
harmonic is radiated in  the direction of the higher plas- 
ma density. 

The authors thank L. I. Bondarenko for the numerical 
calculations. 

APPENDIX 

We present now an algorithm for the calculation of the 
coefficient Qi2 of conversion of the energy of the wave 
incident on the plasma into the second harmonic. First ,  
specifying the parameters u and N,, we obtain the posi- 
tion of the synchronism point of the harmonics, i. e. , 
us, the refractive index N, = N,.(o, us), and the ra te  of di- 
vergence g, of the modes in the vicinity of the synchron- 
ism point. We then calculate the functions G,: 

and the nonlinear source f: 

where gi and g2 characterize the polarization of the 
synchronized harmonics: g= +l for the ordinary waves 
and g = -1 for the extraordinary ones. Given the first- 
harmonic energy flux Si in the synchronism region we 
now determine the nonlinear transformation coefficient 

The polarization coefficients of the harmonics in the 
synchronism region a r e  respectively 
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Is renormalization necessary in the quasilinear theory of 
Langmuir oscillations? 
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We elucidate the conditions for the applicability of the quasilinear approximation for the description of 
resonance interactions between waves and particles. We show that when the condition for fast phase mixing 
and collectivization of resonance particles (overlap of neighboring resonances) is satisfied, the nonlinear 
corrections to the growth rate and to the diffusion coeeficient are negligibly small. 

PACS numbers: 52.35.M~ 

1. The formalism for the quasi-linear theory for the equation for the distribution function of the resonance 
description of resonance interactions between waves particles has then the form of the Fokker-Planck dif- 
and particles was developed about two decades ago.'" fusion equation, and for the evaluation of the appropriate 
The theory was based upon the assumption that there collision integral it is sufficient to restrict oneself, a s  
exists in the plasma a rather broad packet of oscilla- was assumed earlier,ls"o the contribution from the 
tions in which rapid phase mixing takes place. The main terms, quadratic in the field amplitude. 
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The conditions for the applicability of the quasi-linear 
theory were formulated a s  follows: if Av is the width 
of the packet with respect to the phase velocities, the 
time for phase mixing in the packet is t," l / U v .  This 
time must be appreciably shorter than the quasi-linear 
diffusion time 

t,<t,- ( A v )  'ID,, kAv> (k'D,)'"; (1) 

where 

e2 
Dk = --;--IE,lZ(kv=oJ 

m-u 

is the diffusion coefficients for the particles due to the 
waves, o, is the frequency of the plasma oscillations 
which is close to the Langmuir frequency w,a (4rn,,e2/ 
m)"' and no is the plasma density. 

Condition (1) can also be written in the form 

where 

is the root mean square amplitude of the potential in the 
packet. 

It is  necessary for the applicability of the quasi-linear 
theory that in addition to rapid phase mixing we have 
also collectivization of the resonance particles when the 
regions of trapping corresponding to different harmonics 
in the packet overlap. The width of a separate wave- 
particle resonance is 

Hence Av = (D,/k)"' and for the applicability of the 
quasi-linear theory it is  necessary that 

Here 6v is the distance in phase velocity between neigh- 
boring harmonics in the spectrum, and y, is the growth 
rate of the amplitude and determines the broadening of 
a separate line connected with the non-stationar ity of 
the process. 

In Ref. 3 attention was drawn for the first  time to the 
fact that the formal application of perturbation theory 
when solving the kinetic equation for the distribution 
function leads to the appearance of divergences in higher 
orders in the field amplitude a s  compared to the quasi- 
linear approximation. These divergences were re- 
moved in Ref. 3 using a renormalization procedure 
based upon the summation of a well-defined class of 
non-linear terms and leading to_ a broadening of the re-  
sonance kv = w, by an amount khv. By virtue of condi- 
tion (I) ,  such a renormalization does not change the 
quasi-linear equations. 

In recent  paper^^-^ it is emphasized that the applica- 
bility of the quasi-linear theory i s  restricted by the 
condition of very small field amplitudes: (k '~ , ) "~  << y,. 
The main basis for such statements was the existence 
of results of numerical simulations of wave-particle 
resonance interactions which did not fit into the frame- 
work of the quasi-linear theory (see Refs. 5, 6). A de- 

tailed analysis of these results  goes beyond the frame- 
work of the present paper but we note merely that they 
were a l l  obtained under conditions when the str ict  in- 
equalities (I), (2) corresponding to the applicability of 
the quasi-linear theory were violated. 

The analytical papers in which attempts a r e  made to 
reconsider the quasi-linear theory can be split into two 
groups. The first  group contains semi-phenomenologi- 
cal models (see, e.g., Ref. 4) which in some form or  
another s tar t  ad hoc from the assumption that there is 
no complete mixing in the phase plane and that there 
exist clusters of particles trappedby the waves (clumps). 
The question of i ts  justification remains obscure, since 
it is unclear here which analytical procedure for sol- 
ving the kinetic equation is the basis of this model. In 
the second group of papers attention is drawn to the 
fact that also in the perturbation theory which is  re- 
normalized by taking the broadening of the particle- 
wave resonance into account there remain in the 
higher orders  in the field amplitude t e rms  which de- 
scribe the coupling of harmonics with resonance par- 
ticles and which a r e  comparable with the quasi-linear 
terms when (k2D)"'2 yk. 

The non-linear corrections to the diffusion coefficient 
turn out to be finite only when account is taken of the 
wave-particle resonance broadening, which itself is ex- 
pressed in terms of the diffusion coefficient. We show 
in what follows that under those conditions the non- 
linear interaction of the harmonics does not change the 
structure of the quasi-linear equations which a r e  ob- 
tained in the main order of perturbation theory. 

The equation for the distribution function of the reso- 
nance particles has the form of a diffusion equation, 

with a diffusion coefficient proportional to the spectral 
density of the oscillations in the resonance point kv = w,: 

The spectral density of the oscillations changes with a 
growth rate proportional to the derivative of the reso- 
nance particle distribution function: 

Taking the non-linear terms into account can affect 
only the change in the coefficients q, and q, in the 
quasi-linear Eqs. (3), and (4). This i s  in actual fact 
equivalent to a renormalization of the force of the re- 
sonance wave-particle interaction a s  compared to the 
usual quasi-linear theory obtained in the main order of 
perturbation theory (analogous to the charge renorma- 
lization in quantum electrodynamics). An attempt to 
take such a renormalization into account was already 
made in Ref. 7, but due to the selective nature of the 
summation of the non-linear terms the conclusion of 
that paper, that it is necessary to change the quasi- 
linear equations, seems to us to be premature. 

In the present paper we use a perturbation-theory 
solution of the kinetic equation to evaluate consistently 
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the non-linear corrections to the distribution function 
in any order in the field amplitude. We use the results  
to find the non-linear contribution to the resonance par- 
ticle-wave interaction (growth rate, diffusion coefficient), 
assuming the phases of the oscillations to be random. 
It i s  important that the problem of the non-linear cor- 
rections itself occurs only for one-dimensional oscil- 
lations a s  in the three-dimensional case the non-linear 
terms a r e  clearly negligibly small  when condition (1) 
is satisfied. However, also in the one-dimensional case 
one can show through direct calculations that the inte- 
grals determining the main non-linear contribution to 
the growth rate, and hence also to the diffusion coef- 
f icient, vanish in any order in the field amplitude, s o  that 
we get for the coefficients q, and q, the usua1"quasi-linear" 
values 

qI=eZ/nt; q,=no Jn,. 

2. Just as in Ref. 7, we consider the electron Lang- 
muir oscillations of an isotropic plasma. Our problem 
consists in establishing the limits of the applicability of 
the quasi-linear theory, and to solve it we find the non- 
linear corrections to the quasi-linear equations. For 
the calculation of the non-linear corrections to the dis- 
tribution function in the region of the resonance velo- 
cities v = wk/k we use a formal perturbation theory in 
which the solution is  written in the form of expansions 
in powers of the electric field amplitude E k .  

In the second order in the field amplitude the non- 
linear interaction of the harmonics Ekl+ and EL, leads 
to the appearance of beats a t  the frequencies 
~ ' k , - k ,  +wk,,.and the first  non-vanishing correction to 
the distribution function f k  occurs in the third order in 
E L  and has the form 

4ne' 1 -- 
mk," 

where 

is  the linear dielectric constant. 

The structure of the solution given here is very sim- 
ple. The terms a c - ~ ( u ~ , - ~ ,  + wk,, k , )  a r e  caused by 
the appearance of the electric field of the beats, and the 
first  term in the formula for fNkL i s  the result of the 
solution of the kinetic equation in the given electric 
field. The application of perturbation theory leads to 
the occurrence in the resonance point k-v  = w k  of diver- 
gences. The divergences a r e  removed by taking into 
account the non-linear broadening of the resonance. 
This was done in Ref. 3 but for Langmuir oscillations 
the procedure is formal because of condition (I) ,  and 

for us  it will be sufficient to use the following repre- 
sentation of the resonance denominators which a r e  
based upon Landau's rule for going around singularities 
(see Ref. 8): 

1 - P 
-- + n i s ( k v - o r ) ,  

kv-or-i6t kv -or  (6) 

where bk= ( k ' ~ ~ ) " ~ .  

The non-linear change in the electric field amplitude 
i s  found from the equation 

One sees  easily that the main contribution to the inte- 
gral over the velocities on the right-hand side of this 
equation gives the first  term in the formula for f'iL and 
that the terms connected with the electric field of the 
beats a r e  small compared to the main term in the 
ratios y k/bk and 6i/k2Au2. This is a rather obvious re-  
sult, since the contribution from the resonant particles 
to the electric field of the beats contains an extra 
small  factor proportional to the number of these parti- 
cles, i.e., the growth rate, while, on the other hand, the 
contribution to the field of the beats from the non-reso- 
nant particles is small  a s  it does not contain resonance 
denominators. We shall therefore in what follows use 
the approximation of a given electric field when calcu- 
lating the non-linear corrections to the distribution 
function also in higher order in Ek .  

Just a s  in the quasi-linear theory, we assume the 
phases of the different harmonics to be random. In that 
case the non-linear corrections to the growth rate, ob- 
tained using Eq. (7) a r e  connected with the processes of 
induced scattering and decay interaction of the har- 
monics which a r e  well known from weak turbulence; 
the only difference with weak turbulence i s  that we con- 
sider processes involving resonant particles. Using 
Eq. (5) for fNkL we get the following non-linear correc- 
tions to the growth rate, corresponding to a scattering 
of the wave (wk, k) into the wave (wkl, .kl): 

and to the four-plasmon decay into a set  of waves 
(wk, k), ( ~ k , ,  kl), (wk2, h), (wk,, k3) being intermediated 
by resonance particles: 

k,, kzr (k+ki-kz)j I I  J d v ? i l ; i ~  lk+k,-k21 b>k+k,-k,+6lk!-6lk,-kv 
a 

X- 
1 - -- , a  I a f o l '  du, ok+ok,-(k+k,)v  du, or,-k?v 8v, 

I + C.C.) . 
( y + i , o . + o k , - o k , - ~ k t k . r , )  (9) 

We analyze first  of a l l  the non-linear contribution due 
to induced scattering. Fi rs t  of all, it is clear than this 
correction can be appreciable only in the one-dimen- 
sional case, while in the case of a three-dimensional 
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Langmuir oscillation spectrum this contribution is re- 
duced by a factor 6 i /k ' (A~)~  due to the fact that the 
phase volume of the wave vectors (or particle velocities) 
entering resonance is small. In the one-dimensional 
case an order of magnitude estimate of the integral on 
the right-hand side of (6) for the resonance region of 
velocities vz wk/k= wk,/kl gives the following result: 

where 

2na9 af, .f -- 
L -  mk"9x 

is the growth ra te  used in the quasi-linear theory, and 
611s ( k 2 ~  k)"3 is the width of the resonance. 

Using the formula for Dk we find that the correction 
considered is of the order yL(Ek 1' and in principle tak- 
ing into account similar types of term without changing 
the form of the quasi-linear equations may affect the 
renormalization of the force of the resonance wave- 
particle interaction compared with the usual quasi- 
linear theory, a s  was already mentioned in the first  
section. It turns out, however, that when one evaluates 
the integral on the right-hand side of (8) exactly in the 
main order in the parameter &/kAv it vanishes and 
there is no such renormalization. Indeed, this integral 
can be split into two terms, the first  of which has the 
form 

where 

is a smooth function of u .  This term can be transfor- 
med to the fo rm 

and does not at al l  contain singularities a 6;'. 

The second term is proportional to the- integral 

and a s  in the integral over k, all singularities of the 
integrand lie in the upper half-plane, we find, substitu- 
ting approximately (E,,('= IEkI2, that the integral over 
k, vanishes, i.e., the main singularity 0: 6i3 i s  also ab- 
sent from that term. 

One proves completely analogously also the absence 
of singularities corresponding to corrections compar- 
able with the quasi-linear growth rate in arbitrary 
(n + 1)-st order in jE,1'. In the random phase approxi- 
mation for the Fourier harmonics of the electric field 
the formula for the non-linear correction to the growth 
rate describing the n-fold scattering of a wave by reso- 
nance particles has the form 

The integral over x, in this formula contains two 
terms, one of which, proportional to 

a I EX,, It a 1 -- 
E 1 ax. %_I + oh,, - (kn-I + x.) v du u*ln - *,,v ' 

by complete analogy with the analysis given above does 
not contain singularities 6-' which can make a contri- 
bution to the growth ra te  comparable to the quasi-linear 
one. 

The second has the form 

where 

is a smooth function of v. Similarly we evaluate the 
integrals over x,-,, x,-,, and s o  on. In final reckoning 
we get, dropping during the calculations terms whose 
contribution is clearly small  compared to the quasi- 
linear one, the following integral: 

where q(v) is a function without singularities, s o  that 
the integral given here does not contain any singulari- 
t ies at all. 

3. We now turn to an evaluation of the non-linear cor- 
rections to the growth ra te  which a r e  connected with 
the decay interaction of the harmonics. As in the case 
of the induced scattering process by resonance par- 
ticles considered above in the three-dimensional case 
the non-linear corrections a r e  reduced in that case by 
a factor ( k A ~ / b ~ ) ~  due to the fact that the phase volume 
of the wavevectors and velocity vectors entering the 
resonance wk = k-v is small. The one-dimensional case 
is degenerate-the non-linear corrections a r e  in that 
case anomalously large and their contribution to the 
growth rate may become appreciable. It was just to 
this kind of non-linear corrections caused by the decay 
interaction of the harmonics intermediated by reso- 
nance particles that the necessity to renormalize the 
quasi-linear theory was attributed in Ref. 7. 

We consider the one-dimensional case in more detail. 
As in Ref. 7, we shall assume that the condition 

is satisfied which corresponds to the smallness of the 
dispersion of the frequencies of the waves which in- 
teract with one another in the case when their wave- 
vectors a r e  incident in the resonance region kt= w,,/v. 
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When this condition is satisfied we can in Eq. (9) put 
approximately 

o,+mh=~h+ok+k,-k 

Changing to the one-dimensional case we write this 
formula in the form 

An order of magnitude estimate of the integral on the 
right-hand side of (12) gives 

Substituting 6," (kZ~,)l" we find that the non-linear cor- 
rection is of the order of the quasi-linear growth rate. 
The authors of Ref. 7 restricted themselves to just 
such an estimate and they based upon that estimate the 
incorrect conclusion that it is necessary to take the 
non-linear corrections to the quasi-linear theory into 
account. In fact, the integrals on the right-hand side of 
Eq. (12) can be evaluated exactly without particular dif- 
ficulties. Putting approximately I E  1's JE , )~  and using 

k! the residue theorem to evaluate the integrals over k, 
and k, (the poles of the integrand a r e  on both sides of 
the real  k,, k, axis) we get the following result: 

In each of the integrals over v and v' all  singularities 
of the integrand a r e  on one side of the real  axis (in the 
upper half-plane in the integral over v and in the lower 

half-plane in the integral over v'). Replacing approxi- 
mately the derivative 8f ,/av by i ts  value for v = ok/k 
one shows easily that the integrals over v and v' do in 
fact not contain the higher-order singularities which 
lead to the estimate (13). The non-linear corrections 
to the growth rate (12) a r e  thus small compared to the 
quasi-linear value. This conclusion is obtained for 
four-plasmon decays but a completely analogous proof 
can be given also for higher-order decays. 

When conditions (1) and (2) which were first  formula- 
ted in Ref. 1 as the conditions for the applicability of 
the quasi-linear theory a r e  satisfied the non-linear 
corrections to the quasi-linear equations turn out to be 
indeed small. In the present paper we showed that the 
non-linear corrections to the growth rate a r e  small; 
however, it follows from the energy conservation law 
that in that case the non-linear corrections to the dif- 
fusion coefficient a r e  also small. 
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An equation for the dynamics of small-scale magnetic fields is derived for a non-Markov model by using the 
Lagrangian statistical characteristics of turbulence. It is shown that the behavior of the fields is closely 
connected with the correlation characteristics of the scalar admixture. In the case of extremely low magnetic 
viscosity D<v(v  is the kinematic viscosity), the dynamics of the fields is described at large wave numbers by a 
universal equation. It is shown in this case that a dynamo solution, i.e., a solution that increases without limit, 
exists. The problem of the dynamo of a small scale field is thus solved for the case D <v .  

PACS numbers: 41.10.H~ 

While the question of the dynamics of large-scale it is regarded as established that turbulence leads to 
magnetic fields in a turbulent medium is now regarded the onset of turbulent diffusion and to generation (in the 
as solved in the main outline, the problem of pulsation case of reflection non-invariance) of a large-scale 
fields remains open despite its large urgency. Indeed, field.'& The question lies here only in the accuracy of 
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