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Second-harmonic generation upon incidence of an electromagnetic wave on a weakly inhomogeneous plasma 
is investigated under conditions when the plasma density gradient is perpendicular to the external magnetic 
field. The efficiency of energy conversion into the second harmonic is calculated and the dependence of the 
effect on the polarization of the wave incident on the plasma is indicated. 

PACS numbers: 42.65.Cq 

INTRODUCTION 

It was shown earlier1 that when a p-polarized elec- 
tromagnetic wave is incident on a weakly inhomogeneous 
cold isotropic plasma, a second harmonic is observed 
in the reflected signal. This effect occurs only in an 
inhomogeneous plasma because of the following circum- 
stances. First ,  in  an inhomogeneous isotropic plasma 
the nonlinear current induced a t  double the frequency by 
the incident wave is not purely longitudinal, but has a 
transverse component proportional to the gradient of 
the plasma density. Second, in an inhomogeneous iso- 
tropic plasma there exists near the critical-density 
surface a unique high-Q resonator in which the ampli- 
tude of the f i rs t  field harmonic reaches anomalously 
high values. Owing to the small thickness of this reso- 
nator (compared with the wavelength of the second har- 
monic), the spectrum of the spatial harmonics of the 
nonlinear current broadens and occupies the region of 
the second-harmonic phase velocities, and i t  is this 
which leads to effective generation of the double-fre- 
quency wave from the region of the critical plasma den- 
sity. 

Second-harmonic generation has by now been investi- 
gated by many workers (see, e. g., Refs. 2-51, the 
main premises of the theory have been confirmed, and 

the effect is being used in plasma diagnostics. Since 
the plasma contains frequently quasistationary magnetic 
field (either produced by extraneous sources o r  spon- 
taneously generated in the plasma a s  a result of the de- 
velopment of various in~tabilities~:'~), a need ar ises  for 
the study of the effect of the magnetic field on the gen- 
eration of the second harmonic of the electromagnetic 
wave. This is important both for a correct  interpreta- 
tion of the experimental data and to determine the con- 
ditions under which the effect can be used, a s  well as 
the distinguishing features of the second-harmonic gen- 
eration in  a magnetoactive plasma. 

The features of second-harmonic generation in a mag- 
netoactive plasma a r e  connected mainly with the change 
of the dispersion of the electromagnetic waves. Thus, 
in  a magnetoactive plasma it  is necessary to take into 
account the possibility of synchronism (coincidence of 
the refractive indices) between the harmonics, even if 
the thermal corrections to the wave dispersion a re  
negligibly small. An important role is played by the 
presence of points of intersection of the electromagnet- 
ic-oscillation modes, a s  well a s  the agreement between 
the location of the singularities of the first  harmonic 
and of i t s  refractive index. It will be shown below that 
in a magnetoactive plasma a singularity of the second- 
harmonic field can be located in the region of propaga- 
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tion of the f i rs t  harmonic. Whereas in a cold isotropic 
plasma the second harmonic is radiated from the region 
of a singularity of the first-harmonic field, in a mag- 
netoactive plasma the principal radiation can come from 
the synchronism region of the harmonics, where their 
refractive indices a r e  equal, while the radiation from 
the regions of the singularity of the first-harmonic field 
is negligible because of interference between radiation 
coming from separate layers. It is of interest to in- 
vestigate the influence of the magnetic field on the po- 
larization of the second harmonic. It must be noted 
here that in an isotropic plasma the second harmonic is 
p-polarized and is present only in the reflected signal. 

The present paper deals with the foregoing questions. 
Although second-harmonic generation in magnetoactive 
plasma has already been investigated before," only a 
particular limiting case was considered there, that of 
a weak external magnetic field and of electromagnetic 
waves propagating strictly perpendicularly to this field, 
when the coupling coefficient of the harmonics is small  
in terms of the parameter wHe/w and the problem does 
not deal with a number of important aspects, including 
the interaction between differently polarized waves in 
an inhomogeneous plasma. In addition, the analysis of 
the present paper covers the situations of greatest in- 
terest  from the experimental point of view. It will be 
shown, in particular, that the effect increases substan- 
tially with increasing length of the wave that probes the 
plasma, a factor of particular importance for plasma 
diagnostics in large installations. Estimates made, for 
example, in the centimeter band yield for the energy 
conversion,into the second harmonic an efficiency on 
the order of one per cent a t  an intensity of several kilo- 
watts per square centimeter of the wave incident on the 
plasma. 

1. BASIC EQUATIONS 

We consider the propagation of an electromagnetic 
wave in a cold magnetoactive plasma. Let a homogene- 
ous external magnetic field Ho be directed along the z 
axis, let the plasma density gradient no(x) be perpendic- 
ular to it and directed along the x axis, and let the wave 
vector k lie in the hz) plane. For high-frequency os- 
cillations, in which the principal part  is assumed by 
electrons, we use the following system of equations: 

We solve the problem by successive approximations 
relative to the first-harmonic amplitude. The hydro- 
dynamic electron velocity v and the electron density n 
a r e  represented in the form 

v= R e x  v. ( x )  exp (isot-isk,z),  

n=n, (2) + Re n, ( x )  exp (isot-isk.2). & 
In first-order perturbation theory we obtain from (1.1) 
equations for the first-harmonic fields in an inhomoge- 
neous magnetoactive plasma 

where we have introduced the notation 

Here ell, h, and g a r e  components of the dielectric ten- 
so r  of the plasma: 

~ ( w )  = (w/c)~N,~(~) /E,(w)  is the coupling coefficient of 
the ordinary and extraordinary waves, and N, is the 
longitudinal refractive index, which is less  than unity 
for a field propagating in a vacuum. 

The system (1.2) describes the propagation of two 
types of waves in an inhomogeneous magnetoactive 
plasma. On the plasma-vacuum interface the field 
coupling coefficient cy (w) vanishes. In the vacuum, the 
p-polarized wave has field components H,, Ex, and E,, 
and in an s-polarized wave, the components E,, H,, and 
Hz. 

In the next approximation we obtain from the system 
(1.1) the equations for the fields of the second harmonic 
excited by the nonlinear current induced by the f i r s t  
harmonic. They take the form 

where fH and f, a r e  nonlinear sources. 

We express the perturbation of the electron density 
and velocity, a s  well a s  the components H,,, and Ex,, of 
the first-harmonic in terms of Hyi and Eyi, and intro- 
duce in analogy with Ref. 12 the dimensionless plasma 
density v =no(x)/n, (n,sm, w2/47re2 is the critical densi- 
ty) and the dimensionless parameter u = (wH,/w)'. The 
nonlinear sources a r e  then defined by the formulas 

+ 2ca/'/cu' dH,, d vU, -- (-) + VN,U& 
(4-v )  (1-0) dx dx l-u-u (4 -v )  ( l -u-v) '  ' 

euU,/8m02 evU2/8mw2 
1 

(1.4) 
f~ = + 

(1-u) ( l - u - v )  (4-u-v) ( l -u -v )  (4-u-v) 

The purpose of expressing the nonlinear sources in 
the form (1.4) is to separate the resonant denominators 
(1 - u - v )  and (4 - u - v )  and to gather the bounded func- 
tions into blocks Us, so  that the nonlinear sources can 
be represented in a more compact form. It follows 
from formulas (1.4) that the nonlinear effects a r e  
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strongest in the vicinity of the hybrid-resonance points 
in a t  the first  and second harmonics, v = 1 - u and v = 4  
- u ,  respectively. The blocks U, are  expressed in 
terms of the first-harmonic fields in the following man- 
ner: 

dHu, dEu, dHv, U,=GiN.u'" E,, - + 3iN,u'"(l-v) H,, - + 2(u+v-1+3N.')H,,- 
dx dx dx 

U3=iu"(v-3) E,,-N.(Z+u)H,,, U,= ( l - v )  E,,-iu'"N.H,,. 

U,=N.L(l-u) H,,~+2iN.u"vHu,E,,+[ (1-v)"u]E,,', 

U ,=6N.~"H, , -2 (2+~-2v)  E,,, 
UI=i~"N,(8-2u-v) Hut-[uv+2(i-u) (4-u-v) IE,,, 

Equations ( 1 . 3 )  allow us  to calculate the second-har- 
monic fields from the given first-harmonic field. We 
call attention to the fact that the nonlinear sources do 
not contain resonant factors of the type (w2 - wi,)" or  
(4w2 - w;,)-'. Since we a re  considering second-harmon- 
ic  generation when an electromagnetic wave is incident 
from vacuum on an inhomogeneous plasma, we must 
establish the relative arrangement of the regions of 
harmonic propagation, of the hybrid-resonance points, 
and of the intersection points of the oscillation modes 
a s  well a s  of the points of the synchronism kr(2w) 
= 2kr(w) in an inhomogeneous magnetoactive plasma. 

2. DISPERSION CHARACTERISTICS OF FIRST AND 
SECOND HARMONICS IN  AN INHOMOGENEOUS 
MAGNETOACTIVE PLASMA 

We investigate now the dkpendence of the transverse 
component kr of the wave vector on the plasma density, 
assuming the longitudinal refractive index N ,  to be less  
than unity. According to ( 1 . 2 )  we have for the first  
harmonic (k: - ks2)(k: - kHz&,,) = From this we 
obtain the transverse refractive index of the f i rs t  har- 
monic a s  a function of the plasma density v :  

N 2 ( o ,  v )  ={2(1-u)  (1-N:)+2v(l-v)+v(l-N.') (u-2) 

* v [ ~ ~ ( l - N , ~ ) ~ + 4 u ( i - v )  N,a] 'h) /2( i -n-v) .  ( 2 . 1 )  

We shall adhere to the terminology used by Ginzburg. " 
Then the plus and minus signs in ( 2 . 1 )  correspond re- 
spectively to the ordinary and extraordinary waves. 

I t  is seen from ( 2 . 1 )  that the intersection of the oscil- 
lation modes takes place a t  a plasma density 

u, (o )  = l + u ( l - N . Z ) ' / W .  

At the intersection point, the transverse refractive in- 
dex of the ordinary and extraordinary wave is 

The point of intersection of the oscillation modes is lo- 
cated in the wave propagation region if N: > u1"/(2 
+ u l r 2 ) .  In this case, in the vicinity of the intersection 
point, the dispersion of the ordinary wave is anomalous, 
a ( ~ ~ k , ~ ) / d ( w ~ )  < 0, i. e. , the phase and group velocities 

anti-parallel. 

1 .  Let the electron cyclotron frequency W H ~  be l ess  
than the wave frequency w (u<  1 ) .  The field has then 
three reflection points: 

and the hybrid-resonance point for the extraordinary 
wave is v, (w)  = 1 - u .  If the angles of wave incidence on 
the plasma satisfy the condition N: < u t f  ' / ( I  + u l r 2 ) ,  
then the relative arrangement of the reflection points is 
v i ( w )  < v2(w)  < us(@).  In the incidence-angle region 
u i f  * / ( I  +ui12)  < N: < u i r 2  we have v,(w) < v 3 ( w )  < v2(w) .  
Finally, for ul'' < N: < 1 we obtain vi  < v3 < v ,  < v2 .  In 
a weakly inhomogeneous plasma the hybrid-resonance 
region v m  1  - u is accessible to a wave incident from 
vacuum if the longitudinal refractive index N, is close to 

In this case the ordinary wave, propagating from the 
plasma boundary, reaches the intersection points 

where i t  is transformed into an extraordinary wave that 
returns to the hybrid-resonance layer v = 1 - u. When 
an extraordinary wave propagates from the plasma 
boundary, the hybrid-resonance point is obscured by 
an opacity region v i ( w )  < v <  v , (w)  and is therefore inac- 
cessible. 

We note in addition that for N,> No(w) the extraordi- 
nary point has only one reflection point, v l ( w ) .  By 
making the substitutions v - v / 4  and u - u / 4  we obtain 
from ( 2 . 1 )  an expression for the transverse refractive 
index of the second harmonic: 

N 2 ( 2 0 ,  v )  ={8(1-N.') (4-u)+2v(v-4)  +V (1-N.') (u-8) 
~tv[~'(l-N,')'+4u(4-v)N~]'~}/8(4-u-v). ( 2 . 2 )  

According to ( 2 . 2 ) ,  the intersection of the oscillation 
modes a t  the second harmonic takes place a t  the point 

For  the case u <  1 the hybrid-resonance point of the ex- 
traordinary wave at the second harmonic point and the 
reflection points a r e  given by 

For the choice N, = N o ( @ ) ,  when v 2 ( w )  = v3 ( w )  = 1 and 
the hybrid-resonance region v =  v , (w)  is accessible to 
the wave incident on the plasma, the f i rs t  harmonic has 
in a plasma layer 

points of synchronism v, (w , I )  with all the higher har- 
monics. With increasing number I of the harmonic that 
is synchronized with the wave incident on the plasma, 
the synchronism point v,(w, I) approaches the reflection 
point v =  1 of the f i rs t  harmonic. A typical plot of the 
squared refractive indices N: of the harmonics is 
shown in Fig. l ( a )  for N,< No(w).  

of the ordinary wave along the density gradient a re  Figure 2(a)  shows plots of the wave vectors k,  of the 
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FIG. 1. Dependence of the squares of the transverse-wave 
refractive indices at the frequencies w and 2w on the plasma 
density v=no(x)/n,: a )  % e <  W ,  N,<No; b) % z / 2 < ~ ~ e < ~ ,  
N ,  <No( 2w 1; C )  W < ~ H b / 2 ,  N,<NO( 2W 1. For each harmonic, 
the point of oscillation modes is  located in the transparency 
region. 

first harmonic for N,=No(w), the arrows indicating the 
directions of the group velocities aw/akx along the plas- 
ma-density gradient. It i s  seen from the plots in Fig .  
2(a) that the wave incident on the plasma, on passing 
past the point v= 1, i s  synchronized with harmonics 
that propagate from the synchronism points towards the 
edge of the plasma. Consequently, generation of har- 
monics in the synchronism region leads in this case to 
the appearance of waves of higher frequencies in the re- 
flected signal. 

2. W e  consider now the case 1 < u < 4, when w < w,, 
< 2w. Now there i s  no hybrid-resonance point for the 
first harmonic. For N,< ~ ~ ( w )  the ordinary wave has a 
reflection point v2(w) = 1 ,  and the extraordinary wave 
has v=vs(w) > 1. At H, > No(w) the reflection points 
V ~ , ~ ( W )  pertain to the ordinary wave, the extraordinary 
wave has no reflection points, and the branches co- 
alesce again at the intersection point 

For the second harmonic, the resonance point and the 

FIG. 2. Dependence of the transverse refractive indices of 
the harmonics w and 2w on the plasma density. The arrows 
near the curves show the direction of the group velocities of 
the waves: a )  uHe < a ,  N,=No ( w )-special case of penetra- 
tion of wave incident from vacuum up to the hybrid resonance 
layer; b )  w < %,/2, &=No( 2m)-special case when the plas- 
ma region between the vacuum and the point of mode intersec- 
tion is  transparent at the second harmonic to the waves of 
both polarizations. 

reflection points are calculated from formulas (2.3). 
In the region of the elec tromagnetic-wave incidence an- 
gles corresponding to N: < ~ " ~ ( 2  + u'")-~,  the first  
harmonic penetrates into the plasma to a depth v Sv3(w) 
and reaches the hybrid resonance point of the second 
harmonic v = 4 - u under the condition 

N,'< (u+uh-3) (f+uLh)-: 

which i s  possible at N: < + and u < 4. For N: < uU2(2 
+uU2)" the depth of penetration of the first harmonic 
into the plasma i s  v,(w). The hybrid-resonance point of 
the second harmonic i s  accessible to the first harmonic 
if u > 12~ ,2 (1+  N:)-', which takes place at u < 4 and N, 
> N,, where N, i s  a number determined from the equa- 
tion N , ~  + 3 1 / 2 ~ , 2  +Nm =3'12, i. e. , N,z 0.666. In the 
case 1 < u < 4 the second-harmonic reflection point 
vi(2w) i s  closer to the plasma edge, v1 (2w) < v3 (w), than 
the reflection point of the first  harmonic v3(w). 

In the region 1 < u < 2.25 it i s  possible to satisfy the 
condition N: < (3 - 2uiI2)(4 - 2ulr2)-I. Then 1 < v1(2w) 
< v3(w) and the first  harmonic incident on the plasma 
and having the polarization of the extraordinary wave 
i s  synchronized in the region 1 < v< v3(w) with the ordi- 
nary wave at the second harmonic, and the second har- 
monic generated in the synchronization region will be 
radiated "forward," in the direction of the increase of 
the plasma density, towards the reflection point v =4. 
In the case N,' > (3 - 2ui' ' )  (4 - 2uU2)-I the reflection 
point arrangement i s  v1(2w) < v3(w) < 1. Now the point 
of synchronism of the first harmonic with the second 
harmonic traveling in the direction of increasing plasma 
density i s  located in the region 1 < v< v,(o). To illus- 
trate the foregoing, Fig. 103) shows a typical plot of the 
refractive indices N; of the harmonics at 1 < u < 4. 

3. W e  consider now the case u > 4(w < wHe/2), when 
there i s  no hybrid resonance at either harmonic, and 
the regions of propagation of the first and second har- 
monics i s  determined by the location of the reflection 
points v ~ , ~ ( w )  and V ~ , ~ ( ~ W ) .  When the aogles of incidence 
of the first harmonic on the plasma are set by the con- 
dition N, < No(2w) we have 

u,(0)<vs(0)<vt(20) <vr(2ro). 

I f ,  however, No(2w) < N,< No(w) we obtain 

The synchronization of the harmonics in the region of 
their propagation i s  possible only under the condition 
v3(2w) > 1, and this determines the maximum incidence 
angle 9 of the first harmonic on the plasma: 

max N Z Z =  (3+2u'") (4+2u")-'=N.1(0). 

It i s  easily seen that the relation No(2w) < No(w) < N,(w) 
i s  satisfied, with (7/8)'" < N,(w) < 1 at u > 4. In the 
case u > 4 an extraordinary first-harmonic wave which 
propagates in the direction of increasing plasma density 
i s  synchronized with an ordinary second-harmonic wave 
that travels in the same direction and is reflected back 
from the plasma layer with v=4.  

In the special case of first-harmonic incidence on the 
plasma when N, = N o ( 2 u ) ,  the ordinary second-harmonic 
wave i s  partially reflected from the u = 4 layer, and the 
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remainder penetrates farther into the interior of the 
plasma and is fully transformed near the layer v=4  
+ ~ " ~ ( 2  +uir2)-' into an extraordinary wave traveling in 
the opposite direction, towards the plasma boundary 
[see Fig. 2(b)]. We note in addition that a t  N,< N0(2w) 
the point of synchronism of the harmonics is located in 
the plasma-density region 1 < v < v3(w), while a t  N0(2w) 
< N,< N,(w) i t  is located in the region 1 < v< v,(w). A 
typical plot of the refractive indices of the harmonics 
for the case u > 4 is shown in Fig. 1 (c). 

We note also a curious situation that ar ises  when a 
plasma of frequency w lower than the electron cyclotron 
frequency wa, is incident on the plasma at  an angle 6 
equal to sin"N0 (w), i. e. , when N, = No(w) and the plas- 
ma region v < v,(w) ahead of the point of intersection of 
the oscillation modes is transparent to both types of 
wave. In this case, when the wave incident on the plas- 
ma has a polarization corresponding to the limiting po- 
larization of the ordinary wave for low plasma densi- 
ties, the second harmonic is radiated from the syn- 
chronism region in the direction of increasing plasma 
density. On the other hand if the wave incident on the 
plasma has the limiting polarization of the ordinary 
wave, then the second harmonic is radiated from the re- 
gion of the synchronization of the harmonics in the di- 
rection of decreasing plasma density. 

It should be noted here that for a probing first-har- 
monic wave beam that is bounded in the transverse di- 
rection i t  is necessary to take into account the ky com- 
ponent of the wave vector. Equations (2.1) and (2.2) 
then describe the total transverse refractive index NL2 
= N: + N:. Inasmuch a s  the component ky remains 
constant when the plasma density varies, by virtue of 
the homogeneity of the system along they axis, the val- 
ue of N: calculated from formulas (2.1) and (2.2) is 
now decreased by N:, i. e., the N:(w, v) and N,?(~w, v) 
curves on Fig. 1 need nearly be shifted downward by an 
amount N: along the ordinate axis. 

3. SECOND HARMONIC GENERATION IN  A 
HYBRID-RESONANCE LAYER 

We proceed now to calculate the second-harmonic ra- 
diation field. Let Hk(2w,x) be four linearly independent 
solutions of the system of equations (1.3) for the mag- 
netic field HyZ when there a re  no nonlinear sources, and 
Ek(2w,x) the corresponding solutions for the electric- 
field component Eyz. We express the solution of the 
system (1.3) with nonlinear sources f, and f, in the 
form 

The functions A,k) then satisfy the equations 

Solving the system of linear equations (3.1) for a,/ 
dx, we obtain the unknown functions A,&): 

Ak (Zo,  x') 
A,(x)= dx' i A ( Z o , x ' ) '  

I* 

where Ak(2w,x) and ~ ( 2 w , x )  a r e  the corresponding 
fourth-order determinants of the system (3. I), and the 
choice of the end points x, of the integration interval is 
connected with the boundary conditions of the second- 
harmonic radiation. 

1. Let us  investigate second-harmonic generation in 
the region u s 1  -u (u< 1) of the first-harmonic reso- 
nance, where the field of the extraordinary wave has a 
singularity ESi - (1 - u - v)". In a weakly inhomogeneous 
plasma i t  is necessary to ensure passage of the extra- 
ordinary wave towards the hybrid resonance point. Ac- 
cording to the results of the preceding section, this is 
achieved by incidence of the f i rs t  harmonic on the plas- 
ma at  an angle close to critical, when N,= No(w). We 
put v = 1 - u +X/L (L is the plasma-density inhomogene- 
ity length) and assume, to simplify the formulas, that 
N, is small. 

In the first-harmonic hybrid-resonance region, Eqs. 
(1.2)- (1.5) take the form 

6 ieu'" d Eui a 
-Eu.+kEz(20)Eu; = - - ( l -u ) - ( - )  . 
dxz mc' dx l-u-v 

d' azu(u-1)  (3.3) 
pEu* +cyfl-u-v)  (i+N.')E,,=O. 

At the chosen v h )  dependence, the solution of Eq. (3.3) 
for the first-harmonic field is expressed in terms of a 
Hankel function: 

Here Si is the flux of the first-harmonic energy along 
the plasma-inhomogeneity direction, vo = 1 - u, and 0 
s a r g t  G r .  

The solution (3.4) describes the propagation of an ex- 
traordinary wave in the direction of the decrease of the 
plasma density towards the hybrid resonance point 5 
=0, in the vicinity of which the wave is completely ab- 
sorbed a t  arbitrarily small dissipation. We write out 
the solution for the second-harmonic field. From (3.3) 
i t  follows that 

where the singular point x' = 0 is circled from above, 
and k2 = kX(2w, vo) is the wave vector of the second har- 
monic in the-region of the resonance. An analysis of 
(3.5) shows that the second harmonic is radiated for- 
ward-in the propagation direction of the first  harmon- 
ic. 

Next, calculating the amplitude of the second harmon- 
ic, which is proportional to the integral 

+- dE ck, c l o L  
c(p)= J -[H,'" ( 2 ~ ' " )  l Z  ezd, p = - 5 (I, uv,(l+N,Z) ' (3.6) 

-- 
we note that the singular point 6 = 0  makes no contribu- 
tion, and the value of the integral is determined by the 
contribution of the synchronism point 5, = (4/pZ) >> 1 of 
the harmonics. It can be verified that passing through 
the synchronism point is the stationary phase line 
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4 cp 
-a 3n 

= ( 0 s  s i n )  , E=pdW, - ?4 0 G - 
P 2 2 2 , (3.7) 

which goes around the singularity in the complex plane 
a t  a large distance, where the asymptotic expression 
for the Hankel function H' " ' - e ~ ~ ( 2 i [ ~ ' ~ )  is valid. On 
the stationary phase line defined by the equation 
~e(45"'-  p5) =4/p, the integrand in (3.6) has an abso- 
lute maximum at  the saddle point E , ,  and decreases ex- 
ponentially with increasing distance from the point 5,. 
This result is directly connected with the smallness of 
the parameter p, which is equal to the ratio of the 
characteristic wavelength of the f i rs t  harmonic to the 
wavelength of the second harmonic, and a s  a result the 
nonlinear source turns out to be rapidly varying a t  dis- 
tances of the order of the wavelength of the second har- 
monic radiated from this point. 

Thus, in  contrast to the case of an isotropic plasma,' 
despite the presence of a singularity in the nonlinear 
source, the radiation of the second harmonic from the 
region of the hybrid resonance of the first  harmonic in 
a weakly inhomogeneous plasma (when the points of re- 
flection, synchronism, and hybrid resonances a r e  sep- 
arated by distances greater than the characteristic 
wavelengths) is negligible a s  a consequence of the in- 
terference of the radiations from the individual layers 
in the vicinity of the hybrid-resonance point. In the 
case of an isotropic plasma' the amplitude of the second 
harmonic is also proportional to an integral of the type 
(3.61, but now with a large value of the parameter p. It 
is easily seen from (3.6) that a t  p >> 1 the asymptotic 
value of the function C(p) is the residue of the integrand 
a t  the point 5 =O. In a weakly inhomogeneous magneto- 
active plasma, a similar situation ar ises  in the high- 
frequency range, w >> w,,, at almost normal incidence, 
N, << 1, of the f i rs t  harmonic on the plasma, when the 
reflection points of the f i rs t  harmonic a r e  in the imme- 
diate vicinity of the hybrid-resonance point. In this 
limited case, which is considered a t  N, = 0 in Ref. 11, 
the second-harmonic generation effect, in analogy with 
the situation in a cold isotropic plasma,' is due to the 
singularity of the first-harmonic fields. Consequently, 
if N,=O, the contribution of the singularity must be tak- 
en into account in the frequency region w 2 w~, (L /x ) ' /~ ,  
where L is the plasma-density inhomogeneity length and 
X is the vacuum wavelength of the f i rs t  harmonic. 

2. Since the nonlinear source fH and f, have a singu- 
larity a t  the point of the hybrid resonance of the second 
harmonic v,(2w)= 4 - u (u < 4), we shall investigate sec- 
ond-harmonic generation in  the vicinity of a layer of 
plasma of density v= 4 - u. The accessibility of this 
layer for a f i rs t  harmonic incident from vacuum im- 
poses on the f i rs t  harmonic the limitation *wH, < w 
< OH,, a s  well a s  the restriction indicated in the pre- 
ceding section on the incidence angle. To clarify the 
qualitative aspect of the question, i t  suffices to consider 
the case of normal incidence of the first  harmonic on 
the plasma. In the vicinity of the hybrid-resonance 
point of the second harmonic we obtain from (1.3)- (1.5) 
the equation 

dZEvz 02u  (4-u) ieuS(u--I) (u-6) dE,, -- E,, - 
dx 

. (3.8) 
dx' c'(4-u-v) E u z m  Gmc2(4-u-v) , 

Assuming a linear, v = (4 - u) (1 + x/L), variation of 
the density near the point u = 4  - u and neglecting the 
variation of the first-harmonic wave vector k,(w) = kl, 
we transform (3.8) into 

where [= w2u~xx/c2,  f i  is a certain constant, and jl 
= (2ckl/w)(c/w~u) << 1. The solution of (3.9) is ex- 
pressed by the integral 

Since the parameter il is small, we can investigate 
(3.10) by asymptotic methods. The contribution of the 
upper limit s = P of the integral describes the induced 
part  of the field, while the contribution of the saddle 
point s =i-"' describes the second-harmonic radiation 
proper. It turns out that the second-harmonic radiation 
appears after tee first  harmonic passes through the syn- 
chronism point 5, = l /pZ >> 1 and propagates in  the same 
direction a s  the f i rs t  harmonic. 

We thus arr ive  again a t  the conclusion that in a weakly 
inhomogeneous magnetoactive plasma the singularity of 
the nonlinear sources, which is connected with the 
presence of a second-harmonic hybrid-resonance layer 
in the plasma, makes no contribution to the emission of 
the second-harmonic wave. 

4. SECOND-HARMONIC GENERATION IN THE 
SYNCHRONISM REGION 

We consider now second-harmonic generation in the 
vicinity of an isolated synchronism point v, of the har- 
monics in a weakly inhomogeneous plasma. The term 
"isolated synchronism point" means that the region 
where the second-harmonic radiation is produced con- 
tains no reflection points, intersection points, o r  hy- 
brid-resonance points. 

Let k+(w,x) and k-(w,x) be the components, calculated 
with the aid of (2. I), of the wave vector k,(w, v) of the 
ordinary and extraordinary waves, respectively, in an 
inhomogeneous plasma. In the propagation region, the 
quasiclassical solutions of Eqs. (1.2) a re  of the form 

Taking into account (4.1) and the ratio of the field 
components, we obtain the polarization coefficients of 
the ordinary (+) and extraordinary (-) waves a t  the first  
harmonic : 

where N(w,x) is the total refractive index, and a = ~ " ~ ( 1  
- N;)/~N,. It is seen from (4.2) that the waves a r e  el- 
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liptically polarized. The limiting polarization of the 
waves at the plasma boundary (v - 0) is equal to K,(w) 
= i[o* (02 + l)i'2]. 

For the second harmonic, the quasiclassical solutions 
Hk(2w, x) and Ek(2w, x) a r e  obtained by simply replacing 
w by 20 in (4. I) ,  and the wave amplitudes A, a re  ex- 
pressed with the aid of the integrals (3.2) in terms of 
the determinants ~ ( 2 w , x )  and A,(~w,x)  of the system 
(3.1). Using (3.1) and (4. I), we obtain 

a s  well a s  the determinant ~(2w,x)=4&,,(2w). The de- 
terminants A ~ , ~ ( ~ w , x )  are  obtained from (4.3) by replac- 
ing H ~ , ~ ( ~ W )  by H3,4(2w) and by interchanging k+(2w) and 
k,(2w). The nonlinear sources f, and fH a r e  given by 
(1.4) and (1.5), in which the differentiation operator 
acts, for the isolated synchronism point x,(w), only on 
the exponentials in the functions H, and E,, and yields 
a factor -ikx(w) o r  -2ikx(w). Next, the first-harmonic 
magnetic and electric fields Hyl and Eyi must be taken in 
the form (4.1) with a normalization factor ( ~ I ~ w s ~ / c ~ ) ~ ' ~ ,  
where Si is the first-harmonic energy flux along the 
density gradient. 

To calculate the second-harmonic amplitude, we sep- 
arate in the functions hk(2w, x) the rapidly oscillating 
factors 

Here F k k )  is a slowly varying pre-exponential factor. 
In the vicinity of the synchronism point we assume a 
linear variation of the density: 

where L, is the inhomogeneity length. We than have 

j l k . (2w, i r ) -  2kS(0 . z ' )  1w =: 0q (o) ( z - z . ) ~  sign k . ( ~ ,  v.) , 
cL. 

(4.5) 
a 

q . ( o ) = v . ~ [ N . ( 2 m , v . ) - N . ( o , v . ) l .  
av. 

After substituting (4.4) and (4.5) in the integral (3.2) 
we obtain the amplitudes of the second harmonic far 
from the synchronism point, where the radiation field 
at  the doubled field has already been formed: 

The second-harmonic energy flux along the plasma- 
density gradient is S, =cZ IA, 12/16nw. 

Formulas (4.1)-(4.6) in conjunction with the expres- 
sions for the nonlinear sources (1.4) and (1.5) make i t  
possible, given the magnetic field Ho, the wave fre- 
quency w, the wave incidence angle, and the energy 
flux Si at the first harmonic, to calculate the coeffi- 
cient Qlz of conversion of the energy of the wave inci- 
dent plasma into the second harmonic, Qlz = cz IA, I Z /  
16wS1 (see the Appendix). In order of magnitude, Qi2 
= n(wL,/c)Si/S,, where n is a certain number, wL,/c 
is the quasiclassicism parameter, and S* is the nor- 
malization energy flux, equal to mzwzcs/e2. It is con- 
venient to express the normalization flux S, in terms of 

the vacuum first-harmonic wavelength Xi =2rc/w: 

Taking Si = 105 w/cm2 and wL,/c = lo2, we obtain Qi2 
= 2.9X lo5 n ( ~ ~ [ c m ] ) ~  for the order of magnitude of the 
coefficient of nonlinear conversion into the second har- 
monic in terms of the energy flux. 

It  is important to note that the second-harmonic gen- 
eration efficiency, measured by the quantity Qi2, in- 
creases in proportion to the square of the first-harmon- 
ic vacuum wavelength. It is of interest to know the or- 
der of magnitude of the coefficient x .  If we take u = 3 
and N,=0.681, then i t  turns out unexpectedly that n 

lo5. Now a t  Xi = 1 cm the efficiency Qiz of conversion 
into the second harmonic reaches one per cent at first- 
harmonic energy flux S i = l .  8 kw/cm2. In this case the 
magnetic field Ho in the plasma should be of the order 
of 17 kOe, and L,=16 cm. 

It can also be noted that the effect increases in pro- 
portion to the additional factor (wL,/c)" ' if the syn- 
chronism point v, coincides with the inflection point on 
the density profile vk). 

CONCLUSION 

We summarize now the principal results on second- 
harmonic generation by an electromagnetic wave inci- 
dent on a magnetoactive plasma in the vicinity of an 
isolated synchronism point of the harmonics. 

1. The frequency w of the incident wave is higher than 
the electron cyclotron frequency OH,. Second-harmonic 
wave generation takes place at  a polarization K(w) =i[a 
+ (d + I ) " ~ ]  of the first  harmonic in vacuum and at in- 
cidence angles close to the critical 8, = sin"[wH,/(w 
+ w~,) ]"~ .  The second harmonic is radiated in the di- 
rection of decreasing plasma density. The first  har- 
monic is synchronized (at different points) with both the 
ordinary and extraordinary second-harmonic waves. 

2. The frequency of the incident wave lies in the 
range wH,/2 < w < WE,. Second-harmonic generation 
takes when the wave incident on the plasma has a polar- 
ization K(w) = i [ ~  - ($ + 1)" ']. There a re  no restric- 
tions on the incidence angle 8. The first-harmonic ex- 
traordinary wave is synchronized with the second-har- 
monic ordinary wave. The second harmonic is radiated 
forward towards the reflection point no = 4n,. 

3. The frequency of the wave incident on the plasma 
is lower than wHe/2. The extraordinary first  harmonic 
wave synchronizes with the second-harmonic ordinary 
wave at  incidence angles smaller than sin-'[(3w + ~ w H , ) /  
(4w + 2~,,)]"~. The second harmonic is radiated for- 
ward into the interior of the plasma towards the layer 
no = 4nc. 

4. The special case N :  = wHe/(w + WE,) and w < WE,. 

When the first  harmonic with limiting polarization of 
the ordinary wave is incident on the plasma, the second 
harmonic is radiated in the direction of the lower plas- 
ma density and has the polarization of the ordinary 
wave. If, however, the first  harmonic has the limiting 
polarization of the extraordinary wave, then the second 
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harmonic is radiated in  the direction of the higher plas- 
ma density. 

The authors thank L. I. Bondarenko for the numerical 
calculations. 

APPENDIX 

We present now an algorithm for the calculation of the 
coefficient Qi2 of conversion of the energy of the wave 
incident on the plasma into the second harmonic. First ,  
specifying the parameters u and N,, we obtain the posi- 
tion of the synchronism point of the harmonics, i. e. , 
us, the refractive index N, = N,.(o, us), and the ra te  of di- 
vergence g, of the modes in the vicinity of the synchron- 
ism point. We then calculate the functions G,: 

and the nonlinear source f: 

where gi and g2 characterize the polarization of the 
synchronized harmonics: g= +l for the ordinary waves 
and g = -1 for the extraordinary ones. Given the first- 
harmonic energy flux Si in the synchronism region we 
now determine the nonlinear transformation coefficient 

The polarization coefficients of the harmonics in the 
synchronism region a r e  respectively 
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Is renormalization necessary in the quasilinear theory of 
Langmuir oscillations? 

A. A. Galeev, R. Z. Sagdeev, V. D. Shapiro, and V. I. Shevchenko 
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(Submitted 6 June 1980) 
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We elucidate the conditions for the applicability of the quasilinear approximation for the description of 
resonance interactions between waves and particles. We show that when the condition for fast phase mixing 
and collectivization of resonance particles (overlap of neighboring resonances) is satisfied, the nonlinear 
corrections to the growth rate and to the diffusion coeeficient are negligibly small. 

PACS numbers: 52.35.M~ 

1. The formalism for the quasi-linear theory for the equation for the distribution function of the resonance 
description of resonance interactions between waves particles has then the form of the Fokker-Planck dif- 
and particles was developed about two decades ago.'" fusion equation, and for the evaluation of the appropriate 
The theory was based upon the assumption that there collision integral it is sufficient to restrict oneself, a s  
exists in the plasma a rather broad packet of oscilla- was assumed earlier,ls"o the contribution from the 
tions in which rapid phase mixing takes place. The main terms, quadratic in the field amplitude. 
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