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A closed kinetic equation is obtained for the evolution of vacancion (ion vacancy) pores in dimension space 
and in coordinate space. The diffusion interaction of pores in an ensemble is considered, with account taken of 
the microscopic processes that occur near and on the surfaces of the pores. Kinetic equations are calculated 
for the growth rate and velocity of the pores and for the pore diffusion coefficient in coordinate space and in 
the poredimension space. The influence exterted on these coefficients by deformations of the activation 
barriers in the pore surface layer is investigated. The obtained kinetic equation is used to determine the region 
of stability of a lattice of vacancion pores with respect to the growth of the pores and with respect to 
displacements of the pores from the lattice sites. 

PACS numbers: 63.90. + t, 66 .30.L~ 

1. INTRODUCTION 

~xper iment l  has revealed an interesting physical 
phenomenon in metals irradiated by particles of suf- 
ficiently high energy, namely the formation of vacan- 
cion pores in these metals a t  high irradiation tempera- 
tures (T 2 0 . 3 T S ,  where T ,  is the melting tempera- 
ture of the metal). Vacancion (ionvacancy) pores a r e  clus- 
t e r s  or,  a s  they a r e  frequently called, "negative crystals, " 
consisting of a large number of vacancies and measur- 
ing tens and hundreds of periods of the crystal lattice 
of the metal. Vacancion porosity exerts a substantial 
influence on various physical properties of metals, 
particularly on their endurance to radiation. In addi- 
tion, this phenomenon i s  of general physical interest a s  
a model system that can be used to develop methods of 
investigating the kinetics of first-order phase transitions. 

surfaces of the pores (see also Ref. 5). The latter is 
particularly important, since it is known6that the coeffi- 
cient of surface diffusion of vacancies exceeds the coef- 
ficient of volume diffusion by several orders of magni- 
tude. We consider separately the motion of a selected 
pore in the inhomogeneous field due to the gradient of 
the vacancy concentration. In a somewhat different 
formulation of the problem, a similar motion of pores 
was considered earl ier  by Krivoglaz. We consider 
also in this paper the influence of the diffusion interac- 
tion of vacancion pores on the growth rate and displace- 
ment of the pores in space. The results a re  used to 
investigate the stability of a pore lattice. Diffusion in- 
teraction of the pores, a s  a mechanism that governs the 
stability of a pore lattice, was proposed in our previous 
paper,7 and also independently by Martin and Benoist. 

To describe the kinetics of the nucleation and growth 2. KINETIC EQUATION FOR THE EVOLUTION OF 
of vacancion pores it i s  customary to use the well VACANCION PORES IN  INHOMOGENEOUS SPACE 
known Zel'do-vich kinetic equation2 (see also Ref. 3 )  
used to study the kinetics of condensation of super- 
saturated vapor and the boiling-up of a superheated 
liquid. In the theory of formation of vacancion pores, 
this equation describes the evolution of the change of 
the pore-dimension distribution in homogeneous space. 
For  a more complete investigation of the kinetics of 
vacancion pairs in crystals i t  is necessary to use a 
kinetic equation capable of describing the variation of 
the pore distribution not only in size but also in space. 
The latter is particularly important for the study of the 
formation kinetics and of the stability of an ordered 
periodic lattice of vacancion pores, which was experi- 
mentally observed in a number of  metal^.^ An interest- 
ing feature of this dissipative structure is that the pore 
lattice has a macroscopic period amounting to several 
hundred angstroms, while the average radius of the 
pores located a t  the si tes of this lattice is equal to 
dozens of angstroms. However, no kinetic equation has 
been derived s o  far for the description of an inhomo- 
geneous distribution of the pores in space. 

Vacancion pores in crystals a r e  accumulations of 
vacancies that form clusters in the form of vacancion 
cavities that measure up to a thousand periods of the 
initial crystal lattice. The surface of a pore has in the 
general case crystalline faceting and possesses a defi- 
nite structure. In crystals with weak anisotropy, the 
pore surface can be regarded a s  close to spherical. 
In an ensemble of pores, each vacancion pore will be 
characterized by the position r of its center of gravity 
and by the number m of vacancies of which i t  i s  made 
up (m = 47rRm3/3w,, where R ,  is the radius of the pore 
and w ,  i s  the volume per vacancy), and we shall desig- 
nate this pore by the symbol A(r,  m). In the derivation 
of the kinetic equation, we shall consider for simplicity 
the evolution of an ensemble of pores in a space in 
which is located a supersaturated gas of point defects, 
of only one type namely vacancies. Allowance for the 
interstitial atoms in the derivation of the kinetic equa- 
tion, a s  can be easily seen does not change the quali- 
tative picture of the pore evolution, but this allowance 

We derive in this paper a kinetic equation that de- would greatly encumber the physical model. Therefore 
scribes the kinetics of an ensemble of vacancion pores interstitial atoms will be disregarded in the present 
in an inhomogeneous space, with account taken of the paper. We shall denote hereafter a free vacancy by the 
microscopic processes that take place near and on the symbol V. 

1170 Sov. Phys. JETP 52(6), Dec. 1980 0038-5646/80/121170-09$02.40 O 1981 American Institute of Physics 1170 



Since the pore dimension R , E  A (where X = a is the 
vacancy mean free path and is close to the period a of 
the crystal lattice), i t  follows that near each pore there 
exists an inhomogeneous vacancy distribution that can 
be represented in the form of a vacancy-gas cloud. The 
vacancy distribution in this inhomogeneous cloud is 
characterized by the quantity C(R, r ,  m), which deter- 
mines the probability of finding the vacancy a t  the 
point R near the pore A(r, m). The vacancy concentra- 
tion C(R, r ,  m) is normalized in such a way, that the 
quantity 

represents the total number of vacancies in the volume 
over which the integration is carried out (w ,  * a3 is the 
volume per vacancy). The vacancy density near each 
pore depends in a self -consistent manner on the arrange- 
ment and on the evolution of the distribution of the pores 
in space. 

We shall describe an ensemble of vacancion pores 
with the aid of a distribution function f(r, m,  t) that de- 
termines the number density, a t  the point r ,  of pores 
consisting of m vacancies a t  the instant of time t. The 
distribution function f(r ,  m, t) is normalized to  the total 
number N(t) of the pores in the crystal: 

To obtain a kinetic equation that describes the evolu- 
tion of an ensemble of pores i t  is necessary to formu- 
late a model of the processes that occur near and on the 
surfaces of the pores. The displacement of the pores 
in space and their growth a s  a whole a r e  determined by 
microscopic processes that take place in near-surface 
layers of the pores and a re  analogous to the processes 
that take place in crystal growth. 

The pore surface is crystalline and has, like a crystal 
surface, a structure in the form of an essembly of 
terraces with steps and breaks on them? On the su r -  
face of the terraces a r e  located surface vacancies and 
adsorbed atoms, which diffuse over this surface. For  
simplicity we shall henceforth neglect the influence of 
the adsorbed atoms on this process, although i t  is not 
difficult to take them into account. 

The diffusion of the vacancies towards the pore and 
their settling on the pore lead to displacement and to 
growth of the pores. For  large pores this process pro- 
ceeds in several stages. The vacancies land first  on the 
surface of the terrace by volume diffusion. Next, they 
land on the steps by surface diffusion over the terrace,  
and from there, by linear diffusion along the steps, they 
settle on the breaks of the steps and vanish. In addi- 
tion, the inverse process of fluctuation detachment of 
vacancies from the break a t  the steps takes place. The 
principal processes that lead to a change in the distribu- 
tion of the pores in a supersaturated vacancy gas a r e  
the following: condensation I,, evaporation IQ, and sur- 
face diffusion I, of the vacancies a s  well a s ,  generally 
speaking, pore coagulation I,. We therefore have 

We consider now these processes separately. 

In condensation, a vacancy from the near-surface 
layer lands on the surface of the pore. This process 
leads to an increase in the number of vacancies in the 
pore A(r,  m) by unity and to a displacement of the cen- 
ter  of gravity of the pore by an amount Or. This process 
can be schematically represented in the form 

where 6 r  = R,/m, R, i s  a vector directed from the cen- 
t e r  to the surface of the pore and characterizing the po- 
sition of the vacancies on the surface of the pore 
(IR,(=R,). 

We denote by W,,(R -- R,, r ,  m) the probability, per 
unit time, of a vacancy hopping over from the point R 
to the point R, on the surface of the pore via volume 
diffusion. Actually, the motion of the vacancies pro- 
ceeds in discrete fashion: the vacancies hop over from 
one side to another. However, bearing in mind the 
probabilistic character of the description of the vacancy 
motion and of the evolution of the pore ensemble, which 
shall hereafter by regarded a s  continuous the medium 
through which the vacancies move, implying throughout 
averaging over the microscopic fluctuations of the 
crystal structure and of the pore surface. 

For  convenience in the subsequent calculations, we 
shall hereafter represent the integration of a certain 
function F(R,) over the surface of a pore in one of three 
forms: 

j G R ~ F  (R,) - I bRF(R)  6 (R-R,) SS hi dzgg'kF (R.). 

where (dRs)2=g,Bdxad#, g,, is a metric covariant 
tensor (a, f l =  1,Z). lo The probability of condensation 
of one vacancy by the pore A(r,  m) then takes the form 

where o, is the area  per vacancy (a,=$). In this and 
the following expressions, the integration over dSR ex- 
tends over the region R >R,. 

The distortions of the near-surface layer can be due, 
e.  g. ,  to the pore's own dilatation o r  to a deformation 
due to impurity atoms that can settle on the surface of 
the pore. l1 These distortions alter  substantially the 
activation barr iers  of the volume diffusion of the vacan- 
cies. The thickness of the near-surface layer can 
amount to several lattice periods. For  simplicity, 
however, we shall consider a surface layer in the form 
of one monolayer, inasmuch a s  the use of excessive 
details of the model increases the number of the para- 
meters  without changing the qualitative picture of the 
phenomenon. The integration over d3R in (2.2) i s  
therefore over a surface layer of thickness on the order 
of the vacancy mean free path. 

The process of condensation of the vacancies leads to 
the following change, per unit time, of the density of 
pores consisting of m vacancies: 
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The last term in this expression describes the conden- 
sation of one vacancy on a pore consisting of m - 1 
vacancies, with arrival of the pore in the state A(r, m): 

A(r-6r, m- l )+V-A ( r ,  m),. 

We shall assume that the pore distribution f(r, m) is 
weakly inhomogenous and changes little when the num- 
ber of vacancies in the pore changes by unity. Then the 
expression (2.3) is reduced in the usual manner to the 
Fokker-Planck form: 

Here 

We consider now the contribution of evaporation of 
vacancies from the surface of the pores to the change 
of the distribution function f(r, m). Evaporation of a 
vacancy changes the pore A(r, m)  over to the state 
A(r  - 6r, m - 1): 

A (r, m )  +A(r-br, m- l )+  V .  

Therefore the probability per unit time of evapora- 
tion of one vacancy from the pore A(r, m) in the 
surface layer will be written in the form 

where W,,(RS - R, r ,  m) is the probability of vacancy 
jump per unit time from the point Rs of the surface of 
the pore A(r, m) to the point R of its near-surface 
layer. In the general case, owing to deformations of 
the surface layer of the pore, the evaporation and con- 
densation probabilities W,, and W,, a r e  not equal. 

The arrival of the pores in the state A(r,  m) a s  the 
result of evaporation of one vacancy by a pore consist- 
ing of m + 1 vacancies is described by the process 

The change, per unit time, of the distribution function 
f(r ,  m) a s  a result of evaporation of vacancies from the 
surface of the pores is expressed in the form 

For  pores consisting of a large number of vacancies 
(m >> 1) and having small center-of-gravity displace- 
ments (6r / r  << I), expression (2.7) can be simplified to 

a 1 a= a 
~Q=--(~Qi)+~(vQf)--~(~of)+~~(v,f)-~l~k(~,~hf), am 2 am 

(2.8) 
where the coefficients J,, v,, and9: a re  given by 

I,= j a r Q ,  up- j d h h .  goik = t j  dlJIr16T). (2.9) 

The motion of the vacancies over the surface of the 
pores does not change the dimension of the pores, but 
causes them to be displaced. This process can be 
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represented in the form 

A(r ,  m)+V(R. )  +A(r+6r., m ) + V ( R / ) ,  (2.10) 

where 6r, = (R, - Ri)/m and V(R,) characterizes a va- 
cancy located on the surface of the pore a t  the point R,. 

The arrival of the vacancy over the surface of the 
pore a t  the point R, is the inverse of the process 
(2.10): 

A (r+Gr,, m) + V(R,') -+A(r ,  m) +V(R.)  . 

The process of surface diffusion of vacancies is de- 
scribed by the combined probability of the hopping of 
the vacancy from one point on the surface of the pore 
to another, which is equal to 

where W,,(Ri- R,, r ,  m) is the probability of the hopp- 
ing of one vacancy per unit time via surface diffusion 
over the surface of the pore A(r, m) from the point 
Ri to the point R,. The contribution of the surface dif- 
fusion to the evolution of the distribution function 
f ( r ,  m)  can then be represented in the form 

Expanding this expression in terms of br,, we obtain 

Is-V ( v s f )  -VrVn(ge'Y), (2.12) 

where the coefficients v, a n d g g  a re  equal to 

Finally, we present the known expression for the 
change of the distribution of the pores a s  a result of 
coagulation (see, e.g., Ref. 6): 

I.- dmf { w C ( m ,  mm.-m+mf)f (r,  m )  f (r,  m f )  

i - - j  (r, m-m') f (r, mr)  wC (m-mf,  m r + m ) ] .  
2 

where Wc(m, m' -m +ml)  is the probability of pore 
collision per unit time with transition of two pores from 
dimensions m and m' into a dimension m + m'. 

Gathering expressions (2.4), (2.8), and (2.12) into 
expression (2.1) and taking (2.5), (2.9), and (2.12) to 
into account, we obtain the general form of the kinetic 
equation for the pore distribution function 

The kinetic coefficients in this equation a re  equal to 

What is new in this equation is the term with the mixed 
derivative. This term can be understood if all the 
terms with the derivative with respect to m a re  grouped 

L. A. Maksimov and A. I. Ryazanov 1172 



in the form -aI,,,/am, where 

We see that the non-uniform distribution of the pores 
leads to an additional flux of pores in dimension space, 
i. e., the number of pores of given dimension a t  a given 
point of space changes not only on account of diffusion 
processes a t  the given point, but also on account of the 
spatial displacement of the pores. 

It must be stated that in the derivation of the kinetic 
equation (2.14) we succeeded in obtaining general ex- 
pressions for the displacement velocity v and for the 
diffusion coefficient 9'' of the pores. The spatial coef- 
ficient of the pores 9'' consists of 0 y  (the contribution 
of the surface diffusion of the vacancies) and 9 v  =Okk 
+9: (the contribution from the random displacements 
of the pores thanks to the processes of condensation and 
evaporation of the vacancies). The situation is similar 
also for the pore displacement velocity v. 

3. PORE MOTION I N  INHOMOGENEOUS VACANCY 
FIELDS 

The kinetic equation (2.14) is s o  far  only formally 
closed with respect to f ( r ,  m), inasmuch as the kinetic 
coefficients (2.15) a r e  determined by the distribution 
of the vacancies around each pore. This vacancy 
distribution depends substantially on the spatial dis- 
tribution of the pores. Therefore, for a complete de- 
scription of the evolution of the distributed pores in 
space we must find the distribution C(R, r ,  m)  and cal- 
culate the coefficients (2.15). We note also that cal- 
culation of the growth rate R of a selected pore, of i ts  
spatial velocity v, and of the diffusion coefficients J 
and 9'' under specified external inhomogeneous condi- 
tions is also of independent significance. 

We obtain now the vacancy distribution C(R, r ,  m) 
around a selected pore A(r, m). To this end we write 
down first, in accord with the vacancy-motion model 
formulated in the preceding section, the change of the 
vacancy concentration on the pore surface: 

8 R '  
C, (R,) - j  ---2 {Cs (R:) Wss(R;+R.) -Cs(R.)'Wss(R,+R;)} 

0 s  

(3.1) 
where T;! characterizes the probability of attachment 
and detachment of vacancies from defects on the sur-  
face of the pore (breaks on steps, impurity atoms, 
etc. ), while C,(R,) is the thermal concentration of the 
vacancies near the pore surface defects. The first  
integral in the right-hand side of this expression de- 
scribes the motion of vacancies over a pore surface by 
surface diffusion, the second integral describes the 
processes of condensation and evaporation of the va- 
canies from the near-surface layer in the volume, 
while the last term is responsible for the processes of 
detachment and attachment of vacancies from defects 
on the surface of the pore. 

The evolution of the distribution of the vacancies in 
the vicinity of the pore (R >R,) will be described by the 

equation 

k(@=-j {C (R') W v  (%R) -C (R) WV (R+Rf)}  
0. 

- {Cs (R.) Wsv (R.+R) -C(R) Wvs (R+R.) }-r[C(R) -CoI +G. + J  7 
(3.2) 

Here C, is the thermal concentration of the vacancies 
in the volume; y and G a r e  the effective rates of ab- 
sorption and generation of vacancies. The first  inte- 
gral in this expression describes the volume diffusion 
of the vacancies, the second the evaporation and con- 
densation of vacancies from the surface layer of the 
pore into the volume, while the third term describes 
effectively the capture of vacancies by other volume 
defects (dislocations, impurity atoms) and the fourth 
term describes the production of vacancies by the ir- 
radiation. We note that the probabilities W,,(R, - R) 
and W,,(R - R,) in Eqs. (3.1) and (3.2) do not coincide, 
generally speaking, with the limits 

lim WV(R'+R), lim WV(R+R1). 
R'+& R'+R* 

We are  interested in a weakly inhomogeneous distribu- 
tion of the vacancies. In this case we can change over 
from the integral form of Eqs. (3.1) and (3.2) to a dif- 
ferential form. We f i rs t  simplify for this purpose in 
(3.1) the integral corresponding to the surface motion 
of the vacancies. The calculations yield 

a ac. 
div, js-g-"- (g'hj,"), js"=Vs"Cs-D~ae- 

a e  a~ ' 

where V i  is the surface "hydrodynamicw vacancy velo- 
city, D, is the coefficient of surface diffusion of the 
vacancies; W$: and w:; are  respectively the antisym- 
metrical and symmetrical parts of the probability of 
vacancy hopping from the surface point x to the point 
x' (a,P = 1,2). 

It is important that the expression for the surface 
flux of the vacancies 3: contains the hydrodynamic 
drift (3.5), with V: different from zero if the hopping 
probability W,, has an antisymmetrical part WL: that 
can be produced by a temperature or  s t r ess  gradient 
on the surface of the pore. 

The final equation (3. I) ,  which describes the change 
of the vacancy concentration in the surface layer takes, 
with allowance for  (3.3)-(3.6), the form 

1 C,  (R,) =-div, j, + & C ( R , + A ~ )  -LC, (RJ + -- [C, (R,)-C.(R,) I ,  
Zvs zsv TT 

(3.7) 
where the quantities r,, and r,, a re  given by 

is the effective radius of the functions W,, and 
W,, ( A  = a, where a is the lattice period), and n is 
a unit vector directed along the outward normal to the 
pore surface. 
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Strictly speaking, the condensation and evaporation 
times rVS and r,, (as well a s  the time 7,) depend on 
the radius of the pore. But for large pores in most 
cases this dependence can be neglected and one can 
the values of these parameters for a flat crystal sur-  
face [see the remark concerning formula (3.18) below]. 

In the region R > R, + h, the vacancy diffusion is de- 
scribed according to (3.2) by the equation 

C (R)  =D.AC-r (C-Co) +G. 

Here 

The equations (3.7) and (3.8) for the surface and 
volume diffusion of the vacancies must be supplemen- 
ted by aboundary conditions, whichwe obtainby equating 
the vacancy flux from the surface of the pores to the 
volume flux a t  the point R, + An: 

Strictly speaking, the connection between C,(R,) and 
C(R, + An) should be sought by solving Eq. (3.2) in the 
region R, <R < R, + A. In the calculations that follow, 
however, we shalluse Eq. (3.9), as is customary in the 
kinetics of weakly rarefied gases when boundary layers 
a r e  considered. 

The number m of vacancies in the pore changes sub- 
stantially over a characteristic time T, on the order of 
[see (3.17) below] 

and the characteristic times of establishment of the 
quasistationary distribution of the vacancies in the 
surface layer (7;) and in the volume (7;) are ,  ac- 
cording to (3.7) and (3.8), of the order of 

Therefore the following inequalities a r e  always satis- 
fied at C<<l:  

This means that the distribution of the vacancies 
near the pore always adjusts itself adiabatically to 
the size of the pore. To determine the distribution of 
the vacancies near the pore and by the same token to 
find the kinetic coefficient (2.15), we can therefore use 
the stationary system of equations (3.7) and (3.8). In 
the vacancy-density gradient (if we neglect the internal 
s t resses  due to their gradient) the probability of va- 
cancy hopping over the surface of the pore has a sym- 
metrical form 

( + I  W,, (R+R') = W,, (R'+R) - Wss , 

therefore the vacancy flux over the surface of the pore 
j ,  does not contain a term with hydrodynamic drift 
(Vg = 0) and the stationary system of equations, with 
(3.9) taken into account, takes the form 

AC(R)-bZ[C(R)-Col+GID.-0 (R>R.+I). (3.11) 

Equations (3.10) and (3.11) with the boundary condi- 
tion (3.9) determine completely the distribution of the 
vacancies near the pore. The solution of Eqs. (3. lo), 
(3.11) with allowance for (3.9) is of the form 

C (R)  =C,+q/R-ER+dWRS. (3.13) 

Here C, is the concentration of the vacancies far  from 
the pore, the "external fieldn E is specified by the 
vacancy-density gradient, which is due to the overlap 
of the vacancion clouds surrounding the remaining pores 
(see below). The other parameters a r e  

(3.14) 
In the case when the frequency of the surface pro- 

cesses is of the order of o r  higher than the frequency 
of the vacancy hops in the volume 

~ / T * = ~ / T . * > ~ / T V ,  (3.15) 

the deviation of the coefficients B, and B, from unity 
can be neglected and we can write in place of (3.14) 

q-RS(Cm-CI) 1 d-RiE, 

If the processes that cause the vacancy change be- 
tween the pore and the crystal and strongly hindered, 
so  that 

then we obtain a new result: 

R s t  R,' 3 R. T. q- ( C - C )  d=- -( 1- -- -) E. 
AT' 2 2 a T" 

Satisfaction of the inequalities (3.16) can be expected 
in two cases. First ,  when the activation barr ier  that 
causes the adhesion of the vacancies to the surface of 
the pore is large compared with the activation barr ier  
for the vacancy in the volume (T,, >> 7,). Second, when 
rv, = 7,  , = T,, but the process of adhesion of the surface 
vacancy to the steps and to the breaks on the surface of 
the pore is strongly hindered (T, >> 7,). 

The distribution of the vacancies near the pore and on 
the surface of the pore, (3.12) and (3.13), specifies 
directly the kinetic coefficients (2. 15), which we now 
proceed to determine. 

The rate of change of the number of vacancies in the 
pore, m, equals according to  (2.2), (2.6), and (2.15) 
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From this expression and (3.14) i t  is seen that in the 
case (3.15) the pore growth rate is 

This expression agrees with the previously known re- 
s ~ l t , ~  but the role of the boundary condition on the sur- 
face of the pore is assumed in this case by the quantity 

Since the time ratio rVS/7,,, depends generally speak- 
ing on the radius of the pore, the known thermodynamic 
relation used in Ref. 6 a s  the boundary condition on the 
surface of the pore 

Cm-=Cvo exp (2ymJRT) 

(y is the coefficient of surface tension of the crystal) 
i s  determined in the present case by the joint action of 
the quantities C,(R,) and r y S / ~ S  v. 

In the case (3.161, the growth of the pore is deter- 
mined by the expression 

Inasmuch a s  here r,R,/~*h << 1, in the case when the 
vacancy exchange between the pore surface and the 
crystal is  hindered the pore growth rate slows down con- 
siderably compared with the rate (3.18), and has a 
different dependence on the pore dimension. 

We determine now the rate of displacement of the 
pore in the crystal. The processes of condensation 
and evaporation of the vacancies from the surface of the 
pore lead to displacement of the pore a t  a rate governed 
by volume diffusion processes and equal, according to 
(2.15), (2.9), and (1.12) to 

Here and elsewhere we assume for simplicity U,/XU, 

= 1. 

In the case when the activation barriers for exchange 
of vacancies between the surface of the pore and the 
crystal a re  close to the activation barr iers  of the va- 
cancies in the volume [see (3.15)], the pore velocity 
is 

vv=-3DDE, 

and agrees with the known result. Under conditions of 
slowed-down exchange of vacancies between the surface 
of the pore and the crystal [see (3.16)], the expression 
for the pore velocity becomes 

As expected, the velocity of the pores whose surface 
layers hinder the landing if the vacancies on the pore 
surface is much lower than the velocity of the pores that 
do not produce an additional barrier for the hopping of 
the vacancies to the surface of the pores. The ratio of 
these velocities is 

k Rs -- ti. 
T" h 

In addition to the processes of condensationand evapora- 
tion of thevacancies, a definite contribution to the pore 
velocity can be made also by surface diffusion of the 
vacancies over the surface of the pore. This mecha- 
nism of pore displacement i s  due to the fact that the dis- 
tribution of the vacancies on the surface of the pore de- 
pends on the direction of the "external fieldv E: on one 
side of the pore the vacancy density is higher than on 
the other side. This leads to the appearance of direc- 
tional motion of the vacancies, a s  a result of which the 
center of the pore shifts when the vacancies flow over 
the surface of the pore from one side to the other. Us- 
ing (2.111, (2.131, (3.6), and (3.14), we calculate the 
pore velocity due to the surface diffusion of the vacan- 
cies, and represent i t  with allowance for (3.19) in the 
form 

It is seen from this expression that the velocity v, is 
directed opposite to the velocity v, and is comparable 
with i t  (if D,T,/R; 2 1) or  is smaller (if DSrT/Rs2 << 1). 
Consequently, allowance for the surface velocity v, 
does not influence the estimate of the resultant pore 
velocity 

We calculate now the intrinsic diffusion coefficient 
9 of the pores. Substituting in (2. 5), (2.9), and (2. 13) 
the obtainedvacancy distribution near and on the surface 
of the pore (3.12) and (3. 13), we obtain in the isotropic 
case 

where 

According to (3.21), the diffusion mobility of the pores 
is determined by the rate of surface diffusion of the 
vacancies and also by the rates of the vacancy exchange 
between the surface of the pore and the crystal. In 
the case when the distortions of the surface layer a re  
small and do not influence the volume diffusion pro- 
cesses in the surface layer [see (3.15)], the total dif- 
fusion coefficient of the pores a s  a function of the pore 
dimension is given by 

Finally, if the near-surface layer hinders the landing of 
the vacancies on the surface of the pore [see (3.16)], 
then the diffusion of the pore a t  (D,T,)~ '~  <R, < AT*/?, i s  
estimated a t  

Thus, the diffusion coefficient of the pore, depending on 
the size of the pore and on the relations between the 
characteristic times, is determined by different mecha- 
nisms and behave differently a s  a function of R,. 
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Pore diffusion in the space of the dimensions m is 
determined by the cofficient J [see (2.15)], whose 
value is 

4rrR." C ( R J  I,= - 4nR.' Cs (R.)  , J q = - - .  
0. Tvs 0. Tsv 

We emphasize that the coefficient of pore diffusion in 
dimension space is proportional to the surface of the 
pore. The use of the law J,,aR, J, a R, which is fre- 
quently employed in the kinetics of nucleation of va- 
cancion pores (see, e.g. ,  Ref. 12), can therefore not 
be regarded a s  justified. 

Thus, al l  the kinetic coefficients (2.15) in the ki- 
netic equation (2.14) a re  determined and expressed in 
terms of parameters that characterize the external 
field for the given pore (the quantities C, and E) and 
the diffusion-process times T,, T,,, T,,, T,, and 7,. 

We now find the quantities C,, q, and E for a selec- 
ted pore in an ensemble of pores. The diffusion of the 
vacancies in the space between the pores a t  R >R, + A 
is described according to (3.2) by the equation 

where 

g ( r )  = c ( r )  -C,, C,=C,+GIpaD.. 

We seek the solution of (3.23) in the form 

where r, is a vector characterizing the absorption of 
the i-th pore; q, and d, a r e  unknown quantities which 
will be determined later on. 

We expand (3.24) near the selected pore j(R, <<I r,, 1 , 
OR, << 1) and represent the distribution of the vacancies 
near this pore in a form similar to (3.13), in which the 
coefficients C,, and E, a re  given by 

where 

Thus, the external field E j  is expressed in terms of 
the unknown quantities q,(i = 1,2 ,3 ,  . . . , N). We now 
obtain the quantity q,. To this end we use the relation 
(3.14) and substitute in i t  the expression (3.25); a s  a 
result we obtain the following equation for q,: 

It i s  easy to solve this equation for a narrow distribu- 
tion of the pores in dimensions R, =a + 6Rj, 6 ~ , / a  << 1 
(where a is the average radius of the pores in the en- 
semble),'= and i t  takes the form 

where 

w, is the volume per pore (w, = L3). With the aid of 
(3.28) we obtain the rate growth of the selected pore 
with account taken of the diffusion-induced influence on 
this pore by the remaining pores in the ensemble. Us- 
ing (3.17) and (3.28) we obtain 

It is seen from this expression that the diffusion inter- 
action of the pores, which determines the growth rate 
of the individual pore, has a screening radius 
" u - ~ ( x  > p). 

The rate of change of the average pore dimension in 
the ensemble, neglecting small  local inhomogeneous 
fluctuations in the pore-size distribution, i s ,  according 
to (3.29) and (3.30) 

We now find the rate of motion of an individual pore 
with allowance for the diffusion interaction with the 
remaining pores. To this end we substitute in (3.19) 
and (3.20) the expressions (3.26) and (3.28), and obtain 
a s  a result the following expression for the velocity of 
the j-th pore: 

where 

It is seen from thrs expression that the growing pores 
in the ensemble (R, >0) a r e  effectively repelled and 
move in opposite directions, while the evaporating 
pores ( ~ i  < 0) a r e  attracted and move towards one another 
with definite velocity. We note that the pore velocity 
in the ensemble, a s  a result of the diffusion interac- 
tion with one another, in contrast to the velocity of two 
diffusely interacting pores7 has a screening radius 
3p-', while the screening radius x-' of the pore growth 
rate i s  smaller than the screening radius P-' of the pore 
velocity: 

xZ/pa=1+4nRBq ( R )  /oLp2>1. 

4. STABILITY OF LATTICE OF VACANCION PORES 

As first  shown by E ~ a n s , ~  an ordered structure of 
vacancion pores is produced in a metal under certain 
conditions. The pore lattice is of interest because i t  
had a macroscopic ordering period L = 102a (where a is 
the period of the initial crystal lattice). The pore 
dimension distribution in the pore lattice is sufficiently 
narrow, and the average pore radius is R = lOa. The 
ratio of the average pore dimension to the pore-lattice 
period is always small: R/L = lo-'. The symmetry 

1176 Sov. Phys. JETP 52(6), Dec. 1980 L. A. Maksimov and A. I. Ryazanov 1176 



of the pore lattice coincides with the symmetry of the 
initial crystal lattice. 

We investigate now the stability of a lattice of vacan- 
cion pores using the kinetic equation (2.14) and the ki- 
netic coefficients (2.15) obtained in the preceding sec- 
tions. The stability of the pore lattice is influenced 
mainly by two processes: the growth of the pores and 
their displacement from the site positions. It is known 
that the spreading of the pore size distribution causes 
the pores whose size is less than critical, while the 
pores with size larger than critical grow a t  the expense 
of the disolving minute pores. A coalescence stage 
sets in. l4 In order for the pore lattice to be stable, 
it is necessary that i ts  pore size distribution contain 
no pores smaller than critical. That is  to say, the 
pore distribution must satisfy the condition 

In the opposite case, the pores smaller than critical 
evaporate rapidly and the lattice of the pores vanishes 
with time. 

As already noted, in the experimentally observed 
pore lattices the pore size distribution is very nar- 
row. We shall show that under irradiation conditions 
the pore size distribution satisfying the condition (4.1) 
a t  the initial instant of time will satisfy this condition 
also subsequently, if the rate of vacancy generation ex- 
ceeds a certain critical value. 

Let us determine the time variation of the relative 
variance of the pore distribution in size 5(E2 = ~ R ' / R ~ ) .  
With the aid of the obtained diffusion interaction of the 
pores (3.30), we write down an equation for the rate of 
change of the quantity 5, which takes the form 

It is clear that the pore size distribution is stable i f  
5 <o. 

Substituting (3.29) in (4.1) we obtain 

(1 In Elat=-- (G-G, , , ) ,  (4.2) 

where 

Here b = 1/2 i f  the distortions of the near-surface layer 
a re  small-(3.15), andb = 1 in the opposite case-(3.16). 

We can similarly rewrite expression (3.31) for the 
growth rate of the average pore dimension 

Thus, if a t  the initial instant of time the vacancy 
generation due to the irradiation exceeds G ,in in (4.2), 
then the pore lattice is stable with respect to smearing 
of the pore-size distribution. It is easily seen that in 
the course of time the pore lattice will remain stable, 
since the quantity G,,,(R) decreases with increasing 
average pore dimension. 

The second process that determines the stability of 
the pore lattice is the displacement of the pores from 
the sites of the pore lattice. According to the obtained 

kinetic equation for the vacancion pairs (2.14), the 
pores located at the si tes of the lattice can irreversi-  
bly be displayed from their position, owing to the 
diffusion mobility, and smear  out the ordered distribu- 
tion of the pores in space. The pore lattice must 
therefore have a mechanism that returns the displaced 
pores to their sites. The diffusion interaction of the 
pores, from our point of view, is the principal mecha- 
nism that stabilizes the ordered position of the pores in 
the lattice. 

Let us investigate the stability of the pore lattice to 
displacements of the pores from the site with the aid of 
the diffusion interaction (3.32). To this end we shift 
some selected pore ( j )  away from the pore-lattice site 
by a small quantity 6r, and determine the magnitude 
and direction of the velocity of the displaced pores. 
Expanding (3.32) in terms of the small parameter 
16r, I /L << 1 for a sufficiently narrow pore-size dis- 
tribution in the pore lattice, and neglecting small local 
inhomogeneities in the pore size distribution, we obtain 
the following pore velocity 

It is seen from (4.3) and (4,4) that in the case of 
growing pores in the lattice (R >0, k >0) a pore dis- 
placed from the site moves in a direction opposite to 
the displacement vector 6r, and after a characteristic 
time -k" the pore will return a t  this velocity to i ts  
initial state of the pore lattice. Therefore in the case 
of growing pores (E >O) the pore lattice can be stable 
to displacement from the si te positions. On the other 
hand i f  the pores in the lattice evaporate (z<O), the 
displaced pore moves farther away from the site in the 
lattice and cannot return to the initial equilibrium 
position. In this case the pore lattice is not stable. 

We note that at small  P the pore screening radius i s  
large enough and i t  is possible to change over in (4.4) 
from summation to integration over the volume, a s  a 
result of which (4.4) takes the much simpler form 

k=4nQR8R'Im~. (4.5) 

We see thus that the diffusion mechanism of stabiliza- 
tion of the pore lattice leads to a pore-interaction law 
L-3. As shown by K r i v o g l a ~ , ~  the elastic interaction of 
two pores leads to a displacement velocity proportional 
to L'4, which leads for a pore lattice to an L'5 law. 
Therefore diffusion pore interaction is the decisive 
mechanism, a t  least under conditions of strong va- 
cancy generation. 

We proceed now to estimate the stability of the pore 
lattice to smearing of the ordered arrangement of the 
pores, a smearing that can result from diffusion of the 
pores in coordinate space. To this end it is necessary 
to compare the terms 94f and V(vf) in the kinetic equa- 
tion (2. 14). The term with the mixed derivative 

can be disregarded in this estimate, since i t  does not 
exceed the term V(vf). 
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Since the ordered distribution of the pores in space 
smears out a s  a result of pore diffusion over a char- 
acteristic distance -Or, we can write for the terms 
9Af and V(vf) the following estimates: 

The diffusion mobility of the pores from the site posi- 
tions in the pore lattice and the directional displace- 
ment of the pores into the lattice site with velocity ( 4 . 3 )  
cancel each other according to (4 .6 )  when 

To estimate the pore-lattice spatial dispersion ( 4 . 7 )  
we assume G  >> G,,, and R ,  > ( D , T , ) ' / ~ .  According to 
( 3 . 2 2 ) ,  ( 3 . 3 1 ) ,  and ( 4 . 5 )  we have in this case 

Then Eq. ( 4 . 7 )  takes the form 

In the experiments of Evans and others X/R = R / L  - lo-', 
and a s  a result (br/LY << 1. Thus, in this case the pore 
lattice is unstable to smearing of the pore distribution 
both in dimension space and in ordinary space. 

Let now G  >> G,,,, but 

[see (3.22)]. In this case 

' L Gm,. D. (;)'=(L) --- 
R R G D,' 

If we assume D,/D,  - l o4 ,  then the lattice is stable in 
this case to spatial smearing only if G,,,/G << 10. 

Thus, the pore lattice is stable a t  a reasonable ratio 
of the parameters and a t  sufficiently strong vacancy 
generation under the irradiation conditions. 
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