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Fluctuation-dissipation relations are considered for thermal perturbations (that is, perturbations of the 
distribution function) in nonlinear nonequilibrium systems. A general expression for the irreversible fluxes is 
obtained in terms of the fluctuational characteristics. In the application to hydrodynamics, it is shown that 
the fluctuational stress tensor is non-Gaussian, and that in consequence of this the dependence of the viscous 
shearing stress on the velocity gradient is nonlinear and nonanalytic. The change of this nonanalyticity at the 
critical point is considered, and relations (following from the fluctuation-dissipation relations) are found 
between the kinetic scale exponents. These examples illustrate the general relation between the form of the 
dissipative nonlinearity and the character of the statistics of the transfer process. By use of a variational 
principle, nonlinear interaction of slow viscous modes in two-dimensional hydrodynamics is treated, and the 
nonanalytic dispersion law is found. 

PACS numbers: 47.10. + g 

1. INTRODUCTION 

In our previous paper ,I4 we studied the exact fluctua- 
tion-dissipation relations (FDR) that relate to each 
other the nonlinear dissipative characterist ics  of a 
nonequilibrium system and the non-Gaussian stat is t ical  
characteristics of the fluctuations. The lat ter ,  a s  was 
shown, uniquely determine the dependence of the macro- 
scopic irreversible fluxes on the forces thermodynam- 
ically conjugate to them.' The converse problem- 
recovery of the fluctuations on the basis  of phenomeno- 
logical data-has no unique formal solution. But in 
practice, there i s  always concrete information about 
the system, which makes i t  possible t o  make more-or-  
less  justified qualitative assumptions about the type of 
statistics of the transfer  process. In such a case ,  the 
FDR enable us to find the quantitative characterist ics  
of the fluctuations. On the other hand, if we know the 
statistics of the transfer  s tructure,  we can predict the 
form of the dissipative nonlinearity. 

The present paper is devoted to  a n  analysis, in a 
concrete example, of the hydrodynamics of these 
aspects of the application of FDR. Below, we justify 
and treat  a simple non-Gaussian model of the fluctua- 
tional s t r e s s  tensor in a (d-dimensional) dense gas ,  
and we show that it leads to a nonlinear character  of the 
shear viscosity;more accurately, to a definite nonlinear 
and nonanalytic dependence of the macroscopic s t r e s s  
tensor on the velocity gradient. This dependence i s  due 
to the contribution of long-wavelength viscous (and 
thermal) hydrodynamic modes to the fluctuational 
s t r e s s  tensor. 

The result  obtained in Sec. 3 agrees qualitatively (and 
even quantitatively) with the result of the microscopic 
kinetic theory of Erns t  et al.' (see also Refs. 4 and 5). 
In Ref. 3,  a very complicated analysis is car r ied  out a 
broken BBGKY (Bogolyubov-Born-Green-Kirkwood- 
Yvon) chain for a nonequilibrium dense gas of hard 
spheres (for d =2,3) .  But the results  of calculations 
relating to hydrodynamics cannot depend on the details 
of the microscopic model and should in principle be 
obtainable more simply in a stochastic model for 
macrovariables. And in fact, their derivation (for 

a rb i t ra ry  d )  from the FDR reduces to the calculation of 
known integrals. Here it is sufficient t o  consider 
equilibrium fluctuations. 

In the case d = 3, the nonlinear corrections to the 
shear viscosity a r e  relatively small .  But the method 
presented i s  applicable also to models of continuous 
media under conditions when the nonlinear effects may 
be substantial and decisive (for example, in critical 
s ta tes ) ,  and to processes of t ransfer  not only of mo- 
mentum but also of other quantities. As a n  example, in 
Sec. 3 we consider the nonanalytic behavior of the shear 
viscosity a t  the critical point (here the nonlinearity 
dominates), and we find relations between the kinetic 
scale exponents that follow from the FDR. 

We note that the FDR1 re la te  t o  dynamic perturbations. 
But here we have to  do with thermal o r  statistical per-  
turbations; that i s ,  perturbations of the distribution 
function. These perturbations, of course,  a r e  described 
by thermal forces,  which a r e  introduced a s  parameters 
of a quasiequilibrium distribution (more accurately, of 
a nonequilibrium distribution that is the result  of the 
evolution of a quasiequilibrium distribution over a t ime 
large on a microscopic and smal l  on a macroscopic 
scale). In Sec. 2, by the method developed earlier, '  
the nonlinear FDR a r e  obtained for thermal perturba- 
tions, and it i s  shown that they coincide formally with 
the relations of Ref. 1. A compact canonical form i s  
considered for the t ransfer  equations, which express 
the fluxes in t e rms  of the thermal forces,  and for the 
equations of evolution of the macrovariables. 

The s t ruc ture  that follows from the FDR for the 
nonlinear evolution equations is such that the latter 
can be derived by a variational principle, which gen- 
eral izes the principle of minimum entropy production 
known in linear nonequilibrium thermodynamics. A 
statistical version of this principle (for dynamic per- 
turbations) was given in Ref. 2. The variational princi- 
ple formulated in Sec. 4 (which is  formally similar  to 
Hamilton's principle in mechanics) is  then applied to 
the derivation of an approximate dispersion law for 
interacting viscous modes in two-dimensional hydro- 
dynamics. 
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2. THE FDR FOR THERMAL PERTURBATIONS, AND 
THE NONLINEAR EQUATIONS OF EVOLUTION 

1. Let a system with Hamiltonian fi0 (containing a 
thermostat at  temperature T = j3-I), a t  a certain instant 
of t ime i =0 ,  be in a state with the quasiequilibrium 
density matrix 

where p,-e~p(-gl?~) is the equilibrium distribution, 
and where x, are-the thermal forces conjugate t o  the 
macrovariables Q, (the se t  4, may also include I?,,). 
As  is well known, the distribution (1) corresponds to 
the maximum informat_ional entropy for prescribed 
means Q,=(&)  =Sp(pQ,). Over a characteristic time 
T, (the scale of the kinetic stage of relaxation), much 
smal ler  than the time T, of relaxation of the macro- 
variables Q, to equilibrium (the scale of the hydrody- 
namic stage), there i s  established instead of (1) a non- 
equilibrium distribution p(x) with the s ame  microscopic 
entropy and the same controlling parameters x, a s  in 
(1). In the state with this  new distribution (the Mori 
distribution7), there  a r e ,  in contrast t o  p,(x), nonzero 
dissipative fluxes 

Because of the inequality T,<C T ,, the means Q, in 
the  states p,(x) and p(x) coincide and a r e  related t o  the 
thermal forces by the formulas of the quasiequilibrium 
distribution: 

We shall call the function S(Q) the macroentropy. I ts  
specific meaning may change from problem to problem. 
It is easy to show that S(Q) G 0; the inequality is possible 
only in equilibrium with x, = 0. 

If the se t  Q, i s  sufficient for  a closed reduced des- 
cription, for  t > r ,  the density matrix p(x) should 
preserve its form, depending on the t ime only through 
the values of the forces at  the time. Then (2) and (3) 
form a closed system of Markov (that i s ,  of f irs t  order 
in the time) equations of evolution. 

2. We shall consider the universal properties of the 
flux functions Y,(Q), which follow from their  relation 
t o  the characterist ics  of the fluctuations (and ultimately 
from the conservation of the microscopic phase volume). 
We introduce the characteristic functional of the ran- 
dom fluxes: 

1 - U" 
D ( u ; x ) =  -1nSp exp lnp (x )+u .  J i ( t ) d t )  -u.Y.(Q)+ J " D , . ( ~ ) .  

0 "-2 

Here the interval T i s  so  chosen that T ,,<< T << T ,. Under 
this condition, (4) is independent of T. Furthermore,  
under this condition p(x) in (4) may obviously be r e -  
placed by p , (~ ) .  By using the method of Ref. 6 (with p, 
a s  initial distribution instead of the equilibrium dis- 
tribution p,), we find the following generating FDR'): 

D (u-z; x )  =D (-eu; e z )  . (5) 

Here &, =*I, depending on the temporal evenness o r  
oddness of x,. This i s  a generalization of the results  
of Ref. 1 to  thermal perturbations. 

If the system i s  also_subject to external dynamic 
forces y , (&- fi0 - y ,Q,), then instead of (5) one can 
obtain the formula 

in which both forms of perturbation figure equally. 

Further,  we introduce the local nonlinear transfer  
coefficients A,(Q) = $(- l)"D, and the kinetic potentiaP 

where r, and Y', a r e  the reversible and irreversible 
components of the fluxes. From (5), with use of (3), 
we get the general expression for  the irreversible 
fluxes in t e rms  of the fluctuational characterist ics ,  
the diffusion coefficients D, (Ref. 2) o r  A,: 

These equations give a canonical representation of the 
nonlinear equations of evolution. Although in the non- 
linear range reciprocity relations a r e  not satisfied, the 
symmetry of the tensors A, (Refs. 1 and 2) leads, a s  is 
evident from (7), to a definite relation between c ros s  
processes of transfer. With respect ,  however, t o  
"virtual" variations of the forces x, that a r e  indepen- 
dent of the Q,, reciprocity relations always hold. One 
must note such consequences of the FDR (5) a s  the con- 
vexity of the kinetic potential with respect  to the x, and 
the relations for the entropy production2: 

Hence it is evident that the macroentropy serves  a s  the 
Lyapunov function for  equations (7). 

3. It is inconvenient t o  deal with an  infinite number of 
fluctuational parameters A,. Furthermore,  the expan- 
sion (7) may not exist (as will be demonstrated in the 
next section). Therefore we shall use a n  integral rep- 
resentation (of the logarithm) of the characterist ic  
functional (4): 

D(iu;  x ) =  iu,Y,(Q)+ 2 1 [exp(iu,q,)-  1 - iu ,q , ]R(q;  Q)dq. (9) 

From (51, (7), and (9) we obtain the FDR 

Y,' ( Q ) =  J qa[ i -exp(-qTx,)  IR(r1; ~ ) d q ,  ~ = a s i a ~ ,  (10) 

} R ( q ;  Q )  . (11) 

In the Markov approximation under consideration (on 
a macroscopic t ime scale) ,  exp [ r~ ( iu ;x ) ]  is the char-  
acterist ic  function of the infinitely divisible distribution, 
so that (9) coincides with the Lbvy-Khintchine represen- 
tation known in the theory of Markov p r o c e ~ s e s . ~  In this 
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representation, the kernel R is nonnegative and deter- 
mines the frequency of jumps of the amplitude q,. The 
probabilistic interpretation of the function R is simple: 
it is proportional to the power of the Langevin noise 
sources that occur in the stochastic version of equa- 
tions (7). 

For mula (11) determines the unbalance that occurs, 
in a departure from equilibrium, between elementary 
transfer processes of opposite sign. It is natural to 
introduce, as  a general "symmetric" measure of non- 
equilibrium noise, the function 

Rf(q; Q )  -'12(l+e-')R(q; Q ) .  

The relations (10) and (11) take the form 

In many cases it may be assumed that the dependence 
of the intensity R' of the noise sources on the macro- 
state is slight and smooth, and that the character of the 
dissipative nonlinearity is determined predominantly by 
the dependence of R' on q. Then a t  least over a limited 
range of values of Q, we may approximately se t  

Formulas (12) and (13) relate the characteristic func- 
tional of the equilibrium fluctuations to the irreversible 
fluxes. 
3. A NON-GAUSSIAN MODEL OF THE 
FLUCTUATIONAL STRESS TENSOR, AND ITS 
CONSEQUENCES 

1. The results of Sec. 2 a r e  easily translated into 
the language of distributed systems. Thus equations 
(7) a r e  rewritten in the form 

8 6 
~a-am(Q, r ) - v J a M ( Q ,  r )  =(-- v r - } ~ ( v z ;  6 VWx= ( r )  2; Q ) , Q = Q ( ~ . ~ ) .  

(14) 
Here r is a spatial coordinate. The thermal forces x,  
and Vx, act as  independent variables, since they a r e  
related to physically different transfer processes-local 
and spatial. 

Further, let Q,(r) denote the momentum-density vec- 
tor. Then 

where p is the density, p the pressure,  and I:, the vis- 
cous-stress tensor. The thermal force conjugate to  the 
flux I is 

We denote by j,,(t,r) the fluctuational s t r e s s  tensor 
(FST). We also introduce the notation 

g,, - dtr drr ~, , ( t+t ' ,  r+rl),  (15) 
0 v 

where the volume V is much larger than the correlation 
volume of the FST. On expressing the kinetic potential 
in a standard manner, on the basis of formulas (5) and 
(61, in terms of the correlators of the FST, we get from 
(7), (141, and (15) the spatially local transfer equations2) 

2. On assuming that the FST is Gaussian and 6-cor- 
related in space, we get from (16) and (14), with allow- 
ance for the isotropy of the medium, the usual linear 
Navier-Stokes viscous terms. A corresponding theory of 
hydrodynamic fluctuations was constructed by Landau and 
Lifshitz.' In principle, however, the FST has a finite 
correlation radius, since it contains a contribution from 
collective thermal motions of the particles. 

The fluctuational s t r e s s  tensor is also non-Gaussian. 
In fact, for its "kinetic" part jt, we may write 

where pi ,  r , ,  and mi a r e  the momenta, coordinates, 
and masses of the particles. The bilinear combination 
of normal random variables Pi, is non-Gaussian. Of 
course on averaging over a (physically small) volume V 
this non-Gaussianness diminishes by virtue of the central 
limit theorem; but that part of it remains that is due 
to long-range correlations of the particle momenta (col- 
lective motions). 

The contribution of density fluctuations to gap may be 
neglected, since for the relative fluctuations of the 
number of particles N within a region of size L we have 

where 1 is the length of the f ree  path. Furthermore, 
we may neglect the potential part j$,  of the FST. It i s  
easy to show that 

where the sum is over all collisions of particles within 
a four-dimensional volume T V ;  Apk and Ark a r e  the 
changes of momentum and of coordinate during a 
collision; r, is a characteristic radius of interaction, 
n is the mean number density of the particles, a is  the 
scattering cross section, and u,  is the thermalvelocity. 
At the same time 

The ratio of the two contributions (17) and (18) to the 
kinetic coefficients in (16) is equal in order of magni- 
tude to   nu^,)^ = ( T ? ~ ) ~  and is  small  even in a dense 
gas. 

The indicated considerations lead to this simple model 
of the equilibrium FST : 

Ja,(t, r )  =pv, 0 ,  r )  v , ( t ,  r ) ,  (19) 

where v ( t , r )  is a Gaussian random hydrodynamic 
velocity field. 

3. We shall consider the consequences of the model 
(19).~) The characteristic functional of the FST (19) 
can be calculated exactly if one prescribes the cor- 
relator 

K.,(t, r )  = (v , ( t ,  r)v,(O, 0 ) )  

or  the corresponding spectral density K,,(w,  k). But 
for simplicity we neglect 1) the contribution to K,, from 
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the acoustic modes and 2) from the thermal modes and 
the effects of incompressibility. The first ,  a s  can be 
shown, does not change the final results; the second 
changes them by a coefficient of order unity. The cor- 
responding simplified correlator is 

2T vk' 
K,,=6.,K, K ( o ;  k)= - p  oz + (vkZ)' ' 

Being interested only in the shear viscosity, i.e., in 
the relation between I :, and 

we shall calculate the equilibrium characteristic func- 
tional (for arbitrary dimensionality d): 

I  --- 
2 

(2n)-"+"j  l n { l + u ' p ~ z ( o ,  k ) )  d o  dk. 

The integral with respect to Ikl must be cut off from 
above at some limit %. For this purpose we introduce 
a factor f(k) =exp(-k2/2xz). On reducing (21) to the 
standard form (9), we get after substitution of (20): 

We further use the approximation (13). From (12), 
(13), and (22) we find for the s t r e s s  tensor the ex- 
pression 

Hence it is evident that the long-wavelength components 
of the FST [to which correspond the large values of Iq I 
in (22) and (23)] lead to a nonanalytic dependence of the 
shear s t resses  on the velocity gradient. For d =3, we 
find from (23) the expansion 

where higher-order terms have been omitted. 

The first term must have the form -pvVv =pTvz,, 
where v is  the "linear" viscosity that occurs in (20). 
From this condition, we choose no. Then the ratio of 
the nonlinear and linear terms in (24) will be 
=0. ~ ( V V ) ' ~ ~  ~ p - ' v ' ~ / ~ .  The calculations in Ref. 3, based 
on an approximate solution of an abbreviated BBGKY 
chain, give a ratio about 1.7 times a s  large. By re- 
moving the approximations that were made, one can 
obtain better numerical agreement. 

In the two-dimensional case, the first  term of the 
expansion (23), the largest at small z,, is already 
singular, 

so  that the linear approximation is incorrect. In general, 
for even dimensionality d =2m the first singular term 
has the form 

- (-l)"'~,~~ In z,,, 

and for odd, d =2m + 1, 

These terms a re  independent of the cutoff parameter x,. 

It is easy to understand that the nonanalyticity under 
consideration is due to the limiting transition V- 00 in 
(21) and to the contribution of arbitrarily slow modes. 
In actuality, the kinetic coefficients a r e  determined by 
correlators within a finite region, and the relation (23) 
is smoothed off in some manner to zero.4) What is most 
important in this example is the existence of a very 
intimate connection between the form of the dissipative 
nonlinearity and the correlator of the fluctuational flux 
field. 

As a second example, we shall consider kinetic fluc- - 

tuations, applying to them the same FST model. 

4. In the vicinity of the critical point the transport 
coefficients may diverge-according to  the scaling 
hypothesis, by a power law. Thus it is known1' that for 
d = 3 the shear viscosity diverges weakly: 

v-x-., 

where x is the reciprocal correlation radius, and where 
the index > 0 is close to zero. Consequently, for x - 0 
the dispersion law o = vk2 and the linear (for a slight 
deviation from equilibrium) relation I,, - vz,, = -PvVv 
become incorrect. At the critical point, again accord- 
ing to scaling, we can write: 

We consider the relations between the indices p ,  y ,  
and y that follow from the FDR. 

Since the velocity field is not an order parameter, we 
must suppose that its one-time correlators have no 
singularities in the critical region and preserve the 
form 
- *- 

<v,(t, r )&i t ,  0 ) ) -6 ( r ) .  

From this and from (25) i t  follows that the spectral 
density has the form 

K ( o ,  k ) = o - ' G ( l k l Y l o ) .  

Substituting this expression in (22) and taking into ac- 
count that a t  the critical point the cutoff factor cannot 
be significant (that is, we may set  fa 1), we get 

For convergence of the integral in (9), the inequality 
d/y < 1 must be satisfied; therefore y > 3. 

Furthermore, we find from (12) and (13) 

We note that the function (9) with the kernel (26), of 
power form, is the logarithm of the characteristic func- 
tion of a stable d i s t r i b u t i ~ n , ~  which is invariant with 
respect to convolution; the latter leads only to a scale 
transformation of it. 

We consider the vicinity of the critical point. Here 
the spectral density and the kernel R, have the form 

K (a, k )  = x - ~ G  (oIxV; klx) ; 

Ro ( q )  --'Ir I q I -'xd+"B ( I P 1 xu; XOIX) .  
(28) 
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Substituting (28) in (121, we get in the linear approxima- 
tion 

The coefficient of z,, i s  by definition proportional to 
X - q .  From this and from (27) follow the inequalities 

But the behavior of the integrand in (29) at large q must 
not depend on the cutoff parameter. Therefore the 
equalities must evidently hold in (30). 

Thus the exponent of the critical dispersion law and 
the index of divergence of the linear viscosity a re  con- 
nected by the relation 

This result of our fluctuation-dissipation theory is sub- 
stantiated by known experimental data. Since the index 
rp is small (calculations by the theory of interacting 
Kawasaki modes and by the method of the renormaliza- 
tion group give, respectively, cp = 0.054 andcp;~ 0.08411), the 
index y must be close to three. In fact, measurements of the 
width of the Rayleigh scattering line at the critical point 
give an approximately cubic dispersion law.'' 

The index y in the critical law of viscous friction is ,  
according to (30), close to unity (from the estimates 
for rp, we have ~ ~ 0 . 9 7 5 ) .  As far a s  we know, this index 
has not been considered in the literature. 

We note in conclusion that the results of this section 
have a primarily qualitative relation to the non-Gaus- 
sian property of the FST, and that the specific model 
form (19) is of little importance. 

4. VARIATIONAL PRINCIPLE FOR NONLINEAR 
RELAXATION 

1. We shall show that the nonlinear evolution equa- 
tion (7) in the most general case can be obtained from a 
simple variational principle (see also the Appendix). 

We introduce the "Hamiltonian" H(x;Q) of the system: 

We introduce further the "Lagrangian" (the motivation 
for these terms will be explained below) A(Z; Q) a s  a 
Legendre transformation: 

We shall prove the inequality 

We rewrite this-expression in the equivalent form 

and consider the condition for an extremum of it with 
respect to the x,: 

In view of the convexity of the kinetic potential5) with 

respect to the x,; this condition is  satisfied only at the 
point x, =x,(Q); at this point, the matrix of second deriv- 
atives is positive definite. Consequently this point is 
an absolute minimum. Since the function (32) vanishes 
there,  the inequality (31) is proved. The virtual fluxes 
I, at the extremum coincide with the right side of (7), 
and the Lagrangian A is equal to the entropy production 
S(Q).  

From (31) follows the variational principle in the form 

o r  in the equivalent form 

where Q and Q a r e  varied independently, like the co- 
ordinates and velocities in mechanics. The formal 
resemblance of (34) to Hamilton's principle in mech- 
anics is obvious. Here the role of canonical momenta 
is played by the virtual thermal forces x,. The struc- 
ture  of the Lagrangian is such that the "Euler equations" 
reduce to equations (7) of the f i rs t  order in the time, 
while "Hamilton's equations" for Q, and for i, duplicate 
each other. 

We consider the trajectory Q(t) on the semi-infinite 
interval from t = O  to  t =m. In view of the stability of 
the motion expressed by the inequality (8), the value of 
Q(W) is the equilibrium value and is independent of Q(0); 
therefore for a fixed value of Q(0) = Q, the variational 
principle (33) can be reduced to the form 

which is convenient for concrete applications. 

2. We shall apply this variational principle to the 
problem of nonlinear interaction of modes in two-di- 
mensional hydrodynamics. Small perturbations in a 
hydrodynamic incompressible liquid decay -exp(-vpt); 
but for d = 2 ,  this law leads to an infinite diffusion coef- 
ficient for the elements of the liquid (under the action of 
thermal fluctuations). A number of authors have ex- 
pressed the idea that in the cased = 2 the linear approxi- 
mation is incorrect, and it is  necessary to take into 
account the nonlinear interaction of a large number of 
modes. 

In this problem, the role of the Q, i s  played by the 
spatial Fourier components Q,(t, k) of the velocity field, 
and the Lagrangian and the variational principle (35) have 
the form 

where the reversible components of the fluxes are  

We shall seek an approximate solution of the hydro- 
dynamic equations in the form 

by minimizing the entropy-production integral (36) with 
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respect to ~ ( 3 ) .  For definiteness we set  

On substituting these expressions in (36), we get after 
minimization the following integral equation for y(k?): 

1 vk2 u2 
---=- 
vk' yqkz )  v  

j ~ ( i ,  i , ,  k )  {y (k') + y ( k T Z )  

+ y  (k"') + y ((k-k'-k'')2)}-2 dk' dk", 

where i =  k/lkI; the exact form of the function R plays 
no role. The integral is cutoff at large Ik'] and lk" 1. 

For d > 2 and for sufficiently small amplitude of the 
perturbation v ,  equation (37) has a solution the quadra- 
t ic  dispersion law y(ka) = u p .  But if d =2,  substitution 
of this law in the right side of (37) leads to logarithmic 
divergence of the integral at the point k = O  and to the 
impossibility of making the right side arbitrarily small. 
This indicates breakdown of the quadratic law in the 
small-wave-number range. 

For an approximate solution of equation (37) at small 
but finite ka, we expand the expression in wavy brackets 
in the vicinity of the points k" = k2/3 and kn2 =ka/3 and 
require that the result of the calculation of the integral 
remain finite for ka- 0. Thus we obtain the differential 
equation (z  =_ k2) 

an  approximate solution of which has the form 

where v, v', and b a re  certain constants. Consequently 
the damping constant of slow modes depends nonanaly- 
tically on ka. When # is too small, formula (38) must 
be replaced by some more accurate equation, but the 
nonanalyticity obviously remains. 

We note the simplicity of the (variational) method 
based on fluctuation-dissipation theory; it leads 
economically to the same results a s  does a detailed 
theory of interacting modes." 

APPENDIX 

The variational principle considered above describes 
the relaxation of a "free" ("closed"') system to equilib- 
rium. But since this principle is a very general con- 
sequence of the FDR, it can be extended with certain 
changes to an open system, in which the external dy- 
namic or thermal forces f, excite undamped, on the 
average, fluxes *, = *,(Q), and whose stationary state 
is a nonequilibrium state. Then there is an entropy 
flux f,q,(Q) from the source of the perturbation to the 
thermostat. The fluxes *, a re  determined by the cur- 
rent state of the system Q, (here the Q ,  a r e  "internal" 
variables). 

In order to avoid formal complications, we consider 
the simple case in which f, =const and the external 
forces do not act directly on the thermostat and the 
local transport coefficients, but make a contribution 
only to the reversible term of the evolution equation: 

It was shown in Ref. 1 that such a possibility does not 
contradict the FDR (from the practical point of view, 
this is the common case). From the FDR it is  easy to 
derive 

Bag ( E Q )  = - e a ~ B a i  ( Q )  , Yc ( Q )  =-Be< ( Q )  aSlaQ.z, (A21 

where p i  =fl is the parity off ,. For the change of 
macroentropy, we have instead of (8) the expression, 
no longer of fixed sign, 

S ( Q )  =9'(Q) - f t v < ( Q ) .  (A3) 

We introduce the modified potential 

F ( x ;  Q )  =x ,Ba , (Q) f i+F(~;  Q ) ,  

and then-exactly in accordance with the previous pres- 
cription-the Hamiltonian and the Lagrangian A(1; Q). 
It is easily seen that 

&Q; Q )  = N Q - B ( Q ) f ;  Q )  -fi'J!c(Q) (A41 

and that in consequence of the inequality (31) and the 
relation (A2), we have 

here the equality is attained only a t  solutions of the 
equations (Al). Hence we get a variational principle 
that generalizes (33) and (34), in the form 

But an analog of the principle (35) in general does not 
exist, since for given f,, a stationary stable state may 
be nonunique o r ,  on the contrary, may not exist at al l  
(and then the system performs, instead of a relaxational 
motion, a periodic o r  irregular one). According to 
(A.3)-(A.5), A has the meaning of the increment of 
macroentropy in a virtual process (which is always 
larger than in a rea l  one). 

"we note that formally ( 5 )  is always an exact relation, valid 
both in the quantum and in the classical case. The assump- 
tions used in the reduced description show up only in the 
physical interpretation of (5) .  

"of course in the general case, equations ( 1 4 )  lead to spa- 
tially nonlocal models of a continuous medium. Further- 
more, even in the local case, when ( 1 4 )  contain r-  deriva- 
tives of no higher than the second order, the FDR permit 
dependence of the transfer coefficients on the gradients. 

3 ' ~ n  ( 1 9 )  one could still add a 6-correlated "molecular" com- 
ponent. But it is unimportant for what follows. 

4 ' ~ t  is clear also that for V-.a, we are actually considering a 
stationary nonequilibrium state, and the result is not con- 
nected with an assumption about separation of the microscope 
and macroscopic time scales. 

"For a simple proof of this property, it is  sufficient to use 
the nonnegativity of the kernel R in ( 9 )  and ( 10 ). 
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