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Macroscopic formulas which essentially generalize the Lorentz-Lorenz relation are found for the effective 
field and its first derivatives. It can be seen from the derived equations that the quantity g is in general not 
equal to h / 3 ,  but is related to the dielectric constant and its derivatives with respect to density and shear 
deformations. The proposed derivation uses results of the macroscopic theory for the volume density of 
electric forces in dielectrics. 

PACS numbers: 77.90. + k 

1. INTRODUCTION one c a n  neglect the differences between the effective 

The effective field Eeff acting on a cer ta in  par t i c le  i n  
a condensed medium is the average  of the microscopic 
field under  the condition that the given part ic le  is i n  a 
definite state. On the o ther  hand the macroscopic f ie ld 
E that appears  i n  Maxwell's equations is obtained f r o m  
the microscopic field by averaging o v e r  the s t a t e s  of all 
the particles. Consequently, when the correlat ions be- 
tween the par t i c les  in their  motion o r  spa t ia l  distribu- 
tion are taken into account the effective field Eefr and 
the macroscopic field E are not equal. Th is  difference 
leads to the so-called local-field effects  i n  condensed 
media, which are well known and have been studied f o r  
crystals'*2 and also f o r  liquids3 and 

The  macroscopic descript ion of effective f ie lds  is by 
no means always possible. T h i s  is clear already f r o m  
the fact  that the field E,ff is i n  genera l  a function of the 
s ta te  of the part ic le  and is thus basical ly  a microscopic 
quantity. T h e  difference between the f i e lds  acting on 
different par t ic les  is often important.  I t  is well known, 
f o r  example, that the Davydov splitting in  molecular  
c rys ta l s  with s e v e r a l  molecules  i n  the elementary cell 
is due to the differences between the f ie lds  acting on 
these molecules; even i n  isotropic  cubic c r y s t a l s  with 
severa l  molecules in  a n  elementary cel l  the f ie lds  act- 
ing on these molecules differ considerably. ' T h e r e  a r e  
a l so  differences between the f ie lds  acting on different 
components in  many-component liquids, and s i m i l a r  
differences in  a number of o ther  cases. Other  c a s e s  
a r e  also encountered i n  which with reasonable accuracy 

f ie lds  acting on the var ious  part ic les ,  and thus it  makes 
s e n s e  to consider  a single  average effective field f o r  
all part ic les .  T h i s  applies, f o r  example, to cubic crys-  
t a l s  with one molecule i n  the elementary cell, to s o m e  
one-component s imple  liquids, and also,  under cer tain 
circumstances,  to plasmas.  I t  is clear f r o m  the s t a r t  
that i n  a macroscopic approach, with .the p roper t i es  of 
the medium descr ibed  with one dielectr ic  constant, we 
have the only s o r t  of case i n  which a descript ion i n  
t e r m s  of effective f i e lds  may b e  possible. If this  condi- 
tion holds, together with ce r ta in  definite supplementary 
assumptions, i t  is well known that the effective field is 
connected with the macroscopic field by the Lorentz- 
Lorenz  formula 

T h i s  fo rmula  is an approximate one, and only i n  cases 
f o r  which i t s  use  is justified (cubic  crystal^,^ nonpolar 
liquids3) i t  usually provides only a qualitative account of 
the difference between the effective and the macroscopic 
fields. 

I n  many cases, however, the Lorentz-Lorenz formula 
is incor rec t  even i n  a qualitative description of the ef- 
fective field. The  bes t  known example of this  is a plas- 
m a  with the dielectr ic  constant 

f o r  which, a s  is c l e a r  f r o m  the microscopic theory, the 
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difference between the effective and macroscopic 
fields is zero,6 whereas for this case the Lorentz-Lor- 
enz formula gives the value 

which is not zero, and in general not small compared 
with unity. 

Among the conditions for the applicability of the Lor- 
entz-Lorenz formula, an important one is that the di- 
electric constant depend on the density in a definite way. 
Here, in Sec. 2, we find a simple macroscopic formula 
which connects the effective field with the macroscopic 
field but is derived without any assumption about the 
way the dielectric constant depends on the density. 
This result agrees with the Lorentz-Lorenz formula 
when the latter can be applied. In the case of the plas- 
ma with dielectric constant c =1- 4ne2~/mw2, however, 
and also for rarefied gases, where the dielectric con- 
stant is a linear function of the density, i t  follows from 
this result that the effective and macroscopic fields a re  
identical. Thus the result in question, although approx- 
imate, has a broader range of applicability than the 
Lorentz-Lorenz formula. 

In the third section we consider the effective field in 
nonuniform media, and also in nonstationary fields. 
This problem, like every question about the effective 
field and i ts  macroscopic description, has recently at- 
tracted attention in connection with papers by Peierls. ? 

An expression is found for the derivative of the effective 
field in a nonuniform medium. For nonstationary 
fields, the expression found for the spatial derivative of 
the effective field is the same a s  Peierls' phenomeno- 
logical formula, with more general expressions for the 
coefficients u and r that were introduced in Ref. 7. In 
the nonstationary case the treatment of the time deriva- 
tive of the effective field must be conducted in analogy 
with the consideration of the spatial derivatives. It 
turns out that certain results of Ref. 7 are,  in general, 
incorrect, which explains their failure to agree with 
experiment. 

2. THE EFFECTIVE FIELD IN  A HOMOGENEOUS 
DIELECTRIC 

The effective field is directly connected with the force 
acting on a particle of the medium. Therefore in a ma- 
croscopic approach to the determination of the effective 
field i t  is natural to use the results of macroscopic the- 
ory for the volume density of electric forces in dielec- 
trics. The expression for the volume density of elec- 
tric forces in terms of the macroscopic field is well 
known and is found either by variation of the f ree  ener- 
gy of the field in the medium (cf. Ref. 8, Secs. 15,161, 
or  from an analysis of the conservation laws for the 
electromagnetic field in a moving medium (cf. Ref. 9, 
Chap. 12). On the other hand, to a first  approximation 
i t  is not hard to write an expression for the volume 
density of electric forces which involves the effective 
field. We find a formula for the effective field by com- 
paring the two expressions. 

We shall apply this method first  to a homogeneous 
liquid dielectric in a static electric field. In this case 

the expression connecting the volume force density with 
the macroscopic field [see Ref. 8, Sec. 15, Eq. (15.12)] 
can be written in the form 

Equation (2) holds for a nonabsorbing medium with spa- 
tial dispersion effects neglected, and for not too strong 
fields, for which we can use the results of linear ma- 
croscopic theory. On the other hand, since the force 
with which the field Em,,,, acts on a dipole d is 
(~v)E,,,,,, in the dipole approximation the volume force 
density is ((P,,,,V)E,,,,~, where the quantities Q,,,, 
and Pm,,,, a r e  the microscopic values of the electric 
field and the density of dipole moment, and the angle 
brackets denote averaging. According to the definition 
of the effective field the averaging of the force acting on 
an individual charged particle reduces to the replace- 
ment of the microscopic field by the effective field. 
Confining ourselves to those cases in which the mean 
effective fields a r e  the same for all particles, we can 
write the following expression for the volume force den- 
sity: 

From microscopic theory i t  is well known that the 
calculations of the effective field and of the dielectric 
constant a re  closely related, and that for consistent re- 
sults these quantities must be found with the same as- 
sumptions. In this connection i t  is important that the 
formula (3) has been found in the dipole approximation. 
Therefore when i t  is used inclusion of higher multipoles 
either in the effective field or in the dielectric constant 
is in general exaggerated accuracy. As is well known, 
a similar restriction is also essential for the Lorentz- 
Lorenz formula (for crystal lattices the matter of the 
higher multipoles is considered in Refs. 10 and 1). 

Comparing Eqs. (2) and (3), we find that the effective 
and macroscopic fields a re  connected by the formula 

This corresponds to the Lorentz-Lorenz formula (1) if 
the condition 

is fulfilled. This last equation is well known and has 
long been used to calculate the quantity p ( a ~ / a p ) ~  in 
liquids (see, for example, Ref. 11); i t  follows directly 
from the condition that the Clausius-Mossotti function 
be independent of the density: 

This condition (5) for the applicability of the Lorentz- 
Lorenz formula to liquids is also used in implicit form 
in the usual method for deriving the formula (see, fo r  
example, Ref. 12, Sec. 28). In fact, in the usual deriv- 
ation of the Lorentz-Lorenz formula i t  is assumed that 
the influences of near neighbors on a particular particle 
a re  unimportant and that the difference between the ef- 
fective and macroscopic fields is due only to particles 
outside a macroscopic sphere. In this sense i t  is im- 
material whether there a re  or  a re  not particles filling 
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this sphere. Accordingly, in the usual derivation of the 
Lorentz-Lorenz formula i t  is in practice assumed that 
the "internal" polarizability P of the medium, normal- 
ized to one particle a s  given by the relation 

NfjE,,,=P=(e-I)E/4n, 

does not depend on the density of the particles. If the 
Lorentz-Lorenz formula is correct, the value of P is 
connected with the dielectric constant by the relation 

where N is the density of the particles. This makes 
clear the physical meaning of the condition (5). It fol- 
lows from Eq. (4) that 

and that if the dielectric constant is a linear function of 
the density, P = l  + bp, then we get P =  ( E  - 1 ) / 4 n ~ ,  
which, for  a dilute nonpolar gas corresponds, a s  i t  
should, to the polarizability of an individual particle. 

In the case when the dielectric constant is a linear 
function of the density, Eq. (4) shows that the effective 
field and the macroscopic fields a re  equal. By using 
the results of pitaevskii,13 who found an expression con- 
necting the volume force density, averaged over fre- 
quency, with a macroscopic monochromatic field in a 
dielectric with frequency dispersion, far  from absorp- 
tion lines, we can verify that Eq. (4) relates not only to 
static fields, but also to the amplitudes of monochro- 
matic fields in a nonabsorbing dielectric with frequency 
dispersion. Thus Eq. (4) implies that the effective and 
macroscopic fields a r e  identical for a plasma with di- 
electric constant 

If for a liquid we deal with the difference between the 
effective and macroscopic fields with small-correction 
perturbation theory, so  that Eeff = ( I -  apy)E, where a 
and y do not depend on the density, we find from Eq. 
(4) that in this approximation 

where the quantity c does not depend on the density and 
is connected with the value of the dielectric constant 
with the difference between E eff and E neglected. 

In solids the tensor dielectric constant depends not 
only on the density, but also changes with shear defor- 
mations. Therefore solids differ from liquids not only 
in the conditions for the applicability of the Lorentz- 
Lorenz formula, but also in a more general relation be- 
tween the effective and macroscopic fields than is given 
by that formula. We find the appropriate expressions 
by the same method a s  we used to derive Eqs. (4) and 
(5). 

In a homogeneous isotropic solid which is in a static 
electric field, the expression which relates the volume 
force density with the macroscopic field (see Ref. 8, 
Sec. 16) can be written in the form 

The quantities a, and a2 in Eq. (6) a re  related to the 
tensor dielectric constant ci ,  of the deformed solid, 
which in the approximation linear in the deformations 
has the following form: 

where u,, is the strain tensor and E is the dielectric 
constant of the undeformed isotropic solid. 

The expression for the volume density of electric 
force in terms of the effective field is given, a s  before, 
by Eq. (3). Comparing Eqs. (3) and (61, we find that 
the effective and macroscopic fields a re  connected by 
the relation 

p(3e/ap),-a1/6 
Eott = E. (8) 

Here use has been made of the fact that a1 and a2 sat- 
isfy the relation 

This follows from Eq. (7) if we note that for isotropic 
compression 

I t  can be seen from Eq. (7) that the quantity a1 char- 
acterizes the change of the dielectric properties of the 
solid under shearing deformations. Therefore i t  is na- 
tural that if we set ai = O  in Eq. (8) we get the formula 
(4) found before for liquids. It is also convenient to 
write Eq. (8) in the form 

where 

The Lorentz-Lorenz formula corresponds to g= 4n/3, 
and i t  can be seen from Eq. (11) that the condition for 
the Lorentz-Lorenz formula's validity is the following 
relation between at and E: 

We also have from Eqs. (9) and (12) 

It follows from Eq. (12) that if the Lorentz-Lorenz for- 
mula holds a nonvanishing value of a,, i. e. ,  a depend- 
ence of the tensor dielectric constant on shearing de- 
formations, implies a dependence of the Clausius-Mos- 
sotti function dicmu on the density [in other words, a 
violation of the condition (511. 

In the more general case when a1 and E do not satisfy 
Eq. (12), the factor g is not equal to 4n/3 and is given 
by Eq. (11). 

3. THE EFFECTIVE FIELD IN INHOMOGENEOUS 
MEDIA AND FOR NONSTATIONARY FIELDS 

The sources of the field acting on a particle a t  a point 
r, include external charges and also all the particles of 
the medium except the one under consideration. The 
field produced by these sources at points r + ro is in 
general not the effective field for particles at points r. 
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Therefore i t  is convenient to consider the effective field 
a s  a function of two coordinates: E,, =Peff (rO, r), 
where ro is the position of a  article for which the field 
in question is the effective field, and r denotes a point 
a t  which we consider this field. Accordingly, the 
fields E,, (roi, r )  and Eeff (rO2, r )  a r e  in general produced 
by different sources. The quantity found in the preced- 
ing section is the field E,, (ro, ro), taken at  the point 
where it is the effective field. The derivative of the ef- 
fective field that appears in the expression for the vol- 
ume force density is obviously the quantity 

In a homogeneous medium in a stationary field the ef- 
fective field Eeff (ro, r )  actually does not depend on the 
first  coordinate, and therefore one can set r =ro in the 
second argument before differentiating, a s  was done 
implicitly in the preceding section. In an inhomoge- 
neous medium, however, one must not do this, and 
the quantities 

a re  to a considerable degree independent of each other, 
since 

The connection between the effective and macroscopic 
fields is a local relation when spatial dispersion can be 
neglected, so that even in an inhomogeneous medium the 
effective field E,(ro, ro) is connected at  each point ro 
with the macroscopic field E(r,) by the relation (8), in 
which the dielectric constant 6 and the quantity a1 a r e  
now functions of ro. Noting this and using a method for 
inhomogeneous solids analogous to that used in Sec. 2, 
we have to find an expression for the quantity 

For an electrostatic field in an inhomogeneous iso- 
tropic dielectric the expression connecting the volume 
force density with the macroscopic field (see Ref. 8, 
Secs. 15,16) can be put in the form 

where f'" is the force density that would exist in the 
medium in the absence of the electric field for the given 
values of the density, the temperature, and other pa- 
rameters of the medium. In the case of a liquid the 
quantity f "' is connected with the pressure, f"' 
=-vflo(p, T), and for solids i t  is determined in terms of 
the bulk modulus and the modulus of rigidity by the usu- 
a l  formulas of the theory of elasticity. 

We can write the connection between the force density 
and the effective field in an inhomogeneous medium in 
the form 

and for the bound-charge density p ,,, and the polariza- 

tion P we use the usual relations 

The force density f(O) that appears in Eqs. (14) and (15) 
does not affect the expression for the effective field, so 
that we shall omit it throughout our further treatment. 
We find the expression for 

by comparing Eqs. (14) and (15) and using the relation 
(8). The answer is unique when we take into account 
the equation V,x E,, (ro, r )  = 0. The result is 

Here the functions E i ,  E ,  p,  and a, of the coordinates 
a re  taken at  the point r,. Therefore, owing to specific 
properties, such a s  the dependence of the effective field 
E,,(ro, r )  on the two spatial coordinates, the derivative 

of the effective field in an inhomogeneous medium is 
connected linearly, according to Eq. (16), not only with 
the derivative of the macroscopic field, but also with 
that field itself. In this sense the connection between 
the derivative of the effective field and that of the ma- 
croscopic field is nonlocal, whereas the quantities 
E,, (ro, r )  and E(ro) satisfy the local relation (8). 

In a homogeneous medium the connection between the 
derivatives of the effective field and those of the ma- 
croscopic field is complicated in the nonstationary case, 
when the electric and magnetic fields depend on the 
time. If this dependence is sufficiently slow, the rela- 
tion (8) between the fields Eeff (ro, ro) and E(r,) remains 
unchanged, but the expression for the volume force 
density, to and including terms in the first derivatives 
of the fields with respect to the time, is of the form 
(see Ref. 8, Secs. 16 and 56, and also Refs. 9 and 14) 

s-I a f=-A(Ev)E-%v(E'~+-- [EXB] 
8n 8% 4xc at 

Since the difference between the effective magnetic field 
Beff and the macroscopic field B leads to a term in the 
Lorentz force that is quadratic in the time derivative of 
the field, including the difference between Beff and B 
would be an exaggeration of the accuracy of Eq. (17). 
Therefore we take BCff =B, and write the expression 
connecting the force density and the effective field in the 
form 

Comparing Eqs. (17) and (18) and using (9), we find the 
following expression for the derivative of the effective 
field: 
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where ei,, is the completely antisymmetric tensor. 

The difference between the derivative of the effective 
field 

a 
-E.tl,,(r~, r) 
a r, 

and the quantity 

in a homogeneous dielectric in which an  electromag- 
netic wave is propagated was pointed out by Peierls. ' 
In his paper coefficients and 7 a r e  used, which a r e  
defined in the following way: 
a (ro) 8% (re) - E.ii,i(ra, r) l , - , ~ = = ~ I + ~ ~ e - l )  I-+ ~(e-1)- 
a r~ dl., are, ' 

(20) 

Comparing Eqs. (19) and (20) and using the equation 

1 a B  
rotE----- 

c at ' 
we find 

0 1  
%=- - 1 p(de/ap),+aI/3 

2,(e-i)z* OE-( e- i  e-I - I ) .  (21) 

If we assume that the condition (4') holds, a s  is done in 
Ref. 7, then we get from Eq. (21) precisely the same 
formulas for u and r a s  were found in Ref. 7. We can 
see  from Eqs. (19) and (20) that in general the rotation 
of the effective field is not equal to the quantity 
-c"a~/a t ,  and at  the same time B eff =B. It  follows 
from Eq. (20) that the equation 

1 aB(r0) 
rot E.,, (ror r) -- 

c at 
(22) 

is true only in the special case when u = 7, which, ac- 
cording to Eq. (21) corresponds to the condition 

If we assume that Eq. (4') is correct, then from this 
las t  condition i t  follows that a1 = -2(c - 1)'/5, and then 
from Eq. (21) we have a= r=1/5. 

In the case of a liquid, with al = 0, i t  follows from 
Eq. (21) that T=0, and consequently 

1 aB(a)  
rot (ro, r) lrer0+- --. 

c at 

In the article by ~ e i e r l s '  the requirement that under 
the condition Beff = B  Eq. (22) should be satisfied is ac- 
tually used a s  a criterion in choosing the expression for 
the volume force density. Therefore in Ref. 7 the ex- 
pression used for the volume force density i s  such that 
a= T, and in terms of the model used there u = T = 1/5. 
We believe this requirement is in general not correct, 
and consequently that the quantities a and 7, connected 
by Eqs. (21) and (7) with the dielectric properties of the 
medium, may be unequal to each other. 

In fact, the time derivatives of effective fields must 
be dealt with in the same way a s  their. derivatives with 

respect  to space coordinates, since the sources of the 
field acting on the particle which is a t  the point ro at 
Lhe time to a r e  in general characterized by both space 
coordinates and by the time to. Accordingly, i t  is con- 
venient to consider the fields E,,f (rO, r, to, t) and 
Be,, (ro, r, to, t), which a r e  the effective fields at  t =to, 
r = r,. In the stationary case this definition actually 
does not depend on the value of to, a s  we have implicitly 
assumed in our discussion s o  far .  In the nonstationary 
case  to be considered now, 

B.tt(ro, 10, to, to)=B(ro, tu), 

but the derivative 

may st i l l  be unequal to the quantity aB(ro, t,)/at. From 
the equation 

1 aB.ti(ro,ro, tt to) rot Eeti (ro,  r, to, to) 1,-..=- - 
a t  I I_,o 

we find, using Eq. (19), that 

Accordingly, in dealing with the field Eeff - E in the 
present case i t  is not sufficient to introduce only a sca- 
l a r  potential, and therefore the parameters and r a r e  
in general unequal, and according to Eq. (21) a r e  to a 
considerable degree independent. Using these conclu- 
sions and proceeding otherwise in analogy with Peierls' 
work,' (see also Refs. 1 4  and 15), we find without dif- 
ficulty what change these considerations cause in his 
results. He considered the problem of the force which 
a n  electromagnetic wave exerts  on a mi r ro r  immersed 
in a liquid on being reflected from it. Besides the usual 
expression for the pressure,  i t  was found in Ref. 7 that 
i n  the case of oblique incidence with the electric vector 
of the wave perpendicular to the plane of incidence 
there is an additional force proportional to the quantity 
T and given by Eq. (20). From our present results  it 
follows that in simple liquids, in which the dielectric 
constant is not altered by shearing deformations (in 
which case al = 0, and according to Eq. (21) u # T = 0 
and, a s  we have explained, this inequality does not in- 
volve any contradictions), owing to the fact that r = 0 
the additional force vanishes. For  some substances i t  
may be that there is a situation such that in the optical 
range of frequencies we can se t  at = 0, but for low fre- 
quencies a1 + 0, so  that T +  0. In Ginzburg's paperi5 it 
was pointed out that in this case i t  is natural to expect 
that a t  low frequencies elastic mechanical properties 
will appear in the medium, and that these will lead to 
cancellation of the additional force found in Ref. 7. 
Therefore, according to Ref. 15, in this case also an 
additional force may not be observed experimentally. 

peierls7 also considered the question of the momentum 
of an electromagnetic wave field in a dielectric. The 
total momentum associated with the field and propagated 
in the dielectric along with the electromagnetic wave 
consists of two parts: The electromagnetic part of the 
wave's momentum in the medium, owing to the pro- 
cesses of propagation of the polarization in the dielec- 
tric, a?d the momentum of the mechanical motion 
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caused by the electric forces in the dielectric. For the 
total momentum density of a transverse wave in a ho- 
mogeneous dielectric, the expression found in Ref. 7 is 

Written in this way, the expression remains correct  al- 
s o  in the light of the results found here, but there is no 
need to use estimates from models for the quantity 0; 

the more general expression (21) must be used. Then, 
using Eq. (9), we get 

Though there is in general simply no relation between 
the force f 'O' which appears in  Eqs. (14) and (15) and 
the determination of the effective field, this is no long- 
e r  the case when we deal with the question of the total 
momentum density. Therefore the applicability of the 
results (24) and (25) depends in an essential way on the 
assumption that the force f 'O' can be neglected in finding 
the mechanical part  of the momentum density, which is 
due to the ponderomotive action of the field. 

Peierls' treatment7 i s  conducted on the assumption 
that the Lorentz-Lorenz law and the relation (4') a r e  
valid. According to Eq. (12), i t  follows from these two 
assumptions that at = 0, and for ai + 0 the two assump- 
tions contradict each other. I t  is clear from the pres- 
ent discussion, however, that the results of ~ e i e r l s '  
can be considered also without resorting to such model- 
based estimates for the dielectric constant and the ef- 
fective field. 

For nonstationary fields in an inhomogeneous medium 
the expressions for the derivatives of effective fields 
can be found without difficulty, if we note that the for- 
mula for 

must be just what follows from Eq. (16), and the for- 
mula for 

rot Eel, (ro, r) 1 r-ro 

must be given by using Eq. (19). The results so  found 
can easily be extended to the case of magnetic media, 
but we shall not write out the expressions here. 

We note in conclusion that the method used here to 
find the expressions for the effective field and i t s  de- 
rivatives directly clarifies the relation between the 
Helmholtz and the Einstein-Laub formulas for the vol- 
ume force density in the electrodynamics of continuous 
media (in the former case using the Abraham force, in  
the latter the Lorentz force. On this matter see, for 
example, Refs. 9 and 14 and literature cited there). 

I am grateful to V. L. Ginzburg for  his interest in 
this work and a discussion of questions related to it. I 
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