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It is shown that stable inhomogeneous states of a complicated type, namely stochastically inhomogeneous 
structures (SIS), can arise spontaneously in kinetic phase transitions in homogeneous nonequilibrium systems, 
i.e., at the points when their homogeneous state becomes unstable. The phase portrait of the SIS has even in 
the one-dimensional case a set of nonisolated limit cycles, at some point of which a phase trajectory can go 
over randomly from one cycle to another. The onset of SIS is established by analyzing a system of two 
nonlinear differential equations of the diffusion type, which describe a definite class of nonequilibrium 
systems. The latter, in particular, include an electron-hole plasma uniformly heated by electromagnetic 
radiation, a weakly ionized gas plasma, nonequilibrium superconductors, as well as a number of important 
chemical and biological systems whose properties are determined by autocatalytic reactions. Static as well as 
traveling SIS can be excited in the systems under consideration also by a finite inhomogeneous perturbation. 
Methods are developed for a self-consistent qualitative derivation of one-dimensional and radially 
symmetrical stationary solutions and of the analysis of their stability. The form and velocity of the traveling 
one-dimensional SIS are found. General requirements on the form of two- and three-dimensional SIS are 
formulated on the basis of the stability analysis. It is shown that under the same conditions there exist in the 
system a number of different SIS, and the distinguishing features of the evolution of their instability with 
changing state of the system are analyzed. Explanations are offered for the experimental data and for the 
results of numerical investigations of a number of systems in which spatial dissipative structures arise. 

PACS numbers: 64.60.Ht 

1. INTRODUCTION 

The onset of a new structure in a system under ther- 
modynamic equilibrium in the course of a phase tran- 
sition can be regarded a s  the result of the growth of the 
order-parameter fluctuations on going through the 
point a t  which the initial phase loses stability. There 
can also be produced in this case spatially inhomo- 
geneous distributions of the order parameter, for 
example multidomain states, noncommensurate phas- 
e ~ , ' ' ~  o r  a substructure of heterophase alloys? In a 
certain sense, similar phenomena occur in nonequili- 
brium homogeneous systems when their homogeneous 
state becomes unstable. Such a kinetic phase transi- 
tion, however, leads to more varied effects: homo- 
geneous and inhomogeneous oscillations can ar ise  in 
nonequilibrium systems, traveling pulses and nonlinear 
waves a r e  excited, o r  complicated stable inhomogene- 
ous structures (IS) can be f~rrned.~" '  

In contrast to a true phase transition, in which new 
coherent states a r e  established a s  a result of effective 
long-range interaction, in the here considered non- 
equilibrium systems the IS a r e  produced a s  a result of 
diffusion processes.6'g'12 'l4'l' The spontaneous forma- 
tion of IS a s  a result of diffusion instability can be 
described in unified fashion for a large class of physi- 

cal, chemical, and biological systems whose proper- 
t ies depend on two parameters 6' and 77 that differ in 
their spatial disper~ion.""~ The layering in such sys- 
tems is due to the spatial decoupling of the "rapidly 
varying" parameter 0 from the "slowly varying" pa- 
rameter 77 when the system is unstable to 9 a t  constant 
77. A nonlinear theory of one-dimensional IS (layers) 
for this class of systems was developed in preceding 

in which principal attention was paid to 
spatially periodic structures, a s  well a s  to IS in the 
form of single layers. 

The properties of the considered systems a r e  de- 
scribed by two nonlinear equations of the diffusion type: 

with cyclic boundary conditions or with boundary con- 
ditions 

nVels=nVq I~=O,  (3) 

corresponding to the absence of fluxes through the sur- 
face S of the system. These a r e  the basic equations 
for the study of IS and of the propagation of perturba- 
tions in biological ~ ~ s t e m s . ~ " ~  They correspond, in 
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particular, to the models of ~ i i r i n g ~ ' ~ "  and Fitz-Hugh 
and ~ a g u r n o . " . ~ ~  They also describe in greatest de- 
tail the experimentally investigated autocatalytic reac- 
tion of Belousov and ~habotinskiiu."'~ In the latter, 9 
and q a r e  the concentrations of the intermediate pro- 
ducts of the reactions; I ,  L and 70, 7, a r e  the corre- 
sponding diffusion lengths and relaxation times, while 

where A, B, C, D, F, and G a r e  the kinetic coeffici- 
ents and certain constant that characterize the rates 
of the reactions and the concentrations of the initial and 
final products.s"" 

Also reducible to the system (11, (2) a r e  in essence 
the equations that describe the current distribution in 
Joule-heated semiconductor  device^,^^"^ as well a s  the 
equations describing a gas-discharge o r  an electron- 
hole plasma heated by an electric field or  by electro- 
magnetic r a d i a t i ~ n . ' ~ ' ' ~ - ' ~ ~  In the case of the electron- 
hole plasma, the system (11, (2) consists of the balance 
equations for the particle numbers and energies, with 
9 a certain effective temperature of the electron-hole 
plasma.'6 Equations (1) and (2) describe also layering 
in quasi-equilibrium systems, particularly ferroelec- 
tr ic semiconductors,20 magnetic semiconductors,21 and 
nonequilibrium superconductors.22 

The problem of finding inhomogeneous stationary 
states of the system (I), (2) and of investigating their 
stability is therefore quite general, and i ts  solution 
can reveal the general properties of a rather large 
class of nonequilibrium systems. 

2. CONDITIONS FOR SPONTANEOUS FORMATION 
OF IS 

The requirements on the form of the zero-isoclines of 
Eqs. (11, a t  which the IS a r e  spontaneously produced, 
can be formulated on the basis of a linear analysis of 
the stability of the homogeneous states. It follows 
from this analysis that stability is lost if one of the fol- 
lowing conditions is satisfied": 

.r,(q,'_+k2F) +TO (0,'+k2L2) (07 (5) 

-k'12~'+k'TQ,'+ kZLzqe'+Q,'qo'-Qetq9'<0. (6) 

From (5) and (6) it follows that a t  L >> 1 layering ar ises  
in such systems relative to 

where 

and Q; > 0 and q,'Qg' < qiQ,' < 0." When Qg' > 0 and q,' < 0, 
then d ~ / d B <  0 [region 11, Fig. l(a)] for both zero-iso- 
clines in the stability region of the homogeneous state. 
At some points 8; and 020, where the qi vanish, the der- 
ivative dq/dB reverses sign, i. e . ,  the zero-isocline 
q(q, 8) = 0 has an N-shaped form [Fig. l(a)]. 

Inasmuch a s  in the general case the sign of Q,' or  Qi 
is not connected with the sign of qi, the condition dq/ 
dB < 0 can be preserved on the zero-isocline Q(q, 8) = 0 
also outside the region 8!s 9 s  8; [Fig. l(a), curves a 
and c]. Similar arguments for the cage Qi < 0 and q,' 

FIG. 1. The form of possible (a) and (b) zero-isoclines of Eqs. 
(1) and (2). Curves 1, 2.  and a, b, c ,  d illustrate some of the 
possible cases realized at different values of the external par- 
ameters A ,  B, .. . , (for a supercooled system the correspond- 
ing values of 0 for the homogenous state lie in region I, &,, 
SOY-case a; for the heated r e g i o n - 8 ~ ~ 8 ~ ~ ~ ~  Op, i.e., Ohom 
lies in region 11-case b; for the supercooled region, €Jh,,~O& 
region 111-case c;  case d corresponds to equilibrium between 
the supercooling and superheating phases). 

> 0 lead to the zero-isocline form shown in Fig. l(b). 
The formulated conditions on the form of the zero-iso- 
cline a r e  satisfied for all  the systems discussed in the 
Introduction. In particular, the zero-isoclines corre- 
sponding to a heated elect~on-hole plasma16'2s and to 
the Belousov-Zhabotinskii reaction (4) take the form 
shown in Fig. l(b). 

3. ONE-DIMENSIONAL STOCHASTIC 
INHOMOGENEOUS STRUCTURES 

In the one-dimensional case Eqs. (1) and (2) take the 
form 

dZq ,, -Q ( q ,  0 )  -9." + dUn(9, 0 ( 9 )  ) _O, 
dtl (9) 

e2d'0 - -q (0, q) -e2e."+ 
d u o  (0 ,  TI (0)) 

asz de (10) 

where the length is measured in units of L, and E = 1/L 
<< 1. It is seen from (9) and (10) that the stationary in- 
homogeneous solutions ~ ( x )  and %), i. e. ,  the IS, a r e  
best regarded a s  one-dimensional trajectories of two 
interacting particles moving with coordinates 77 and 9 
and a "time" x in the respective potentials ~ , [ q ,  o(q)] 
U0[@, ~ ( e ) ] .  For  a consistent construction of the poten- 
tials U, and U0 and of the solutions q(x) and t%), we 
develop acertain iteration procedure, in which weuse a s  
the zeroth approximation the form of U, and UO and of 
11(x) and 8(x) in the regions of the slowly and rapidly 
varying distributions, respectively .'"" 

Corresponding to the slowly varying distributions a re  
the solutions (9) and (10) a t  E =  o.'~"' It is seen from 
Fig. 1 that the q(6) dependence given by q(8, 77) = 0 is 
not single-valued, therefore the potential U, (9) has 
three independent branches, I, 11, and 111 [ ~ i ~ .  2(a)]. 
The extremum of U, corresponds to that branch on 
which is located the point of intersection of the zero- 
isoclines of Eqs. (9) and (10) (Figs. 1 and 2). From 

1123 Sov. Phys. JETP 52(6), Dec. 1980 B. S. Kerner and V. V. Osipov 1123 



FIG. 2. Forms of certain elementary IS (a) and method of 
their construction. (The figures on the left correspond to a 
distribution in the form of a hot layer at  the boundary of the 
segment, and on the right-in the form of a broad layer at  the 
boundary of the segment). The forms of the potentials Url (b) 
Ue (d) (the dashed curves represent the potentials in the poten- 
tails in the approximation of slowly varying and rapidly vary- 
ing distributions). Form of the zero-isocline (c) and the true 
plots of de)(thick curves) for the corresponding IS. In this 
figure, as  in all the following ones, the IS are  constructed for 
the case of the zero-isoclines of Fig. lb. The construction of 
the case of Fig. l a  is  similar, with the variation of q and 0 in 
the region of the slowly varying distributions, in constrast to 
those shown in Fig. 2-5, is not in counterphase but in phase.i6 

the condition Q( > 0 it  follows in this case that U, has a 
minimum when the point of intersection of the zero- 
isoclines lies on the unstable section (branch 11, Fig. 
1). However, all  the slowly varying distributions cor- 
responding to branch 11 of the potential U, a r e  un- 
stable .I5 -I7 

The rapidly varying distributions correspond to solu- 
tions of Eqs. (9) and (10) a t  q =  rlo = c o n ~ t . ~ ~ " ~  In the 
range of values 11; <To < 7720 the potential U. takes the 
form of a potential well, i. e., B(x) can have periodic 
solutions with a small characteristic length of the or- 
der of 1. However, a l l  the rapidly varying distribu- 
tions, in the form of two and more oscillations, a r e  
unstable." Stable solutions can be combinations of 
smooth distributions corresponding to branches I and 
111 of the potential U,, with a single oscillation o r  half- 
oscillation of the rapidly varying dis t r ib~t ion. '~"~ Rap- 
idly varying distributions can change into slowly vary- 
ing ones only near saddle points of the potentials Ue 
[Fig. 2(b)], when the variation of B(x) becomes increas- 
ingly smoother a s  these points a re  approached. 

We shall f i rs t  describe the method of consistently 
constructing B(x) and q(x) and of the potentials U, and 
Ue in the entire range of variation of 8 and 77 for a rela- 
tively short sample of length 1, = l1 - l2 2 L, on the 
boundaries of which 8; = $ =0. It follows from (9) and 
(10) that the solutions should satisfy the integral con- 
ditions 

where qt, Bt and q,, 0, a r e  the values of 77 and 8 a t  
the extremal points (at the boundaries of the sample), 
corresponding respectively to the smooth and abrupt 
distributions [Fig. 2(a) on the left]. 

3.1. In a "supercooled" system (Fig. 1) of small 
size (1, < L) the conditions (11) a r e  most easily satis- 
fied by a distribution of B(x) in the form of "narrow" 
hot layer a t  the sample boundary (Fig. 2). The rela- 
tive change of 77 in the region of the slowly varying dis- 
tribution is 

and in the region of the rapidly varying distribution 

It follows then from (11) that in the region of the rapidly 
varying distribution 

Qm-e- 'l./L. 

FIG. 3. Form of certain one-dimensional SIS (a, b) and frag- 
ment of the phase portrait (c, d) corresponding to Fig. 3a. 
(The sections of the phase trajectories and of the correspond- 
ing distributions are designated by the same numbers in Fig. 
3a, 3b, and 3c). 
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Inasmuch as dU,/d~=-Q, i t  follows that near a certain 
q=ql  [Fig. 2(b)] the potential U, moves sharply upward 
from the branch I of the potential U,, which corre- 
sponds to the slowly varying distributions, and forms 
a steep wall, i. e., i t  is transformed into a potential 
well. The distribution q h )  corresponds to finite mo- 
tion of the particle in such a well. 

In the region of slowly varying distributions it i s  pos- 
sible to the form of the zero-isocline q = O  [Fig. 2(c)], 
and of q(x) to reconstruct 8(x) [Fig. 2(a)]. Thus, near 
77 = Vt, where 8; = 0, the value of 8(x) decreases with a 
characteristic length of the order of unity (L), and 
therefore @:'*-I, i .e. ,  qs-c2 according to (10). In 
the region where the smooth and abrupt distributions 
a r e  joined, 8: should again go through zero [Fig. 2(a)], 
i. e . ,  a t  a certain point of the smooth distribution q 
=- c28: = 0, and consequently the true plot of ~ ( 8 )  inter- 
sects the plot of the local relation q(8, q) = O  [Fig. 2(c)]. 
Since dUO/d0= -4, the potential U, that describes the 
slow variation of 8(x) takes the form of a shallow (of 
the order of c2) potential well. From the condition of 
continuity of 8:, this well can be joined together with 
the Uo well corresponding to the rapidly varying dis- 
tribution only near the saddle point, where dUo/dO--0 
[Fig. 2(d)]. 

In a "heated" system ( ~ i g .  1) the conditions (11) a r e  
satisfied a s  a rule by a broad layer a t  the sample 
boundary. Such a solution corresponds to a transition 
from motion in branch I of the potential U, [Fig. 2(b)] 
to motion in brach III of the potential U, through a rap- 
idly varying distribution in the form of a half-oscilla- 
tion near q0 = 7 7 ,  a t  which the extrema of Ug coincide 
[Fig. 2(c)]. Since motion in branch I of the potential 
U, corresponds to Q > 0, and in branch 111 to Q < 0, it 
follows that in the region of the rapidly varying distri- 
bution Q reverses sign, and U, has a minimum near 
T'- 77, [Fig. 2(b)]. 

In a small-size "superheated" system ( F g .  I), the 
conditions (11) a r e  easiest to satisfy by solutions cor- 
responding to a distribution in the form of a " cold" lay- 
e r  a t  the sample A self-consistent con- 
struction of the potentials and solutions is similar in' 
this case to the case of a narrow "hot" layer, the only 
difference being that we use branch III rather than I of 
the potential U,. 

3.2. In long samples (1, >> L), periodic IS can be con- 
structed by successive mirror reflections of one of the 
types of the elementary distributions [Fig. 2(a)]. In 
addition, in a supercooled system there a r e  realized 
distributions in the form of a single hot layer o r  sev- 
eral  layers far from one another. Corresponding to 
such a distribution is a trajectory of a "particle" in the 
potential U,. This trajectory becomes closed a t  the 
saddle point qt = q,, [ ~ i g .  2(b)], and when this point is 
approached q(r) and 8(x) tend to homogeneous values. 
Similarly, in a superheated system there can exist a 
single cold layer or  several widely spaced layers. In 
a heated system, a solution in the form of a single lay- 
e r  is unstable, inasmuch a s  i t  goes over on the peri- 
phery into an unstable homogeneous state. 

3.3. A distribution in the form of a hot layer [from 
1, to 1, on Fig. 3(a)] can be joined a t  the point x =I,, 
where q = qtl and 8 = 8,,, to a distribution of similar 
form but with different values qm2 and a t  a certain 
point l4 [Fig. 3(a)]. In fact, i t  follows from the con- 
struction method (Fig. 2) that if the dimension (the 
length la - 12) of a short sample is varied, i t  is possible 
to construct a se t  of potentials U, and U8, and conse- 
quently a set of solutions that differ in the values of 
?It and 77, on the sample boundary and of 77, in the tran- 
sition region (Fig. 2). Naturally, one can choose from 
among this set  various distributions with close values 
of Vi but with different values of 9 and 9,. This situa- 
tion can be represented a s  a branching of the potential 
U, near v = q i  [Fig. 4(a)]. This branching that takes 
place a t  different values of Of, therefore among the set 
of b ten t i a l s  U. corresponding to different values of 
B1 i t  is possible to choose those corresponding to mo- 
tion of a particle with one and the same value of qtl 
a t  the turning point [ ~ i g .  4(a)]. The potentials U8 cor- 
responding to these distributions take the form of Fig. 
4(b). This makes i t  possible to join together a t  the 
point l3 [Fig. 3(a)] solutions in the form of narrow hot 
layers of different amplitude .la This joining of differ- 
ent solutions in the region of the smooth distributions 
a t  77 = qt and 8 = Ot will be  called a junction of type 1. 

A junction of type 1 can be produced between a nar- 
row hot layer and a broad one [at the points x = Z1 and 
x=15, Fig. 3(a)]. The potentials U, and U. correspond- 
ing to this case a r e  shown in Figs. 4(c) and 4(d), re- 
spectively. Similarly, a type-1 junction (on the branch 
111 of the potential U,) is produced between distributions 

FIG. 4. Illustrating the method of constructing unperiodic and 
nonsymmetrical IS. 

1125 SOV. Phys. JETP 52(6), Dec. 1980 B. S. Kerner and V. V. Osipov 1125 



in the forms of narrow cold layers with different ampli- 
tudes and different periods, on the one hand, and broad 
layers [ ~ i g .  3(b)]. 

3.4. It is possible to join together different elemen- 
tary distributions not only in the region of slowly vary- 
ing distributions (of type 1 at  7, and @,, Fig. 3) but also 
in the region of rapidly varying distributions (of type 2 
at points 7, and Om, Fig. 3). This type of joining [at 
the point x=14, Figs. 3(a) and 3(b)] leads to a distribu- 
tion in the form of an asymmetrical hot (cold) layer. 

Among the many potentials U, and Ug, there can exist 
some corresponding to elementary distributions with 
identical values of q, and 0, but with different values 
of and 71, [potentials 2 and 3 in Figs. 4(e) and 4(f)]. 
By shifting the potentials U, [in the form of the dashed 
curve 2 on Fig. 4(e)] down by a certain amount [curve 
2', Fig. 4(e)] in such a way that the values of U, for 
the different trajectories coincide a t  the point 8=77,, 
we obtain a certain potential U, [solid curve on Fig. 
4(e)], in which the motion of the particle corresponds 
to a distribution of the form of an asymmetrical hot 
layer [13 9 x 6 15, Fig. 3(a)]. A distribution in the form 
of an asymmetrical cold layer [I3 c x c Z5, Fig. 3(b)] is 
constructed in similar fashion. A type 2 juncture is al- 
so  possible between different broad layers. 

3.5. Joining together the solutions in the form of ele- 
mentary distributions in accordance with type 1 or  2 a t  
various points, i t  is possible to construct stochastical- 
ly inhomogeneous structures (SIS) of complicated form 
(Fig. 3). The corresponding phase trajectory on the 
plane q and $, @ and 0; does not have isolated limit 
cycles (homoclinic trajectories) typical of ordinary 
dynamic systems. The situation here recalls that re- 
alized in generators of stochastic oscillations, for 
which the presence of strange attractors is typical.24 
In the considered systems, however, the "random" 
variation of 0 and q is not with respect to time, but 
with respect to the coordinate x. This difference is 
significant, since 1, is finite, and definite conditions 
a r e  specified a t  the boundaries of the system. Thus, 
SIS a r e  realized a t  1, >> L and for definite parameters of 
the system (for a definite form of the zero-isoclines 
and for a definite point of their intersection). The 
transition from one limit cycle to another takes place 
in random fashion in the region of the slowly (type 1) 
or  rapidly (type 2) varying distribution a t  points where 
0; = 0 (accurate to E ) .  

4. CENTRALLY SYMMETRICAL IS 

Centrally symmetrical stationary distributions in the 
two- and three-dimensional cases satisfy, according 
to (1) and (21, the equations 

dZq 2 ' d q  dU, 
-+--+-=(I; 

dp2 P dp drl 
d20 2"dB d U  

E Z f  E'--+&- 
(12) 

dp' P  dp  
-0, 

where s = 1 (or zero) for spherically (cylindrically) 
symmetrical IS. The solutions of the system (12) can 
also be formally represented a s  an aggregate of ele- 
mentary one-dimensional trajectories of two interact- 

ing particles, but in contrast to (9) and (lo), the par- 
ticles move in the presence of friction forces of con- 
stant sign, which decrease with increasing p.  We 
therefore have here in place of (11) 

Thus, in contradiction to the statements of ~ i f e ~ '  and 
of Nicolis and Prigogine ( ~ e f  . 7, formula 8.851, the 
condition (11) is not general. The finite curvature of 
the surface that separates the "phases" in the IS leads 
to the onset of a "surface-tension force" that causes 
violation of the "Maxwell rule" equivalent to conditions 
(11). 

In a large-radius heated system (Fig. I), solutions 
may be realized in the form of spherical (cylindrical) 
layersz6 of various thicknesses. Since AUg > 0 (13), 
on going from branch 111 to branch I of the potential U, 
[trajectory of particle 1, Fig. 5(b)] the potential Ug 
should take the form of curve 1 of Fig. 5(c). Such a 
potential is realized a t  < qs. At the turning point 
q=qt, [p  =R1, Figs. 5(a) and 5(b)], a transition takes 
place from the f i rs t  to the second trajectory in the po- 

FIG. 5. IS in the form of hot spherical (cylindrical) layers 
(a) and method of their construction: forms of the potentials 
U, (b) and U, (c) with the corresponding trajectories of the 
particles in them, &form of the zero-isoclines Q = 0 and of 
the true plots of f i e )  (thick curves). (The IS sections 1, 2, and 
3 on Fig. 5a correspond to the curves with the same numbers 
on Figs. 5b, 5c, and 54.  
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tential U,,, whose minimum is located at q,>q, [Fig. 
5(b)]. Actually the transition from branch I to 111 [Fig. 
5(d)] can take place from the potential Ue takes the form 
of curve 2 of Fig. 5(c). At Rz Q p c  R, [ ~ i g .  5(a)], q(p) 
and @(p) correspond to the third trajectory in the poten- 
tial U,,, whose minimum corresponds to TI > 91 > q ,  
since AU, and AUg (13) decrease with increasing p. 

Thus, the larger the curvature of the spherical (cy- 
lindrical) layer, the more distorted i t  is compared with 
the symmetrical broad layer in the one-dimensional 
case. On the other hand, with increasing p, the "fric- 
tion force" (13) tends to zero, and the spherical layers 
become more symmetrical. Owing to the finite curva- 
ture, a narrow spherical (cylindrical) layer is also 
distorted. Just  a s  in the one-dimensional case, the 
combination of broad spherical (cylindrical) with one 
another and with narrow layers can be quite compli- 
cated. An SIS is easier to realize in the form of a se- 
quence of different hot layers when Ohom l ies near e!, 
and in the form of cold layers near 8! (Fig. 1). 

In a supercooled system (Fig. I), solutions exist in 
the form of a single "hot drop" (or "spot"). The latter 
is possible when the trajectory 1 terminates a t  the 
point qtl = qmr corresponding to an extremum of U,, 
[dashed curve in Fig. 5(b)]. An IS in the form of a sin- 
gle drop can be produced either by a finite external 
perturbation o r  when a more complicated IS becomes 
unstable when one of the external parameters A, B, . . . 
changes. Similarly, in a superheated system (Fig. 1) 
of large size i t  is possible to excite a stable (Sec. 6) 
single "cold drop" (or spot) of small a s  well a s  large 
radius. We note that the greater the difference between 
8: and 8; (Fig. I), the easier i t  is to realize the condi- 
tions (13) for the onset of a small-radius drop (or spot). 

5. TRAVELING SIS 

States in the form of SIS that move without attenuation 
can be realized in the systems under consideration. 
We analyze this for the one-dimensional case. Chang- 
ing over in (1) and (2) to the variable x - vt, we obtain 

where time is measured in units of r,(cx=re/~,), and 
the velocity in units of L/r,,. Equations (14) a r e  of the 
same form a s  (12) except that the friction forces of 
constant sign a r e  proportional in them to the constant 
velocity v and not to p-'. Therefore, the principle of 
construction of traveling broad and narrow layers, and 
also of their various combinations, is similar to that 
described in Sec. 4. Moving SIS a r e  distorted relative 
to the static ones, and the distortion is larger the high- 
er the velocity. Multiplying Eqs. (14) by qi and 6: re- 
spectively and integrating over each ith elementary 
segment on whose end points 71: = 8; = 0, we obtain the 
conditions for the determination of the velocity 

where AU,,, and AUoi a r e  the decreases of the potential 

energies of the particles for each elementary trajec- 
tory [Figs. 5(b) and 5(c)]. The change AUB or  AU,, for 
a broad layer can be larger than for a narrow one, so 
that broad layers can move with larger velocity than 
narrow ones. 

6. STABILITY OF IS 

6.1. The form of the realized SIS can be deduced in 
the general case only from an analysis of their stabili- 
ty. Linearizing Eqs. (1) and (2) with respect to 

60=68 (r) e-T', 6q=6q (r) e-", 

we obtain" 

In these equations and hereafter the length is measured 
in units of I and the time in units of TO; 8 =(r,/r8)(l2/ 
L ~ )  E (y-lc2. 

We expand 677 and 68 in ser ies  in the eigenfunctions 
6ql and 68, of the operators I?,, and I& and, by suitable 
transformations, obtain 

where the symbol (' ') denotes averaging of the func- 
tion over the volume of the system. 

Some conclusions concerning the eigenvalues h, and 
i, = c2p1 of the operators Be and d,, respectively can be 
drawn even from the linear theory of stability (Sec. 2). 
It follows from (2) and (6) that if q#f(q), then the fluc- 
tuations 68 increase when qJ < 0. The more stringent 
instability condition (8) is due to the fact that 68 causes 
perturbations 67 that a r e  damped. In fact, owing to V, 
= c2&,' > 0 (16), a l l  the pr  > 0 ( ~ e f .  16) and the change 
671 causes damping of the development of the fluctua- 
tions 68. On the other hand, the presence of instability 
in 68 denotes that some of the A,, should be negative, 
i. e. , Ve =qJ < 0 in a certain region. Inasmuch a s  on 
the branches I and III of the q(8) zero-isocline q = O  
(Fig. 1) we have qJ > 0, and on branch 11 we have qJ < 0, 
(see Sec. 21, i t  follows that in the IS regions corre- 
sponding to slo~vly varying distributions Ve > 0, and only 
in a certain part of the region of the rapidly varying 
distributions do we have Ve < 0 [near the point of inter- 
section of the zero-isocline q = 0 with the true plot of 

' 

q(e), shown for the one-dimensional case in Fig. 2(c)]. 

Thus, the potential Ve corresponding to stable IS, 
i. e . ,  to successive combinations of slowly and rapidly 
varying distributions, constitutes in the general case 
a series of narrow (at least in one of the directions) 
potential wells with sufficiently large distances be- 
tween them. Consequently, 68, with % < 0 a r e  strong- 
ly localized in the regions of the rapidly varying distri- 
butions, where Vg < 0 (for the one-dimensional case, 
see Fig. 8 of Ref. 16). 

We emphasize that IS describable by only one of the 
equations (1) o r  (2) a r e  unstable ( ~ e f s .  4 and 7).' In 
particular, a t  constant 77, any inhomogeneous station- 

' 
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ary solution of equation (1) is unstable. Indeed, a t  
677 = 0 the spectrum of the values of y coincides acc_ord- 
ing to (17) with the eigenvalues & of the operator Ho. 
Applying the operator V to Eq. (1) for the stationary 
states, and then multiplying by the unit vector n a t  
q= const, we find that 6 9 ~  n -  vB(r) (for cyclic boundary 
conditions) is the eigenfunction 6Bk corresponding to the 
eigenvalueg' & = 0. Any inhomogeneous solution B(r) 
under cyclic boundary conditions has not less than one 
extremum, and consequently n . ~ @ ( r )  has not less than 
one node. This means that 68, = n .  vB(r) is not a func- 
tion of the ground state of the operator ife , and, a t  any 
rate, A,, < 0 for n < K . ~ '  This conclusion remains in 
force under the boundary conditions (31, as well as for  
a monotonic distribution for which Xo < 0 by virtue of 
the fact that d v e ( r ) ]  is not zero on the boundary of the 
sample .'6 

6.2. We illustrate first  the damping character of the 
variation of 7 for a system whose size is less than L. 
In such a system, the 6q(r)  a r e  strongly damped a s  a 
result of the large diffusion fluxes they cause, i. e. , 
/.Lr with k 2 1 greatly exceed po.16 This allows us to 
confine ourselves to the first  terms in the sums of 
(18): 

Since 670 is a weak function of the coordinate, we have 
according to (19) 

In contrast t o  an electron-hole pla~ma,'~"' in the gen- 
eral  case Po,, (21) depends on Y and on (2 = 7 8  /7,. We 
shall show that in the well Va corresponding to a broad 
layer a t  the sample boundary [Fig. 2(a)], only ho < 0 
and \ Xo 1 << 1, in contrast to a narrow layer, for which 
b=-1.'' Differentiating Eq. (10) with respect to x ,  we 
obtain 

Multiplying (22) from the left by 680 and averaging over 
the sample, we obtain2' 

If i t  is recognized that 8; and 6Bo attenuate exponentially 
outside the region of the abrupt distribution, where d71/ 
dB= &(I,/L) (see Sec. 31, then we obtain an estimate for 
Xo (23). The depth and width of the potential well Vo is 
of the order of infinity, therefore I Xo - X1 I = 1 (see in 
particular, Refs. 16, 17, and 29). Since XO >- E, i t  
follows that X1=l, i. e., the spectrum of X, contains 
only one small negative value. 

We shall show now that this conclusion remains in 
force also for radially symmetrical fluctuations in the 
case of a single spot or  drop (Sec. 41, a t  least one 
with a large radius pl >> I .  Differentiating the second 
equation of (12) with respect to p, we have 

Then, in analogy with the derivation of (231, we find 
a t  p1 >> I that 

where R1 is the radius of the entire system (I<< R1 < L). 
The estimate in (25) is valid a t  pi = I ,  while in the case 
of a small-radius drop (pl " 1 )  we have according to 
(25), Xo=-1,  just a s  for a narrow layer." 

Thus, in the A,, spectrum of the considered IS, only 
Xo < 0, and Pooo* 0 (211, so  that it follows from 120) that 
the stability condition reduces to the absence of zeros 
of the complex function 

in the upper half-plane of w =-iy. According to the 
argument principle, the number of zeros n in the upper 
half-plane of w is p + (27~)" argAw). Since only b < 0, 
the function f(w) has only one pole p .  The change of a r g  
flw) on going around the upper w half-plane is uniquely 
determined when 

In this case w ImAw) > 0 and a t  
e4 

D = I + ~  h. <o (28) 
n-0 

we have arg f (w) = -2r, since f (iO) = D and f (&a) = 1. 
Consequently, n = p  - 1 = 0, i. e. , f (w) = 0 has no solu- 
tions in the upper half-plane, and the considered dis- 
tributions a r e  stable. On the other hand if D > 0, then 
arg f (w) = 0 and n = p  = 1 ,  i.e., the IS i s  unstable. 

Following the preceding ~ t u d i e s , ' ~ ' ~ '  i t  can be shown 
that 

Thus, the points a t  which d ( ~ ) / d A  =a determine the 
limits of the interval of variation of the parameter A, 
within which the stability condition (28) is satisfied. 
The dependences of ( q )  on A in the one-dimensional 
case were obtained for certain systems earlier.16'11'30 
On the basis of the analysis developed in these papers, 
it is easy to construct the dependence of (71) on any of 
the parameters in various systems for the case of 
periodic two- and three-dimensional IS. When the 
state of the system depends on several parameters 
A, B, C ,  . . . (I), (2), then, analyzing the dependence of 
(q)  on them, we can establish that region of their vari- 
ation in which (29) is not satisfied, and consequently 
the given IS is certainly unstable. 

Since the IS consists of sections close to slowly vary- 
ing distributions, for which q,'Q; < 0, and rapidly vary- 
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ing distributions, for which q(Qd < 0 at  least near the 
points of intersection of the zero isocline q = 0 with the 
true plot of 1)(6), i t  is natural to assume that a l l  a,a 0 
(21). At (512 0, the condition (27) is certainly satisfied 
if 

ko>-upo. (30) 

According to (16) and (171, 

i. e., the violation of condition (30) correlates with the 
satisfaction of the condition (5) and is connected with 
the frequency mismatch of the parameters q and 6' (Ref. 
14): a t  a =78/7,, << 1, the variation of is incapable of 
following the growing fluctuation beo.  If it is recog- 
nized that in (27) a l l  the terms, starting with n = 1, a r e  
larger than zero, then we arr ive  a t  the conclusion that 
the IS a r e  more stable than the homogeneous state. 
This is connected with the stabilizing influence of the 
regions of the smooth distributions, for which A,, > 0. 
Moreover, inasmuch a s  for broad layers and radially 
symmetrical distributions of large radius we have I KO I 
<< 1, the condition (30) can be satisfied for them even 
a t  a << 1. Thus, even if (5) is satisfied, stable homo- 
geneous states can be excited in the system by finite 
external perturbations. This conclusion is confirmed 
by computer 

It follows from an analysis of (20) and (26) that any IS 
region to which a single well Ve of arbitrary shape cor- 
responds is unstable if more than one of the eigenval- 
ues in the spectrum of V8 is~negative. The only excep- 
tions a r e  those IS regions for which A,, >-&. In the 
analysis of their stability it is necessary to take into 
account the 6% with k > 0, which a r e  not taken into ac- 
count in the derivation of (20) and (29). 

6.3. We consider now the stability of a single layer, 
i. e., of a distribution that is inhomogeneous along the 
x axis, in a three-dimensional system that is small 
only along the x axis ( I ,  < L ) .  Linearizing Eqs. (1) and 
(2) with respect to 

we arrive a t  the system (16) and (171, in which the op- 
erator A is replaced by d '/dx2 - ki2 - kig. AS a result, 
the eigenvalues of the operators $ and 8, take on the 
form 

where and ill a r e  the eigenvalues for the one-di- 
mensional case. 

When the dimension of the system in the direction of 
the x axis is small (I, < L) then, a s  in Sec. 6.2 above, 
all  the inhomogeneous perturbations 6q11(x), starting 
with lls, 1, can be neglected. We then arrive likewise 
a t  (20) and (211, in which A,, is replaced by A,,, +k2, and 

The symbol (. . .) denotes averaging only along the x 
axis. At fixed k, there can be only one negative eigen- 

value Xo + k2, and therefore the stability condition re- 
duces to (28) with the corresponding X, and a, (31). 
Since the functions 69,,(x) with nl > 1 oscillate and a r e  
smeared out over the entire sample along the x axis, 
their contribution to the sum of the condition (28) turns 
out to be negligible."'" This is al l  the more valid in 
the case of a broad layer, for which, a s  established 
earlier, 1 A. 1 << h1 Taking this remark into account in 
(31), we can rewrite the stability criterion (28) for A, 
+ k2 < 0 in the form 

According to (32), the stability is violated with re- 
spect to fluctuations with k directed perpendicular to 
the x axis and close in absolute value to 

when 

ho<-  {ezpo+2e[hopo-(q(6Oo)(Qe'6Oo)]'"). (34) 

Since ho ~(gd683, and po  *(~;6q3,  the instability cri-  
terion (34) can in fact be obtained from (8), by using it 
for a structure region with dimension bx * 1. In the re- 
gion of rapidly varying distribution we have g '<  0, and 
this region determines the stability of the IS. A broad 
layer corresponds to ho *-EI , /L  (25), and therefore, 
according to (34), i t  is stable in samples with I, < L 
and with arbitrary values of I, and I,. This conclusion 
explains the results of the computer 
A narrow layer, on the other hand, corresponds to 
*-I, and it is unstable to fluctuations 66'(y, z )  that tend 
to break up the distribution along the axes y and z. 

In a sample of radius R1 < L, a distribution in the 
form of a single drop (or spot) (see Sec. 4) of large 
radius pl <<I corresponds to a potential well Ve with a 
spectrum that contains besides A. (25) also other Ab < 0. 
The latter correspond to fluctuations that depend on 
the angles rp and a: 

Linearizing Eqs. (1) and (2) with respect to the fluc- 
tuations 66' and 69 in a spherical coordinate system, we 
arr ive  a t  (16) and (17), in which 

.. 
H,=H;--- - (P - -- +v,+j(i+j)p-2, 

dp2 P dp 
(3 5) 

.. .. 
H -He'= - - - - - 

8 -  +Ve+j(l+j)p-'. 4-J' P dp (36) 

The principal eigenvalues of the operators fi; and & 
corresponding to j = 0, i. e., the eigenfluctuations 69; 
and a r e  equal respectively to Lo  and (25). Rec- 
ognizing that bB',(p) have no nodes with respect to p and 
a r e  localized in a region of the order of unity (1) of the 
well VO, we obtain, in analogy with the derivation of 
(231, 

Carrying out the transformation in the same approxi- 
mations a s  in the derivation of (32), we find that the 
stability condition for the considered case reduces to 
(32), in which the spectra of a single layer Po + k2z-' 
and A, + k2 a r e  replaced by pi and hi. It follows from 
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this criterion that the most critical a r e  the fluctuations 
with jo =&I,, and the drop is unstable if the condition 
(34) is satisfied. This generalization of the criterion 
(34) is natural, since the considered case is in fact 
equivalent to an analysis of the stability of the single 
layer with l y = 2 ~ p l .  Inasmuch a s  for a large drop (L 
2p1 >> 1) we have Xo=-R,/L (25), it is stable according 
to (34), a t  least a t  R1 < L It follows also from this 
that a broad spherical layer (Fig. 5) is stable to radial- 
ly non-symmetrical fluctuations. 

On the other hand, a narrow layer is unstable, since 
in i t s  case X;=-l,  and in accordance with (37) there 
a r e  many 4 =-I. A drop (or spot) of small size (pl = 1) 
corresponds to X;=-l (25). The next values of Xi, 
according to (371, a r e  increased by an amount = j ( l +  j ) ,  
and can therefore be positive. The damped character 
of the fluctuations 681, with j > 0 is obvious and is con- 
nected with the strong diffusion spreading of the in- 
homogeneous changes in the region of the drop of radius 
I. For the same reason, XI > 0. 

Thus, the drop or  spot is stable to radially non- 
symmetrical fluctuations. The IS in systems (e.g., 
in the ~ i i r i n g  model) that have only one stable branch 
on the zero-isocline q=O (curve 2, Fig. 1) cannot con- 
tain regions in the form of broad layers o r  drops with 
p >> I. Therefore the stable IS in them take the form 
of one or several drops (spots) of small radius. On the 
other hand, stability with respect to a radially symmet- 
rical  fluctuation 6820, which corresponds to Xo =-1, is 
given by the condition (28). The latter is satisfied a t  
approximately the same external parameters A, B, . . . , 
a t  which a narrow layer is stable in the one-dimension- 
a1 case.'' Generalizing these results, we can state 
that any IS region that corresponds in any of the cross 
sections to a narrow layer is unstable if in one of the 
directions the region of the rapidly varying distribution 
greatly exceeds I, inasmuch a s  this region contains, 
besides Xo=-1,  also other A,, < -(=-1). 

6.4 The IS corresponding to single wells Vo in which 
only ho < 0 and which a r e  separated by sufficiently large 
distances, a r e  stable. We shall illustrate this using a s  
an example a spatially periodic IS with period Ro. At 
Ro >> l(l), the proper wave function 6Qo(r - r i )  of an iso- 
lated ith well overlaps weakly i ts  neighbor, and there- 
fore the level Xo of this well splits into a band: 

h , " = l , + ~ h , + 2 ~ h ~  cos(k,, R,) , 
j= I 

whose width is 

Ahaexp ( -Ro)  ; Ahoaexp(-R,) ; knj =2nni/R,Ni; 
k,2-k,,Z+k.,2+k,,Z; n,=O, &I,  +2 ,..., +(Ni -1 ) /2 ,  Ni/2; 

N,, N,, N3 is the number of wells (drops) in the consider- 
ed IS, and the proper wave function 68, of the problem 
can be represented a s  a superposition of 6O0(r - r,). 

When Ro 2 L, the function q(r), and consequently also 
the potential V,(r) changes little, with the exception of 
narrow regions (of the order of 1). Therefore the po- 
tential V, can be regarded a s  constant, and 

Substituting the wave functions 68, and 6 1  and the ei- 
genvalues Xo and y, in (19), we obtain from (181, after 
suitable transformation,'' the stability criterion 

3 

ho+Ah,+2Ah z c o s ( k , ,  R , )  + a , ~ , ( p o +  k , ' ~ - ~ ) - ' > 0 ,  
,=, 

(39) 

which coincides for the one-dimensional case with the 
criterion that follows from Eq. (51) of Ref. 16. 

The condition (39) follows in fact from (32) if Xo + k2 
in the latter is replaced by 

I 

Ro+Ah,+2Ah z cos (k , ,R , ) .  
,==I 

In the derivation of (30) is was noted that 0 and 
a. = 1 .16"' Therefore, when 

max k,ze-2-3n2(L/Ro)2G1.  

The condition (39) is satisfied even in the case of small 
drops, for which X O = - 1 ,  let alone drops of large radius, 
which a r e  stable a t  short distances from one another, 
inasmuch as & > - c  fo r  these drops. The most danger- 
ous a r e  the fluctuations 69, that tend to increase the 
size of the drop o r  the value of 8 in the drop a t  the ex- 
pense of decreasing these parameters in the neighbor- 
ing drops. Therefore a distribution in the form of 
several drops becomes unstable, without reaching the 
points where d ( q ) / d .  =m, and the more drops the less 
stable they a re  to supercooling o r  superheating. In a 
heated system, Ro cannot be too large. With increas- 
ing Ro, the region of slowly varying distribution be- 
tween drops comes ever closer to a homogeneous un- 
stable state, and when 8 lands in the interval (8!, 8;) 
(Fig. I), the IS becomes unstable. On the contrary, 
in a supercooled or  superheated system, the drops can 
be arbitrarily far from one another, inasmuch a s  the 
homogeneous state is stable. 

We note that the larger the differences between 8 in 
the drop and outside the drop, the closer the small- 
radius drops can be located to one another. The rea- 
son is that with increasing contrast of the drop the po- 
tential V,, becomes steeper1' and acquires the shape of 
an ever deeper potential well. In such a well V,, the 
eigenfunction of the ground state 6q0(r - r,) turns out 
to be localized and therefore produces practically inde- 
pendent damping of the growing fluctuation 6B0(r - r,) 
in each of the wells Vo. The described situation is 
easier to realize a t  not too small values of E ,  a s  is 
confirmed also by computer e ~ ~ e r i m e n t s . ~ ~ ' ~ ~  

Thus, a periodic IS is stable if the fragments of 
which i t  is made up satisfy the conditions formulated 
in Secs. 6.2 and 6.3, and the shortest-wavelength anti- 
binding combination of the growing fluctuations 6Bo(r 
- ri) ,  which describe the "transfer" of 8 between neigh- 
boring fragments, is followed-up by the damping change 

6 q ~ ,  /2 
of 7. This conclusion pertains also to SIS, which 

should be more stable to transfer of 8 between neigh- 
boring different fragments. In fact, since the SIS cor- 
respond to different wells VOIg( the distances between 
which a re  much larger than I (Sec. 6.11, i t  follows that 
not only A,, , corresponding to them a r e  changed little by 
allowance for their overlap. In addition, in the SIS a 
small-drop radius can be located closer to the wall that 
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separates the superheated and supercooled regions of 
the system than to another small-radius drop. The 
reason is that the growing fluctuation 6eoi correspond- 
ing to such a wall is easier to attenuate by a smaller 
change 67 than the fluctuation 6eoi corresponding to a 
small-radius drop (Sec. 6.2). 

When the system parameters A, B, . . . a r e  changed, 
the SIS becomes unstable in one of i t s  fragments either 
because the conditions formulated in Secs. 6.2 and 6.3 
for the stability of this fragment a r e  violated, o r  else 
a s  a result of transfer of 9 between some neighboring 
fragments. These fragments a r e  less  stable the closer 
the locations of the potentials VOi corresponding to them, 
and the fragments become closer in form to a small- 
radius drop. 

6.5. To investigate the stability of traveling IS (Sec. 
51, we linearize Eqs. (1) and (2) with respect to small 
deviations 

80 (x, t )  =60 (x) e-", 611 (x, t) =611(x) e-fl 

from the stationary self-similar solution of Eqs. (14). 
As a result we obtain the system (16) and (171, in which 

Here v is measured in units of 1/76. The problem of 
finding the spectra A, and it and the eigenfunctions 
68, and 671, of these operators under the considered 
boundary conditions is sel f -adj~int .~ '  Therefore an in- 
vestigation of the stability of traveling IS is in fact 
similar to the investigation described above. The spec- 
trum y satisfies the condition (18). 

In the case of traveling IS, to study the spectra of the 
operators fro and 8, one can use also a quantum-mecha- 
nical analogy, by rewriting the corresponding equations 
in the normal Liouville form. It is then easy to verify 
that the spectra A,, and f i t  of the traveling IS have the 
same singularities a s  those of the static IS, so that the 
results on the stability of the static one-dimensional 
IS remain qualitatively valid also for traveling IS. 

7. CONCLUSION 

7.1 In a one-dimensional system, under the same 
conditions (parameters A, B, . . . ) there exist a whole 
set of different elementary distributions [fragments, 
Fig. 2(a)], on the boundaries of which 71: = 8: = 0, and 
the values 71 and 9 and of their second derivatives a t  one 
of the boundaries coincide (accurate to &), but can have 
jointly different values (Fig. 3). As a result of this, 
not only different periodic structures, but also different 
stochastically inhomogeneous structures (SIS) can ar ise  
in the system, in the sense that different such frag- 
ments can be randomly disposed over the length of the 
system. 

Each elementary fragment satisfies the integral rela- 
tions (11) and the stability condition. Thus, in a super- 
cooled system (Fig. I ) ,  IS a r e  possible in the form of 
different single hot narrow or  broad layers, a s  well a s  
their combinations, which can go over into a homogene- 
ous stable state on some bounded segment. 

In the case of "two-phase equilibrium" (case d, Fig. 
I ) ,  the SIS can contain simultaneously sections corre- 
sponding to broad and narrow layers that a r e  hot a s  
well a s  cold. Sections of the IS in the form of one or 
several layers can then go over on the periphery into 
one of the stable homogeneous states. It is possible 
to excite SIS in such a system only by finite inhomo- 
geneous perturbations. 

The homogeneous state of the heated system (Fig. 1) 
is unstable. Therefore SIS a r e  spontaneously produced 
in them and acquire nowhere a homogeneous distribu- 
tion; a s  an alternative, homogeneous oscillation can 
a r i se  a t  T O  << T,, .6-g'14 In the latter case, nevertheless, 
i t  is possible to excite stable SIS (Sec. 6.2). If an SIS 
is excited on some section of the system by inhomogen- 
eous excitation, then the structure either vanishes o r  
leads to the appearance of an SIS in the entire system. 
Such a self-adjustment of the IS was observed both in 
e ~ ~ e r i m e n t ~ " ~  and in a computer analysis.32 

7.2 In two- and three-dimensional systems of suf- 
ficiently large size, one-dimensional distributions in the 
form of broad layers a r e  stable (Sec. 6.3). There can 
also exist in them IS that a r e  radically symmetrical o r  
nearly so, in the form of different se ts  of spherical o r  
cylindrical broad layers [Fig. 5(a)]. The latter were 
observed in two-dimensional systems?'12 Narrow lay- 
ers,  on the other hand, a r e  unstable to breakup into 
smaller regions. 

7.3. In the general case, two- and three-dimensional 
IS can have an exceedingly complicated form, a s  con- 
firmed also by numerical i n ~ e s t i ~ a t i o n s . ' ~  From an 
analysis of their stability (Sec. 6) it follows that the 
regions of smooth variation of ~ ( r )  and 8(r) correspond 
to the supercooled o r  superheated phases of the system. 
The heated unstable state is located only in narrow (with 
dimension of the order of 1)  surface layers between the 
regions of the smooth changes of ~ ( r )  and 8(r). Any 
SIS fragment containing a heated-phase region sur- 
rounded on a l l  sides by a region of one' of the stable 
phases is unstable if the dimension of the heated re- 
gion exceeds greatly I in a t  least one of the sections. 
Heated regions close in shape to the hot o r  cold small- 
size drop (Sec. 6.3) and located a t  distances substan- 
tially larger than 1 from one another and from the 
"heterophase" surface layer, can be stable (Sec. 6.4). 

In any section, the SIS is similar to one of the stable 
distributions for the one-dimensional case. However, 
owing to the different curvatures of the neighboring 
elements (Sec. 4) and to the greater possibility of sat- 
isfying the integral conditions, these distributions can 
be even more varied than in the one-dimensional case. 

7.4. The IS of the type given here is stable only in a 
definite range of variation of the parameters A, B, . . . , 
and becomes unstable on the boundary of this range. 
The development of the instability varies in character 
in periodic IS and SIS. For the former, a simultaneous 
restructuring of the entire IS, leading to a change in the 
number of drops, o r  spots present in it, is 
more probable. In the SIS, stability is lost in one or 
several less stable fragments (Sec. 61, in which in- 
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homogeneous oscillations (''local swirling") can arise, 
or else  the unstable fragments  act i n  a cer ta in  s e n s e  
a s  leading  center^"'^ f r o m  which the res t ruc tur ing  of 
the  ent i re  SIS begins. 

7.5. The spontaneous appearance of s table  IS when 
the  parameters  of the  s y s t e m  are changed confirms the  
idea advanced i n  Refs. 6 and 7, that  self-organization 
is possible i n  nonequilibrium homogeneous sys tems .  
A t r u e  self-organization wil l  occur  in s y s t e m s  i n  which 
at least one of the  p a r a m e t e r s  (A) varies autonomously 
during the c o u r s e  of the  nonequilibrium process .  A s  a 
resul t ,  IS of more  and m o r e  complicated types wil l  
spontaneously occur  i n  the system. 

7.6. T h e  f o r m  of the SIS f o r  given p a r a m e t e r s  
A, B, . . . is res t r i c ted  by integral  relations, by t h e  
character  of the zero-isoclines, and by t h e  stability 
conditions. A s  a resul t ,  if a n  inhomogeneous fragment  
is produced in s o m e  region of the heated system, th i s  
perturbation wil l  e i ther  attenuate or else, as a resu l t  
of self-adjustment to th i s  fragment, one of the  SIS 
containing a region c lose  to the  given fragment  wil l  b e  
reconstructed. In t h i s  sense,  the s y s t e m s  considered 
have associat ive memory: specifications of the param- 
eters A, B, . . . means  s to rage  of an en t i re  set of defi- 
nite patterns, which can be  reconstructed with ce r ta in  
probability by means  of one of the i r  f ragments .  

7.7. In the considered dissipative s y s t e m s  it is pos- 
s ib le  to  excite var ious  SIS traveling with different velo- 
cities without damping: in a supercooled sys tem,  f o r  
example, in the f o r m  of a single s table  o r  s e v e r a l  wide- 
ly spaced (including also different ones) hot layers;  in  
a superheated system-in the f o r m  of cold layers; i n  a 
heated system-in the f o r m  of a traveling sequence of 
l a y e r s  with dis tances between them not great ly exceed- 
ing L .  The  higher the  speed  of the  IS, the  m o r e  dis- 
tor ted they are compared with the static ones  (Sec. 5). 
Travel ing IS can b e  excited also at I >> L, but TO <<T,,, 

when there  are no s tat ic  IS. In th i s  case the r e s u l t s  of 
the present paper  go over into those obtained in the 
study of the propagation of a pulse in a nerve  fiber." 

We are grateful  to I. M. Lifshitz, Yu. M. Romanov- 
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of the s e m i n a r s  under the i r  direct ion at the  Institute of 
Theoret ical  Physics, at the  Moscow State University, 
and at the Physics  Institute of the Academy of Sciences, 
f o r  a discussion of the results. 

') In particular cases, 16' IT certain functions of dr) and 8(r) can 
precede y. However, when they a re  positive, this is of no 
importance, since these equations can be reduced to the form 
(16) and (17) by transformation into the normal Liouville 
form." 

'1 The stability of single strings and domains in semiconductors 
with non-single-valued current-voltage characteristics is 
connected with the equations for the external circuit, 4 s  the 
role of which in the systems considered here is  played by 
Eq. (2) for each region of size S L .  

3, This conclusion pertains also to the system (16) and (17). i.e., 
y = 0 corresponds to the fluctuations 68 -n- VO(r) and 671 -n 
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