole, a prismatic loop, and a segment of a bent dislocation of 
finite length. A detailed study is made of the problem of concentration broadening of the dislocation energy 
levels and bands in the case of random and quasiregular distributions of these various types of dislocations. 

PACS numbers: 71.55.Dp 

INTRODUCTION tion line, microstructure of i t s  core, and the actual law 

Distortions of the crystal lattice around dislocation 
lines create large-scale deviations of the crystal field 
from i t s  periodic structure in a perfect crystal. In 
metals these distortions produce forces which act on 
conduction electrons and can sometimes alter signifi- 
cantly the nature of motion of these electrons. In the 
simplest cases it is found that electron excitations be- 
longing to a continuous spectrum are scattered by dis- 
locations exchanging energy and momentum: such pro- 
cesses give rise to a dislocation contribution to the 
electrical resistivity and to an electron contribution to 
the drag force exerted on dislocations. However, there 
can be situations in which the influence of dislocations 
on the electron motion is more fundamental, for exam- 
ple, an electron may become localized near a disloca- 
tion line. Localization is known to produce discrete 
levels in certain parts  of the energy spectrum and such 
drastic changes in the structure of the electron spec- 
trum may give r i se  to specific features in the thermo- 
dynamic and transport properties of a metal. 

The concept of a dislocation covers a fairly wide 
class of different line defects of the crystal structure. 
The common feature of all of them i s  the presence of 
a core-representing a certain tube of radius of the o r -  
der  of the interatomic distance within which the defor- 
mation of the original lattice i s  of the order  of unity - 
and an inhomogeneous field of elastic strains decreas- 
ing slowly away from the core. The shape of a disloca- 

governing the decrease of the elastic field can differ 
considerably. This complicates greatly the formulation 
and solution of the quantum-mechanical problem of the 
interaction between electrons and dislocations. It i s  
not possible to obtain a general solution of this problem 
applicable to all types of dislocation ahd in each case 
i t  i s  necessary to study much simpler specific models. 

Many papers have been published on problems of this 
kind in the case of semiconductors and metals. Some 
of them deal with the conditions of formation and 
structure of electron states associated with disloca- 
t ion~' '~;  others are concerned with the scattering of f ree  
electrons on dislocations and i ts  influence on the elec- 
tr ical  conductivity of a metal and on the dislocation mo- 
bility (the necessary references can be found in the 
monographs of Zimans and ~ r i e d e l ~  as well as in the 
review of Kaganov et ~ 1 . ' ~ ) .  

The main methodological difficulties are encountered 
in the analysis of changes in the electron spectrum due 
to dislocations. Kaner and Fel'dmans pointed out that 
an investigation of the spectrum of states localized at 
dislocations should include solution of problems of 
two types: 1) a calculation of the spectrum of an elec- 
tron interacting with a single dislocation; 2)  an analysis 
of the concentration broadening of levels o r  bands in 
such a spectrum due to the overlap of the long-range 
elastic fields of dislocations. In most cases, studies 
have been confined to the spectrum of an electron near 
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