
Order-parameter and charge-density waves near the 
critical point in an electrolyte 

V. M. Nabutovskil, N. A. Nemov, and Yu. G. PeTsakhovich 
Institute of Inorganic Chemistry, Siberian Division, USSR Academy of Sciences 
(Submitted 22 April 1980) 
Zh. Eksp. Teor. Fiz. 79,21962205 (December 1980) 

In a system that undergoes a second-order phase transition and has charges that can become redistributed 
(liquid or solid electrolyte, semiconductor), charge-density and order-parameter waves are produced near the 
phase-transition point. This state can be regarded as a special phase. The wavelength is of the order of the 
Debye radius, the characteristic width of the temperature interval in which they can exist is AT- T p ,  where 
T, is the transition temperature and x is the relative density of the charged particles. The thermodynamic 
singularities, the phase diagram, and the correlation functions of such a system are analyzed. 

PACS numbers: 64.60.Ht 

INTRODUCTION 

A substance that undergoes a second-order phase 
transition (and is near the critical point), can be re- 
garded a s  an aggregate of weakly coupled subsystems, 
an interaction in one of which is in fact the direct cause 
of the phase transition. In the vicinity of the critical 
point, owing to long-wave fluctuations of the order 
parameter, there is produced an unusual instability 
with respect to even a weak interaction between the 
subsystem that undergoes the phase transition and the 
other subsystems. This instability can alter the char- 
acter of the phase transition. For  example, when ac- 
count is taken of the interaction with other modes, a 
magnetic o r  a ferroelectric transition becomes of f i rs t  
order,' and in the presence of impurities under ther- 
modynamic equilibrium, the singularity a t  the phase- 
transition point becomes weaker (the phase transition 
becomes a third order) .2-4 

These phenomena were investigated principally from 
the point of view of the change in the character of the 
singularities of the thermodynamic quantities. On the 
other hand, one can expect the aforementioned insta- 
bility near the critical point to give rise to a new phase 
with interesting properties. 

The purpose of the present paper is the study of the 
interaction of the subsystem that undergoes the phase 
transition with a Coulomb subsystem. In the latter 
there exist slowly decreasing correlations. At low 
densities x of the charged particles, the Debye radius 
r, is large. When the critical point is approached, 
the correlation radius of the fluctuations of the order 
parameter rc increases, and the condition r, - r ~  is 
satisfied a t  a certain value of the temperature. In this 
region, a t  a sufficiently large interaction between the 
subsystems, an instability se ts  in with respect to for- 
mation of charge-density and order-parameter-density 
waves, with a wave vector ko -r: -ril, which is the 
subject of the investigation that follows. 

In contrast to the usually considered charge-density 
waves, which a r e  caused by the presence of a strongly 
degenerate electron gas with a distinct Fermi surface,' 
these waves a re  not determined by the quantum charac- 
t e r  of the statistics of the charged particles. On the 
other hand, in contrast to the localized, states investi- 

gated by Krivoglaz, Nagaev, and  other^,^" the waves 
a r e  a collective effect. We note also that Krivoglaz 
considered inhomogeneous states near a first-order 
phase transition. These states a r e  also collective. 
F a r  from the critical point, however, such formations 
a r i se  a t  a sufficiently large charge density and consti- 
tute distinctly separated layers of two phases. We em- 
phasize that the waves considered by us  ar ise  a t  arbi- 
trarily low density of the electrolyte and a r e  not alter- 
nating layers of two phases, but a new phase. 

1. FORMULATION OF PROBLEM 

Since we a r e  interested in long-wave inhomogeneous 
states b o a  << 1, where a is the interatomic distance), we 
represent the Hamiltonian of the system in the form 

H=H*+-H,+H,. (1) 

Here Hi is the usual Landau functional that describes 
a second-order phase transitiona and constitutes, a t  
long-wave deviations, an addition to the thermodynamic 
potential @. The parameter q(r) will for  simplicity be 
regarded as scalar 

[arq2(r) + ~ ( V q ) ~ + ~ / ~ b q ' ( r )  -2hq (r) (2) 

a, c, and b a r e  the usual expansion coefficients, h is 
an external field conjugate to q(r), and 7 = (T - T,)/T, 
is the temperature. 

We shall use hereafter the microscopically exact 
Hamiltonian Hz + H3,  which describes the charged im- 
purities, to obtain the addition to @ necessitated by the 
long-wave deviations of the charge density from zero. 
The Hamiltonian Hz of the charged particles will be 
written in the second-quantization representation 

RZ 
H ~ = X -  J V ~ ~ ~ + V ~ ~ ~ ~ + L ~  $&+ (r) $b (1') eae& ( 4  $-(rI dr dr', 

27% 2 ~lr-r ' l  
@,I 

$: and +, a r e  the creation and annihilation operators of 
ions of species a, E is the dielectric constant of the 
solvent, and ea and m a  are  the charge and mass of the 
particles of species a. 

The Hamiltonian H3 of the interaction between the 
ions and the molecules of the solvent a re  written in the 
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form where a is the distance between the solvent atoms. 

g, is the constant of the interaction of the particles of 
species a with the order parameter. Expression (4) 
takes into account only the short-range interaction be- 
tween the ions and molecules of the solvent. As for 
the interaction of the ions with the dipole moments of 
the solvent molecules, i t  is effectively taken into ac- 
count by introducing the dielectric constant c in ex- 
pression (3). For  simplicity we shall carry out the 
calculations that follow for a symmetrical monovalent 
binary electrolyte. The transition to the general case 
is trivial and will be carried out in the fihal formulas. 

We write the term with the Coulomb interaction in (3) 
iri the form 

ZJ (r') dr drr, =6,(r)-k2(r) - 
2 elr-r'l -- (5) 

The interaction Hamiltonian (4) consists of two parts 

~ s - g  j A; (r) q (r) dr+gt j 2 (r) q (r) dr, 

g=(g~-gz) 12, g'-(g,+g2)/2, ?(r) = i l (r )  +;,(r). 
(6) 

In expressions (5) and (6) we have introduced new vari- 
ables An and n' in place of the charged-particle densi- 
t ies nl and nz. As follows from (5), only the variable 
An is responsible for the Coulomb interaction. Accord- 
ingly, the first  term in (6) describes the interaction be- 
tween two systems with slowly decreasing correlations. 
The second term redefines effectively the constants that 
enter in H (the corrections a r e  of the order of the den- 
sity x) ,  i. e., it describes an uncharged impurity.' 
In particular, the critical temperature T, of the solvent 
is shifted. We consider only the first  term of H,. 

As will be seen subsequently, the interaction with the 
Coulomb system leads to anomalies near the critical 
point in the region 70-x. We consider first of all  the 
case when 7 0  is located outside the scaling region, i. e., 
in the region of the self-consistent field. To determine 
the correlation functions (CF) above the transition point 
we can leave out of HI the term with q4 and thereby 
simplify the calculations substantially. In the case 
when 70 lands in the scaling region, the physical pic- 
ture remains in principle the same, but the exact cal- 
culation becomes more complicated. We shall pre- 
sent the results for this case a t  the end of the paper. 

2. CORRELATION FUNCTIONS 

We consider the case To>> Gi, ~ i =  b2?/ac3. We de- 
note the correlation functions for the order parameter 
q(r) in a zero field (h = 0) above the transition point 
(where (q) = 0) by G: 

The angle brackets denote averaging over the states of 
a system of noninteracting particles. Outside the scal- 
ing region and neglecting the interaction with the Cou- 
lomb subsystem (g=O) we have 

The complete correlation function 

is obtained in the Debye-Huckel approximation ( g =  0) 
by summing diagrams with small momentum transfers, 
of the type o.&-o-- ... w.Ao . (8) 

A wavy line corresponds here to the Coulomb potential, 
and is assigned the quantity -4ne2/ck2. The usual lines 
denote the bare Green's functions of the charged par- 
ticles, which we shall assume to obey classical sta- 
tistics. In the calculation of the polarization operator, 
which is represented on the diagrams by a loop with 
two ends, such particles can be arbitrarily regarded 
in the Matsubara t e c h n i q ~ e ~ " ~  a s  fermions, and after 
the calculations i t  is possible to go over to the classical 
limit: 

no is the mean value of the density of the charged par- 
ticles of both signs, and 6(r) is a delta function. 

Allowance for the interaction between the subsystems 
(g+ 0) introduces into diagrams of type (8) for the 
complete correlation functions G(r), D(r), and 

besides the Coulomb interaction of the charged parti- 
cles, an additional interaction between the ions via 
fluctuations of the order parameter q(r). In this case, 
when summing the most divergent diagrams of type (8), 
the Coulomb interaction must be replaced by the total 
interaction: 

The dashed line denotes Go and the dot the interaction 
constant g. 

As a result we obtain for the function1) DO, which 
we represent by a shaded loop, the Dyson equation 

o=o+-. (11) 

The remaining correlation functions a r e  expressed in 
terms of Dk): 

Solving (11) and substituting in (12), we obtain for 

G(k) =Tc-'(kz+v2) f-'(k), D(k) =nok'(kZ+r.') f-'(k), 

r(k) =-gnoc-'k2f-'(k), f (k) =(k2+x2) (k2+v2) -Fkz, (1 3) 
3-g2no/cT. 

The character of the correlations in the system is de- 
termined by the correlation-function poles, i. e., by the 
zeros off 0. 

We consider first  the case of a weak interaction be- 
tween the subsystems, 5 c 1, 5 =g/v. Above the criti- 
cal point (at 7 > 01, in the temperature interval satis- 
fying the inequality I x - v 1 >B, the zeros off (k) lie on 
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the imaginary axis and the correlation functions de- 
crease exponentially in analogy with (7) and (9). In the 
temperature region I H. - v / ~ 2 ,  the zeros off (k) have 
nonzero real part, so  that the correlation-functions 
oscillate in addition to being exponentially damped, i. e., 
they take the form 

r' exp (-Im k,r)sin (Re k,r+q), (14) 

where & is the complex root of the equation 

f(k) =O. (1 5) 

The most interesting is the case of strong interaction, 
< > 1, which is in fact the subject of our study. In this 
case, at sufficiently high temperatures T --, 70, where 

the zeros off (k) a r e  complex as before, but Eq. (15) 
has a t  7 =TO a real  root ( ~ i g .  1) 

ko'=v(g-v). (17) 

The thermodynamic functions a r e  obtained by inte- 
grating the correlation functions with respect to k. The 
presence of a pole on the real  axis in a correlation 
function leads to divergences in the thermodynamic 
quantities (the usual situation which attests to insta- 
bility of the system to the onset of a mode with k=ko). 
Physically this means the appearance of waves with 
wave vector & and with macroscopic amplitude. In 
our case, charge-density waves and order-parameter- 
density waves appear a t  7 TO. 

3. THERMODYNAMICS OF THE SYSTEM. 
SELF-CONSISTENT-FIELD REGION 

TO consider the thermodynamics of the system, we 
introduce the effective Hamiltonian 

As mentioned above, H,, is in fact a term that must 
be added to the thermodynamic potential Q, in the case 
of long-wave deviations from the state g = 0, An = 0. 
Above the transition point TO the Hamiltonian He,, can 
be employed in the usual manner for the calculation of 
the correlation functions via thermodynamic averaging, 
and below the transition point i t  can be used to calcu- 
late the equilibrium values of q, and Ank by minimizing 
(18). We note that the Coulomb part of (18) has a sim- 

FIG. 1 .  Line of zeros off (k) in the case of strong interaction 
5 > 1 ( curve 1 ) and of weak interaction [ i 1 ( curve 2 ). 

ple physical meaning. We express i t  in the form 

The first  term is a quadratic increment to the expan- 
sion of the entropy term in @ in powers of An: 

Tn, (r) ln n.(r) dr. 

The second term is the Coulomb energy. In particular, 
upon averaging, i. e., when / An, 1 is replaced by 
( ( An, 1 2 ) ,  the second term yields above the transition 
point the usual correlation energy E,,, of the Coulomb 
gas in the Debye approximation (Ref. 8, p. 270). 
Starting from expression (la), we can again obtain for- 
mulas (7), (9), and (1 3) - (1 7). 

We carry  out the transformation 

no kZ 
Anr=cr-g-- 

T k'+v2 qk  (1 9) 

and change over to the dimensionless parameters 
,,rib'ha-'hq, f'-b'ha-"f, 
h'=b'La-"h, H'=ba-ZH. 

The Hamiltonian (18) then takes the form 

We have left out the primes for the sake of brevity. 

In accordance with the foregoing, the coefficient of 
1 qk 1 a t  the point 7 = r0 vanishes and becomes negative 
a t  7 < 70, meani that (qkd # 0. On the other hand, the 
coefficient of 1 iT2 remains positive, therefore (id =O. 
As a result we have hereafter everywhere 

no k2 
(Ank>=-gV+y ' (q~>.  (21) 

At h +O o r  a t  sufficiently low temperatures there 
exists also a macroscopic mode with k = 0. Being in- 
terested in the macroscopic characteristics of the sys- 
tem, we seek the function that minimizes the Hamil- 
tonian (20) in the form 

q (r) =no+2q1 cos kor, (22) 

and regard go and 71 as the variational  parameter^.^' 
The amplitudes go and a r e  determined from the sys- 
tem of equations 

zqo+~loJ+6q0q,'=h, q l  [- (ro-r) +3 (q,'+t),2) ] =0. (23) 

The system (23) has two types of solution: type I is 
uniform ordering (gl = 0, homogeneous phase I), and 

2 2 type 11-non-uniform ordering [qO +ql = (70 - 7)/3, 
phase I1 consisting of charge-density and order-param- 
eter waves]. 

For  the sake of argument we consider an electrolyte 
near the liquid (L)-vapor (v) critical point of the sol- 
vent. The phase diagram of the system (23) is shown 
in Fig. 2, which shows only the stable states of the 
Hamiltonian (20) on the P-T plane. The line BC is 
that of a second-order phase transition. Inside the 
loop is the region of non-uniform ordering, and the 
amplitude of the waves with k = ko is zero on the BC 
line. The points B and C a r e  tricritical and correspond 
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FIG. 2. Phase diagram of electrolyte near the crit ical  point 
of the pure solvent PC, Tc). Inside the loop is the region of 
existence of the inhomogeneous phase. 

to r =3r0/4 and h =*57in/12fl. The value of q1 on the 
first-order phase-transition lines AB and AC differs 
from zero. A is the triple point of coexistence of phase 
II and phase I with two different values of the density 
(liquid and vapor), separated by the first-order phase- 
transition line AD. 

A variational solution of the type (22) is not exact. 
Owing to the nonlinear term in the exact solution of the 
minimizing equation of the functional (20), harmonics 
that a r e  multiples of ko appear, i. e., the solution takes 
the form 

At small 71 - ?)-In, however, the coefficients q, 
a r e  of higher order of smallness than ql.Therefore the 
solution of the system (23) for the region of the phase 
diagram near the line BC (on which ql = 0) and near the 
points B and C is asymptotically exact. Inside the loop, 
a t  sufficient distance from the RC line on the first-or- 
der phase-transition lines AB and AC, the value of q, 
is not small and the system (23) should have been re- 
placed by the analogous system for q:' and v:'. Analy- 
sis shows, however, that the results remainqualitative- 
ly the same in this case, too. The shape of the wave, 
however, becomes strongly anharmonic (Fig. 3). We 
emphasize that in this case, too, the system does not 
constitute alternating layers of separate phases. 

We have so fa r  disregarded completely the fluctuations 
of the order parameter q(r). ~razovski? '  has shown 
that owing to the relatively large phase volume of the 
fluctuations with k = ko(An - k Z 0 ~ k )  in comparison with 
the phase volume for the states with k = O [ A ~ - ( A ~ ) ~ ] ,  

FIG. 3. Schematic shape of the wave in the loop: a-near the 
line BC, b-near the point A, Fig. 2. 

FIG. 4. Behavior of the entropy and of the heat capacity on 
the line Z of Fig. 2 (P>Pc ). The point T I  l ies  on the line the 
first-order phase-transition line AB, T )  l ies  on the line BC of 
a first-order phase transition close to that of second order. 
The dashed lines show the behavior of the quantities in the ab- 
sence of interaction between the subsystems (g= 0 ). Figures 
a and b correspond to the case  r0 >>Gig and c and d to  the 
case r0 << Gi. 

the phase with k = ko+ 0 is produced via a first-order 
transition. A calculation similar to that of Brazov- 
ski?' shows that the line BC is replaced by a first- 
order phase-transition line B'C' shifted by 

On this line 71 has inside the loop the finite value 

i. e., a first-order close to a second-order phase tran- 
sition takes place. It is then possible to use as before 
the system (23) to describe the thermodynamics. 

Estimates of the discontinuities of the entropy S yield 
S for a transition from the homogeneous 
phase outside the loop into the inhomogeneous phase via 
the line B'C', and S " 7 0  for a transition via AB' o r  AC'. 
Typical plots of the entropy and of the heat capacity 
C, a r e  shown in Figs. 4(a) and 4(b), and correspond to  
the behavior of these quantities on the line I of Fig. 2. 

4. THERMODYNAMICS OF SYSTEM. SCALING 
REGION 

In the case 70 <<Gi i t  is necessary to take into account 
the interaction q4(r) in (21, as a result of which HI 
takes the scale-invariant form" 

HI-r2-"F {q (r)/rP), (2 5) 

where F is a functional. We consider the case Iq(r) I 
<<rB. For  functions q(r) that vary slowly over distances 
-r, we then have 

where A,, A2, and As a r e  constants. Taking into ac- 
count the relations between the exponents, namely 2 
2 - o ! - @ = 2 p - L ~  and a = 2 - 3 p ,  where a,@, and p 
are  the critical exponents that determine the tempera- 
ture dependence of the heat capacity, of the order pa- 
rameter, and of the correlation radius, and neglecting 
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the anomalous-dimensionality exponent 5 -0.03, we ob- 
tain 

Q = 1 a t  y-lnkr << 1. At krc>> 1, i. e., in the region of 
rapid variation of q(r) over distances -rc, the correla- 
tion function ~ ( r )  -r""" and for 1; = 0 we have 

G-I (k) -w (k, z) -k2, 

meaning that Q is constant at r-"/kr-' >> 1. Therefore 
expression (27) remains in force a t  arbitrary k, where 
Q ( ~ Y ~ )  - 1. 

Turning on the interaction with the Coulomb subsys- 
tem leads to an effective functional (27) with 

a (k, 7 )  = y - ' [ k ' + y ~ ~ " 2 k ~ /  (k2+ v Z )  ] (28) 

that differs from (20) only in the temperature depen- 
dences of the coefficients and in a redefinition of TO: 

The fluctuations near the point T =rO a r e  considered 
in the same manner a s  in the preceding case. The line 
BC then becomes a first-order phase-transition line 
and is shifted by3' 67 - T ~ E - ~ ' ~ .  The size of the jump is 
677' e ~ { < d / s ~ &  and justifies at < >> 1 the expansion (26) 
used by us  near the BC line. The values of the entropy 
discontinuities a r e  S -6 on the lines AB and AC and 
S -7; E-'" on the line BC. The plots of S and C, on the 
line I of Fig. 2 a re  shown in Figs. 4(c) and 4(d). 

5. CONCLUSION 

If a multicomponent electrolyte is involved, i t  is 
necessary to put in all  the formulas 

The generalization for v is obvious, the formula for g 
is derived in a natural fashion in the calculations of the 
correlation functions for a multicomponent electrolyte 
by the method described above. We do not write here 
the expressions for the shift, which is of no importance 
to us, of the critical temperature T,. 

We present some estimates for the parameters of the 
resultant inhomogeneous state. Using expressions (7), 
(131, (161, and (17) we obtain 

The condition for the applicability of the Debye-Hiickel 
theory va <<xl" means that 

In the case of a strong local interaction, ,a>> TCp1', we 
have 5 >> 1 and 

A sufficient condition for the existence of an interval 
of densities x a t  which 7 0  lies in the region of the self- 

consistent field, T O  >> Gi, is 

In estimates, in the case x <<p-'[-'~i, when the inhomo- 
geneous phase lies in the scaling region where y =0.63, 
o r  when the condition (34) where p = is  satisfied, we 
can use the expressions 

As noted above, our results pertain primarily to li- 
quid electrolytes. We present numerical estimates. 
Since 5 - c"', and for water a t  room temperature c = 80, 
the described phenomenon could be observed for aque- 
ous solutions of electrolytes. In this case [ ~ 3 , p  ~ 2 0  
and g/T, ~ 2 0 .  For  example, for intrinsic dissociation 
in the phenol-water system near the stratification cri-  
tical point,'3 Tc = 339 K, and x=10", we obtain ~ ~ ~ 1 0 "  
(assuming that we land in the scaling region), To- Tc 
~ 0 . 3  K, and ko=106 cm-'. 

When account is taken of the intrinsic dissociation of 
water into H* and OH- ions near the critical point (T, 
=647 K), owing to the higher T, the smaller & = l o ,  
g / ~ c =  10, 5 =1.3, p = 80, and x =lo5, we obtain TO 

=lo-'-10" and To- T, -1 K, ko =lo6 cm". 

Besides liquid electrolytes, similar phenomena can 
take place in solids near the point of a structural-type 
second-order phase transition, if the charges in these 
crystals can be redistributed a s  a result of the pres- 
ence of vacancies o r  voids in the crystal structure.'* 
The wave vector ko is then fixed because of the crys- 
tallographic anisotropy, and the phenomenon consists 
as a manifestation of an incommensurate structure in 
the temperature interval between a symmetrical phase 
and a nonsymmetrical one. 

We note in conclusion that in the case < - 1 << 1 the 
coefficient of the quadratic term in the expansion of 
w(k, 7) in powers of k - ko is anomalously small, i. e., 
we find ourselves in the vicinity of the Lifshitz critical 
point considered in Ref. 15. This critical point is 
characterized by a noncommensurability parameter 
6 = 1 - 5 and by a dependence of the wave vector on 6: 
ko - (- 6)'". We point out that for the system consider- 
ed by u s  the Lifshitz critical point coincides with the 
usual critical point. 

The authors thank I. M. Lifshitz and V. L. Pokrov- 
ski: for interest in the work. 

 he corre la t ion  function of in te res t  to us,  in the f o r m  
( X ( r , ) Y  (I-2)), can  b e  regarded  a s  the  l imit ,  as 71 - 7 2 ,  of Mat- 
s u b a r a  Green ' s  functions of the type (T ,{x(~~,  r1)Y (rz,  ~ 2 ) ) ) .  

where  X and Y a r e  a r b i t r a r y  operators .  T h e s e  c o r r e l a t o r s  
are expressed  by cor re la t ion  functions in the  frequency re- 
presentat ion,  summed over the frequencies. In the c a s e  of 
in te res t  to  u s ,  however, the principal  contribution i s  made 
by the zero-frequency te rm.  9"0 

2 ' ~ i n c e  the  sys tem i s  isotropic,  degeneracy i s  present  with r e -  
spec t  to  the direct ions of b. It can  b e  shown, however, that  
a wave with a fixed direct ion ko i s  thermodynamically m o r e  
favored than a superposi t ion of such waves. The concrete 
real izat ion of the direct ion in the  sys tem is determined by 
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the boundary conditions, by the external fields, and by other 
factors. 

3 ' ~ t  should b e  noted that the express io?~ for 67) and 67 contain 
a s  a factor the Ginzburg coefficient Gi= T ~ A ~ / A ~ A ~  for the 
functional (26 ). The value of Bi can be obtained by match- 
ing 127 ) to ( 2 ) in the region T -  Gi. It i s  easy to verify that 
the Gi-1. 
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Thermodynamic effects in multipulse NMR spectroscopy in 
solids 

B. N. Provotorov and E. B. Fel'dman 
Divbion of Institute of Chemical Physics, USSR Academy of Sciences 
(Submitted 29 April 1980) 
Zh. Eksp. Teor. Fiz. 79,2262217 (December 1980) 

We consider the behavior of multispin systems in solids under the influence of multipulse trains. An 
important role is played here by the small fraction of the spins whose interaction is not averaged out by the 
external actions because these spins are in local fields a,,-2~/t,, where t, is the period of the external 
actions. It is shown that these nonaveraged interactions play an important role in the absorption of energy 
from the external fields by the spin system. A method of canonical transformations is developed to study the 
dynamics of spin systems in arbitrary rnultipulse experiments. The behavior of spin systems acted upon by 
pulse trains that average out the dipole-dipole interaction is investigated. The nature of the damping of the 
longitudinal component of the magnetization in the pulse trains WHH-4 [J. S. Waugh, L. M. Huber, and U. 
Haeberlen, Phys. Rev. Lett. 20, 180 (1968)l and HW-8 [U. Haeberlen and J. S. Waugh, Phys. Rev. 175, 453 
(1968)] is investigated. Solution of the equation for the spin-system density matrix yields the damping time of 
the transverse magnetization component as a function of the period of the pulse train and of the detuning of 
the RF-pulse carrier frequency from the spin Larmor-precession frequency. New pulse trains that average out 
dipole-dipole interactions between spin nuclei are considered. 

PACS numbers: 76.60. - k, 75.30.D~ 

Recent ly  r e p o r t e d  mul t ipulse  NMR methods1-= have  
improved  of t h e  r e so lu t ion  i n  t h e  spectra by  a fac to r  
of s e v e r a l  hundred,  t hus  substant ia l ly  extending t h e  
poss ibi l i t ies  of investigating t h e  s t r u c t u r e  of m a t t e r  
a n d  dynamic  p r o c e s s e s  i n  sol ids .  T h e  r e so lu t ion  w a s  
improved  by us ing in tense  radio-f requency pulsed 
fields.  Unlike in  o rd ina ry  spec t roscopy  however ,  t h e  
f ie lds  w e r e  used  not to r e g i s t e r  t he  abso rp t ion  lines, 
but f o r  dynamic  ave rag ing  of the  dipole -dipole in t e rac -  
t i ons  r e spons ib le  f o r  t h e  broadening of t h e  NMR spec- 
t r a l  l i nes  i n  sol ids .  By us ing  pe r iod ic  t r a i n s  of in tense  
R F  pu l ses  (with pe r iods  t,) it b e c a m e  poss ib l e  to or- 
gan ize  r ap id  t r ans i t i ons  (within a t i m e  -t,) between 
Z e e m a n  l eve l s  of dipole-coupled nuclei. A s  a r e s u l t  

t h e  an i so t rop ic  dipole in t e rac t ions  b e c o m e  osc i l l a to ry  
with f r equenc ie s  tha t  are mul t ip l e s  of 2n / t c  and  exceed  
g r e a t l y  the  c h a r a c t e r i s t i c  f r equency  w,, of t h e  dipole- 
d ipole  in teract ion.  

It is wel l  known f r o m  classical mechan ics4  t h a t  
s i m i l a r  r ap id ly  osc i l l a t ing  in t e rac t ions  exert on a s y s -  
t e m  t h e  s a m e  ac t ion  as a sui tably  cons t ruc ted4  t i m e -  
independent ef fect ive  in teract ion.  Unlike i n  m e c h a n i c s ,  
i n  mul t ipulse  NMR spec t roscopy  of s o l i d s  it is n e c e s s a r y  
to d e a l  with s y s t e m s  having macroscop ica l ly  l a r g e  num-  
b e r s  of d e g r e e s  of f r e e d o m ,  i.e., with the rmodynamic  
s y s t e m s .  T h i s  c i r c u m s t a n c e  g r e a t l y  compl i ca t e s  t h e  
theo re t i ca l  ana lys i s  of t h e  mul t ipu l se  p r o b l e m ,  and a s  
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