
traveling thermal grating and bn is the change in  con- The authors a r e  grateful to D.V. Vlasov, A.M. Dyk- 
trast  due to interference of the standing and traveling hne, M.I. Pergament and B. P. Rysev for useful dis- 
thermal gratings. cussions. 

A correlation was noted between the period and depth 
of modulation of the Stokes wave. The depth increases 
with increase in the period. In the case of constant 
time of switching on, this can be explained by the 
change in the pump spectrum. Of course, additional 
experimental investigations a re  needed to verify this 
explanation. This includes studies of the spectra of the 
incident and scattered radiation. Nevertheless, in the 
case of STS of sufficiently short pump pulses, i t  is pos- 
sible in principle to distinguish STS-I from STS-II from 
the shape of the Stokes pulses and to draw conclusions 
on the width of the pump spectrum. The presence of a 
characteristic modulation of the intensity of the scat- 
tered radiation, and the correlation of the period with 
the modulation depth in the present experiment, con- 
form to the mechanism described above. 

The STS mirror can find application in those cases in 
which the required shift of frequency in the reflection 
with reversal of the wave front is minimal. For exam- 
ple, in the scheme of reversal of the wave front in reso- 
nant four-photon i n t e r a ~ t i o n , ~  the STS mirror can re- 
place the ordinary mirror which requires careful align- 
ment, and the SMBS mirror can also find application in 
well known systems for decoupling amplifying stages in 
laser  systems with a narrow amplification band, where 
the frequency shift of the SMBS leads the radiation out 
of the amplification band. 

'B. Ya. Zel'dovich, V. I. Popovichev, V. V. ~ a ~ u l ' s k i ;  and 
F. S. Faizullov, Pis'ma Zh. Eksp. Teor. Fiz. 15, 160 (1972) 
[JETP Lett. 15, 109 (1972)l. 

'v. I. Bespalov, A. A. Betinand G. A. Pasmanik. Izv. vuzov 
Radiofizika 20, 791 (1977). 

3 ~ .  G. Basov, V. F. Efimkov. I. G. Zubarev, A. V. Kotov, 
A. B. Mironov. S. I. ~ ikha r lov ,  and M. G. Smirnov, Kvan- 
tovaya Elektron. (Moscow) 6, 765 (1979) [Sov. J. Quantum 
Electron. 9, 455 (1979)l. 

4 ~ u .  V. Dolgopolov, V. A. ~ornarevski!, S. B. Kormer. G. G. 
Kochemasov, S. M. Kulikov. V. M. Murugov, V. D. Niko- 
laev, and S. A. Sukharev. Zh. Eksp. Teor. Fiz. 76, 908 
(1979) [Sov. Phys. J E T P  49. 452 (1979)l. 

5 ~ .  L. ~inetski? ,  N. V. Kukhtarev. M. S. Soskin, and S. G. 
Odulov, Usp. Fiz. Nauk129, 113 (1979) [Sov. Phys. Uspekhi 
22, 742 (1979)l. 

6 ~ .  I. Bespalov, A. A. Betin, and G. A. Pasmankk, Izv. 
vuzov Radiofizika 20, 91 (1977). 

'A. M. ~ u k h o v n ~ !  and D. I. Stasel'ko, Piz'ma Zh. Tekh. Fiz. 
4, 354 (1978) [Sov. Tech. Phys. Lett. 4, 143 (1978)l. 

8 ~ .  A. Bespalov, A. A. Betin, S. N. Kulagina, A. Z. Matveev, 
G. A. Pasmanik, and A. A. Shilov, in: Obrashchenie Vol- 
nogo fronta opticheskogo izlucheniya v nelinehych sredakh 
(Reversal of the Wavefront of Optical Radiation in Nonlinear 
Media), V. I. Bespalov, ed., Inst. Applied Phys., Acad. 
Sciences, USSR, Gorky, 1979, p. 44. 

Translated by Robert T. Beyer 

Autoionizing band of electron-exciton complexes and their 
role in reflection of slow electrons from the surface of a 
solid 

F. I. Dalidchik and V. Z. Slonim 
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Zh. Eksp. Teor. Fiz. 79,21262141 (December 1980) 

The model of multichannel small-radius interactions is used to obtain an analytical solution of the problem of 
electron reflection from the surface of a two-dimensional ordered lattice of two-level atoms. The positions of 
singularities of the reflection coefficient on a complex energy plane are used to reconstruct the energy 
spectrum of electron-exciton states. The conditions for the existence of autoionizing bands of 
electron-exciton complexes are determined and it is shown that in the presence of such bands the energy and 
angular dependences of the elastic reflection coefficient have characteristics Fano-Feshbach singularities. 
Numerical calculations are carried out for a monolayer of Xe atoms adsorbed physically on the surface of 
niobium. 

PACS numbers: 79.20.K~ 

1. INTRODUCTION properties of periodic low-dimensional structures a r e  
not identical with the properties of bulk crystals com- 

In the last 10-15 years the experiments on low-en- posed of the same atoms. Investigations of the geom- 
ergy electron diffraction have provided direct confir- etry and spectra of ordered adsorbed monolayers a r e  
mation that monolayers of adsorbed atomic particles among the most interesting current topics in the phys- 
form regular structures (two- and one-dimensional i c s  of surface phenomena. Systems of this kind may 
crystals) a t  sufficiently low The exhibit, in particular, collective states of basically 
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new type in the form of autoionizing bands, i. e . ,  slow- 
ly decaying band states located against the background 
of the vacuum continuum?" 

The dispersion law of such states should be a com- 
plex function of the real quasimomentum q: 

E ( q )  = E o ( q )  -iI'(q). (1) 
The imaginary part of the dispersion law-the function 
I'(q)-represents the time spent by an electron in a 
periodic structure. If the continuum of the vacuum 
states has a lower limit (usually taken to be zero), the 
average lifetime of a band state is found to a nonana- 
lytic function of the quasimomentum.'" 

Autoionizing bands a r e  a natural analog of one-cen- 
ter  decaying states, i. e. ,  of autoionizing levels of 
negative ions first  discovered in the early sixties in 
experimental studies of the scattering of slow mono- 
chromatic electrons on gas targets (see, for example, 
the reviews in Refs. 7 and 8). Such bands may be ex- 
hibited by periodic low-dimensional structures in the 
case of a strong exchange interaction between one-cen- 
t e r  resonance levels." They a r e  most likely in the 
case of monolayers of atomic particles with a quasista- 
tionary level of a long-lived negative ion in the range of 
energies under consideration. It must be stressed that 
autoionizing bands differ greatly from the familiar 
"surface resonances," which a r e  formed from the 
Tamm bands because of the possibility of energy ex- 
change between the normal and longitudinal (relative 
to the surface) degrees of freedom of an electron." 

An electron may leave a periodic structure for a num- 
ber of reasons, for example, because of a change in the 
conditions of motion over long distances (which happens 
when an external field is applied3) or  because of the 
finite permeability of potential (centrifugal) barr iers  
surrounding individual interaction o r  be- 
cause of possible exchange of energy with the internal 
degrees of freedom of the atomic cores! 

The " f i e l r3  and " p o t e n t i a ~ ' ~ ' ~  autoionizing bands a r e  
of the one-particle type. Two-particle collective auto- 
ionizing states may form as a result of an exchange 
interaction between one-center Feshbach resonances.' 
Such resonances a r e  exhibited by practically all  the 
atomic particles, which should make it possible to de- 
tect experimentally the autoionizing bands of electron- 
exciton complexes predicted by us  in Ref. 6. In ex- 
periments on reflection of slow monochromatic elec- 
trons from the surface of a solid covered by a mono- 
layer of adsorbed atomic particles the existence of such 
states should be manifested by characteristic reso- 
nance and threshold dependences of all the measured 
quantities. These dependences will be derived and in- 
vestigated below within the framework of a rigorously 
solvable model of multichannel zero-radius potentials, l2 

supplemented by an allowance for the direct interac- 
tions of the coresu (in the present case, this will be 
done by allowing for the exciton degree of freedom of 
the system under discussion). 

2. FORMULATION OF THE PROBLEM. GENERAL 
SOLUTION 

We shall consider the problem of electron scattering 

by a system of fixed interaction centers (atomic cores) 
located a t  points R, (s = 1, . . . , N). The Hamiltonian 
of the system is 

Here, r is the coordinate of an electron; rs= r - Rs; 
I ,  is a set  of internal variables of the s-th core; us is 
the interaction of an electronwiththes-th center;HA is 
the Hamiltonian of the system of interacting atomic 
cores: 

where Ho is the Hamiltonian of an isolated center; V,, 
is the direct (i.e., not related to repeated scattering 
of an electron) interaction between the cores. 

We shall assume that before the scattering event the 
system of atomic cores is in the ground state whose en- 
ergy will be regarded a s  zero. We shall denote the 
corresponding wave function by the ket vector 10). In 
addition to the ground state of the system of cores, 
we shall allow for the presence of N excited states 
which correspond, in the site representation, to the 
localization of an excitation a t  one of the centers. In 
the zeroth (in respect of V,,) approximation the wave 
functions of these states have clearly the form 

Is) = ~ ' ~ ' ( f 3 )  ( P ( O ) ( E ~ . ) ;  (4) 
s Y  s 

here, p',) and cp',) are  the wave functionsof the s-th iso- 
lated center which is in the ground (cp',)) o r  excited 
(p:')) states: 

In the lo), 1s) representation the Hamiltonian of a 
system of cores is an ( N  + 1)-row nondiagonal matrix 
whose elements a r e  

(I?,),,.= (1-6,) (I-&*.) [08mm. 

+ (I-&,.) Vmm,]; m, mr=O, s; o = l ,  . . . , N. ' (6) 

Here, w = wo + Aw is the excitation energy of an atomic 
core which is in a lattice and Vmd includes the interac- 
tion between cores responsible for  the transfer  of^ ex- 
citation along the lattice. 

The stationary problem of the scattering of an elec- 
tron on a system of interacting atomic centers should 
clearly be formulated on the basis of a representation 
which diagonalizes the Hamiltonian HA. We shall in- 
troduce the_matrix of the corresponding unitary trans- 
formation R: 

and we shall write down the multichannel Lippmann- 
Schwinger equation: 

Here, * is the (N + lbdimensional vector of the states 
in the whole system whose components correspond to 
the trajections along the unit vectors 10) and In), i .  e., 
to the motion of an electron in the field of atomic cores 
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which a re  in stationary states; 
- u -  #=RITA-I, E.,-RR~R-*, 

i= EI is the diagonal matrix of free Green functions 
(f is a unit matrix). 

We shall now determine the total operator for the 
scattering of an electron by a system of interacting 
centers: 

The operator 'f is an integral with respect to the elec- 
tron coordinate and a matrix in the channel indices. 
We shall seek the solution of the problem by the method 
of equations describing multiple interactions. We 
shall introduce one-center scattering operators: 

and we shall assume that 

Then, ?" is described by equations (see a similar 
derivation in Ref. 14) 

I.+. 

We shall now assume that the electron-atom inter- 
actions do not overlap in space, i. e., when s + s', we 
have 

It is then easily shown (see, for example, Refs. 9, 13, 
and 16) that the exact solution of a system of integral 
equations (12) is expressed in terms of solutions of a 
system of algebraic _equations defining the projections 
of the vectors T"= T'" Ik, 0) onto the states 

Here, Y , , ( ~ / Y )  is a spherical function; j, (x )  is a spher- 
ical Bessel function; k(n) = [ 2 ( ~  - ~(n) ]"~ .  The system 
is 

T,:.!,, (n)=  (l.m.nli.!k,~> 

where fit,sh) = ( l @ a  IT'? and the propagation matrix 
F:~' ?is identical with the expression (23) in Ref. 9. 

SI.6 

Thz operators & introduced by Eq. (11) describe [in 
the R representation, see Eq. (7)] (N + 1)-c_hannel scat- 
tering by the s-th atomic core interacting ( V  * 0) with 
all the other centers in the system. The operators Fs 
can be expressed in terms of the matrix fi and in terms 
of the operators of the one-center (N + 1)-channel scat- 
tering in the site representation: 

~.=R~:; ) (E-II , )  A - I .  (1 5) 

For 9 = 0 the elements of the matrix $) describing 

the scattering of an electron by the s-th core, can be 
expressed in a self-evident manner in terms of the 
operators for the scattering of an electron by an iso- 
lated (two-level) atom: 

[i:' (E-R,) I., = ~oo8.p8,0+~,,6,.6rn.+~Qt6606rn.+~~~6SS660 (1 6) 

(for n, m = 0, s; site representation) o r  

[~:'(E-RJ Inm = t̂ ootinm (for n, m+ 0, s). (17) 

Here, ioo,ll a re  the integral (with respect to r and r') 
operators of the elastic scattering of an electron by an 
isolated atom which is in the ground (or excited) state; 
Fol a r e  the integral operators of the inelastic scattering. 

If V # 0, the analytic dependence of t o n  - I?, is not 
affected (because v does not act on r). In the case of 
the interactions described by C,, which decrease suf- 
ficiently rapidly with distance, this dependence has the 
usual 

(here, I?, is the Hermitian scattering operator). The 
formulas (16)-(18) make i t  possible to relate the matrix 
elements for the two-channel one-center scattering 
(l.m, ITs 1 l:m3 with the one-center matrix elements of 
the (N + &channel scattering. 

In the problem of the scattering of an electron by a 
periodic lattice, which we shall solve below, the above 
approach makes it possible to avoid introduction of in- 
determinate phenomenological parameters and to ex- 
press a l l  the constants of the electron-exciton interac- 
tion in terms of physical quantities known from experi- 
ments on the gaseous phase. 

For the sake of simplicity, we shall ignore a possible 
change in the electron momentum because of the scat- 
tering by a single atom2' and we shall consider only the 
wavess' with 1=0. Then, the system of equations (14) 
can be represented a s  follows: 

- 2n G:" (k (n) , R,, R;) T"" (n)  - 6,, exp (ikR.), (19) 
a'* ,  

where 

The quantities T'"(n) defined by the system (19) rep- 
resent amplitudes of spherical waves traveling in the 
various channels away from the individual scattering 
centers. The differential cross sections for the elastic 
(n = 0) and inelastic (n * 0 )  scattering a r e  

k=(2E) '" ,  k ,(n) = r k ( n ) l r .  

We shall now specify the model of interactions be- 
tween the cores assuming for the matrix ? in Eq. (6) 
a translation-invariant dependence on the indices: vnn. 
= V( In - nlI); n, n l =  1, . . . , N. We shall first con- 
sider one-dimensional systems. Generalization to the 
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more complex case of a two-dimensional crystal will be 
clear from the nature of the equations given below. 
The nature of the matrix fi responsible for a transition 
from the site to the exciton representation is well 
known: 

( l ? ) n n ~ f ,  (fi)0n=(R)nn=0, R,=(as, 0,O). 

The functions (19) occurring in the system K~',(E) a r e  
assumed to  be known from the one-center calculations 
(if E > 0, they can be, in principle, reconstructed f rom 
the data on the electron-atom scattering). We shall 
assume them to be constant, which corresponds to the 
model of zero-radius  potential^.'^"^ We shall assume 
that 

Kin-'(E) -xo, Kt,-'(E) = X I ,  KO,-' ( E )  =%.I. 

In the limit N4" we shall go over from discrete in- 
dices n to the exciton quasimomentum p= (p,  0, O), 
where p=2n(n- l)/uN, and a is a lattice constant, and 
we shall replace summation with integration in accord- 
ance with the rule 

The system (19) then becomes 

arla 
axol + - J dp exp (ipR.) T'" ( p )  = exp(iliR.), 
2n o 

(xo+ik(p))T("(p)-  2n G:" (E-e.(p), R., R. , )TiS"(p)  
.'*. 

+ %,-%.q 
exp ( i  (p'-p) R) T'" (p')  dpl+xol exp (-ipR,) Ti'' ( 0 )  = 0 .  

2n 
0 

(23b) 

Here, c(p) is the dispersion law of an exciton [for ex- 
ample, in the tight-binding approximation the interac- 
tion between the cores corresponds to E(P) = w 
+ 2P cos up] .  

The equations obtained have an obvious physical 
meaning. The first  two terms in Eq. (23a) describe 
the elastic scattering of an electron by a system of un- 
excited atomic cores and the term proportional to the 
coupling parameter of the channels no1 allows for the 
possibility of exciton excitation. Similarly, the first 
two terms in Eq. (23b) describe the scattering of an 
electron by a system of centers which contains one free 
exciton. The electron-exciton interaction, which is 
diagonal in respect of the number of excitons, is allow- 
ed for by the term with (xl - no). This interaction de- 
scribes the electron-exciton scattering and it is re- 
sponsible for the formation of bound electron-exciton 
pairs (see below). The last term in Eq. (23b) allows 
for the possibility of absorption of an exciton by an 
electron, i. e . ,  for the autoionization of an electron- 
exciton complex. 

It is now appropriate to consider all  those correc- 
tions to the system (23) which a re  needed to allow for 
the influence of various physical factors ignored above. 
First  of all, we shall note the generalization to the 

case of a two-dimensional lattice involves the simple 
replacement of single sums and one-dimensional inte- 
grations with double sums over the indices of the cen- 
t e r s  [s =(s,, s,, O)] and two-dimensional integration with 
respect to the projections of the exciton quasimomen- 
tum vector [p= ( p , ,  p,, O)]. Integration is carried out 
over the f i rs t  Brillouin zone with a normalization factor 
~ ~ / ( 2 n ) " ,  where no is the a rea  of a unit cell in a two- 
dimensional lattice (or the length in a one-dimensional 
lattice) and v = 1 ,2  indicate one- and two-dimensional 
cases, respectively. 

The presence of any external field ~ ( z )  (including the 
presence of a crystal surface) can be allowed for by the 
simple reglacement of the free Green function [eo-(E 
- H- U(z)l+ i l l )- ' ] ;  at  the same time it  is obviously 
necessary to replace the incident wave ei lorwith the 
corresponding solution of the distorted plane wave type. 
Weak damping of an exciton (radiative o r  due to i t s  
interaction with the surface of a crystal) is allowed for 
most simply by introducing a small imaginary part in 
the dispersion law c(p). In terms of the system (231, 
dropping of the model of nonoverlapping interactions 
of Eq. (13) is equivalent to introduction of dependences 
of the functions (xl  - no) and xol on the exciton quasi- 
momentum p. 

An analysis of the influence of all  these factors should 
be the next stage in the development of the theory of 
autoionizing bands of electron-exciton complexes. We 
shall confine ourselves to the solution of the problem 
in terms of the simplest possible representations, 
which nevertheless retain a l l  the qualitatively important 
features of the general case. 

We shall seek the solution of the system (23) in the 
form 

T'" (0 )  =exp (ikR,) T (O), T'" ( p )  =exp ( i (k -p )  R.) T (p) . (24) 

Then, the quantities da(n)/da a r e  given by 

here, 

a re  structure factors1' depending only on the lattice 
geometry (b is the reciprocal lattice vector). The 
factor S in da/d~2 determines the positions of the dif- 
fraction maxima and the relevant functions a r e  well 
kn~wn.""~ The main task of the theory is thus to cal- 
culate the dynamic factors T(O) and ~ ( p ) ,  which can be 
found exactly for the adopted interaction model. 

Substituting the expressions in Eq. (24) into the sys- 
tem (23) and taking T(O) from Eq. (23a), we find that 
~ ( p )  is described by the following integral equation: 

(27) 

1077 Sov. Phys. JETP 52(6), Dec. 1980 F. I. Dalidchik and V. Z. Slonim 1077 



Zo(E, k )  = xo+ik-2% G:" (E,  R., R..)exp(tkR,.,), (28s) 
n.+R.. 

Z(p, k )  = x,+tk(p) - 2n G,"' (E-e (p), R., R..)exp(t(k--p)R...) . 
R e f  R.. 

The solution of Eq. (27) a r e  
(2 8b) 

In the framework of the multichannel model of zero- 
radius the solutions (29) and (30) a r e  exact. 
This makes i t  possible to consider the spectrum of 
eigenvalues of the Hamiltonian (2) without the usual 
assumption that the electron-exciton interaction con- 
stant is small and, in particular, to investigate the 
role of formation and dissociation of bound electron- 
exciton pairs in the process of electron reflection from 
periodic structures." 

3. SPECTRUM OF ELECTRON-EXCITON STATES IN  
TWO- AND ONE-DIMENSIONAL CRYSTALS 

The spectrum of electron and electron-exciton states 
can be found by investigating singularities of the func- 
tions T(0) and ~ ( p )  on a complex plane of energies E. 
For a fixed value of kt, (kll is the projection of the elec- 
tron momentum k =  ( k ~ ,  kl) onto the plane of a grating in 
the one-dimensional case o r  on the axis of a linear 
chain in the one-dimensional case) these singularities 
may include poles of E(kll), corresponding to one-particle 
band states of an electron and an electron-exciton pair 
bound to form a complex, and also branching points 
which a re  the boundaries of the one-particle (vacuum) 
and two-particle (electron-exciton) continua. 

We shall consider first the important case of suffi- 
ciently small values of the parameter no1 which cor- 
responds to, for example, the assumption of the exis- 
tence of a long-lived autoionizing state of the Feshbach 
resonance type in the case of an isolated atom. In 
the zeroth approximation the spectrum of the lattice 
and electron eigenvalues is given by the roots of the 
equations 

I +  (xL-xo)D(E,  kt) =0, ImD(E,  k,,) =O. (33) 

The solution of the first  of these equations gives a 
band of free electrons whose dispersion law is El(kl~) in 
the field of nonexcited interaction centers. This band 
has been investigated in, for example, Refs. 12 and 21. 
The real solutions of Eq. (33) describe a band of states 
of an electron-exciton complex? These solutions lie 
below the boundary of the continuum states of a free 
exciton and a bound electron, whose energies a re  

E ( P .  q )  =e (P) + E , ( q ) ,  k,=q+p. (34) 

For arbitrary values of the parameters the solutions of 
Eq. (33) can be found only numerically but in the tight- 

binding approximation we can also solve the problem 
analytically. Lst us assume that 

aa>l, a a- (2(o-E))Ih,  

e ( p )  =o+2p cos ap, (35) 
where A = 48 is the width of an exciton band. Then, 
for example, in the case of a one-dimensional chain of 
atoms, Eq. (33) becomes 

Hence, we can see that in the case of a one-dimensional 
crystal the formation of electron-exciton complexes is 
possible if 

The condition (37) has a simple physical meaning. If 
x ,  > no > 0, it means that the energy binding an electron 
to an excited atom should be greater than the binding 
energy in the case of an electron and a nonexcited atom. 
(It is intuitively clear that only then an exciton moving 
in a structure can drag an electron behind.) The real 
solutions of Eq. (33) can then be interpreted a s  states 
of a one-center Feshbach resonance, which is collec- 
tive over the centers because of the translational sym- 
metry. However, one should point out that the branch 
of bound states of an electron-exciton pair exists also 
when no < 0, xg c X I .  This case (for 0) corresponds 
to the conditions when the repulsion of an electron by a 
nonexcited atom is stronger than by an excited one. 

Solving Eq. (361, we find the dispersion law of an 
electron-exciton complex near the bottom of a band of 
a one-dimensional crystal: 

(here, q is the quasimomentum of an electron-exciton 
complex and m* is its effective mass). In general, Eq. 
(33) can be solved numerically. 

Among known autoionizing states of atomic particles 
those of negative rare  gas ions a r e  among the most tho- 
roughly investigated (see, for example, Ref. 23). The 
parameters of ordered adsorbed monolayers, formed 
at low temperatures on metal o r  graphite surfaces, 
a r e  also known for these gases24 and this makes it pos- 
sible to make the most definite predictions in such 
cases. 

We calculated the dispersion law of an electron-ex- 
citon complex for the parameters no =-0.17, = 0.20, 
w =  0.30(a.u.) (Ref. 23), A=0.5 eV, a=8.5a.u.  (Ref. 
251, which correspond to a two-dimensional crystal 
lattice of xenon (Xe) atoms on the surface of niobi~m.~'  
A unit cell of the adsorption structure is hexagonal 
close-packed. The first  Brillouin zone for a lattice 
with this geometry is shown in Fig. 1. Figure 2 gives 
the dispersion law of an electron-exciton complex in a 
two-dimensional crystal of Xe atoms. It follows from 
these results that in the case of monolayers of rare  
gas atoms adsorbed physically on the surface of a solid 
there should be a branch of collective states of elec- 
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FIG. 1. First Brillouin zone 
and points at which calcula- 
tions were carried out. 

tron-exciton complexes with a binding energy of an 
electron-exciton pair amounting to -0.2-0.3 eV. The 
width of a band of states of such complexes is -0.2 eV. 
The predicted states a r e  effectively a new quasipar- 
ticle: an "electroexciton" which carr ies  a unit charge, 
has a relatively large effective mass (-6m,-7m,), and 
a large internal excitation energy (-8 eV). 

Since a t  the limit of states of free electrons and ex- 
citons the integral (31) diverges as a square root in the 
one-dimensional case and logarithmically in the two- 
dimensional case (see, for example, Ref. 26), the 
condition (37) is sufficient for the existence of elec- 
tron-exciton complexes only in periodic low-dimen- 
sional structures. The condition should be more strin- 
gent in the three-dimensional case because a three- 
dimensional integral of the (31) type assumes finite 
values a t  the boundary. However, we may expect that 
crystals of r a r e  gas elements may also exhibit states of 
electron-exciton complexes because of the large value 
of the electron-exciton interaction constant a(nl - no) 
-4. 

For E >O the states of such complexes lie above the 
boundary of the vacuum continuum. Allowance for the 
possibility of energy exchange between electrons and the 
exciton degree of freedom (uO1 f 0) results in this case 
in autoionization, which is represented by the imaginary 
part of the solution of the equation 

I+ (x,-x,-xol2/Zo(E, q ) )  D ( E ,  q) =0, 

(~=ILR,/R.).  

For  small values of uol the solutions of Eq. (39) can 
be found by iteration over the terms with an imaginary 
component. We find that 

x ' dL)(E,q) ' ImZ,(q) r ( c l ) = - A  
(x,-xoy (T 1 s - E 3 Z D G q ~ '  

Re (q) 
w ) =  - r(q)- 

I111 Z, (q) ' 

In the most important (from the practical point of view) 

case of a two-dimensional crystal lattice (see, for ex- 
ample, Refs. 12 and 221, we have 

where q is the Heaviside function. [The expression for 
r (q) applicable to one-dimensional crystals is given in 
our earlier paper.6] The autoionization width of elec- 
tron-exciton complexes is thus a nonanalytic function 
of the quasimomentum [we should bear in mind that the 
values of Eo(9) and q occurring in Eq. (42) a re  related 
by the dispersion law found by solving Eq. (3311. At 
the points governed by the condition 

the imaginary part of the complex dispersion law of 
electron-exciton complexes has a discontinuity associ- 
ated with opening up of a new decay channel accompani- 
ed by the umklapp process ( ~ I I  = q  + b). 

The results of calculations of r(q) are: 
~m E: r 1 2 L (1 5 
r(n), 10-2 eV: 0.37 2.6 . 0.35 0.52 i . ~  2.0 

The parameter nil was reconstructed from the experi- , 
mental data on the width of the autoionizing state (Xe-)': 
reported a s  - 9 ~ 1 0 "  eV in Ref. 7, and was selected to 
be 1.36x eV. A calculation of the values of Re Zo 
was made using the modified (for the case of a two- 
dimensional lattice) Ewald method.= 

We shall now discuss the changes which a re  sufficient 
to modify Eq. (41) in order to allow for the way that the 
decay is influenced by an external electric field or by 
the surface of a crystal with which an electron inter- 
acts in accordance with the one-dimensional potential 
~ ( z ) .  This can be done simply by modifying Eq. (41) 
a s  a result of the following substitution (see a similar 
conclusion in Ref. 3): 

where P ( E )  is the density of states and fi is the regular 
solution of the one-dimensional Schrodinger equation: 

We shall now consider in greater detail the influence 
of an external electric field U(Z) =-fz on the autoioniza- 
tion of an electron-exciton complex. We then have 

and Im Zo i s  given by 

2n vvz(  (q+b)'-ZE Im 2, ( E ,  q)  = - 
c 2 0  (21) y Of) ' 1 

FIG. 2. Dispersion law of an electron-exciton complex in a 
two-dimensional crystal of Xe atoms. The parameters of the 
modelused in the calculations are given in the text. 

(V is the Airy function). We shall now discuss the case 
of a sufficiently weak field f, when the direct ionization 
of an electron-exciton pair can be ignored [Eo>> (2f)2's]. 
We can then see from Eq. (46) that a weak external 
electric field is sufficient to alter greatly the lifetime 
of an electron-exciton complex. In fact, when the 
conditions 

n~in(k'-2E,(q),  k?) >k2-(q+b) '-/"', 

Im Z, (q.  E) /Im Z,(q. 0) =z'"BZ(-x) 
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are  satisfied Eq. (47) tends to zero for positive values 
x -0, i. e., the lifetime of an electron-exciton complex 
proportional to (Im 2,)-' r ises  steeply. 

A similar result has been obtained earlier" for an 
isolated Feshbach resonance. 

We shall conclude by discussing some special cases 
of the asymptotically exact equation (39). We shall 
assume that the width of an exciton band is negligible 
(a=O). Then, a s  expected, Eq. (33) reduces to the 
well-known equation in the theory of impurity states 
(see, for example, Ref. 27): 

exp (-&.-I- ipR,) -' 
( X , - - X ~ ) - ~  = --_ " j d p { x . - a + Z  

(2n) 
) , ( r e  

.*I 

The formula (41) governs in this case the average life- 
time of an autoionizing impurity level with a two-di- 
mensional crystal lattice (in this case, an excited atom 
of the crystal can be regarded a s  an impurity). A 
similar result is also obtained in the other limiting 
case which corresponds to the formation of an impurity 
exciton level in the field of a localized negative ion 
(xo>O, eWR<<0).  

Several interesting cases can be investigated by as- 
suming that xo = xl. If E < 0, we find that, for example, 
the dispersion equation (39) is identical, apart from the 
dimensions of integration, with Eq. (2.2) in the review 
by Levinson and ~ashba , "  where the theory of bound 
states formed by an electron and a nonconserved quasi- 
particle is presented for the case of a strong nondia- 
gonal interaction. However, it should be pointed out 
that in addition to the cases considered earlier, this 
limit of Eq. (39) allows for the usually neglected ef- 
fects of the dispersion of quasiparticle states [c(p) 
+ const]. 

4. RESONANCE AND THRESHOLD SlNGULARlTlES 
OF THE CROSS SECTION FOR THE SCATTERING OF 
ELECTRONS BY ONE- AND TWO-DIMENSIONAL 
CRYSTAL 

We shall now use Eqs. (25), (291, and (30) to con- 
sider the problem of the angular and energy depen- 
dences of the cross section for the elastic scattering 
of an electron by ordered structures. Let nor be suf- 
ficiently small and then 

the role of exciton states is unimportant and we have 
T(O)=Z;'. The scattering is of the potential type and 
the elastic reflection coefficient - 1  T(O) l 2  1 F(E, 6) can 
only have Bragg singularities. A calculation of F(E, 6) 
in the case when the condition (49) is satisfied is the 
subject of the kinematic theory of low-energy electron 
diffraction (see, for example, the review in Ref. 17) 
and a detailed analysis of the potential scattering by a 
one-dimensional chain has been made using the zero- 
radius potential model.'' It should be pointed out that 
when the conditions (43) a re  satisfied, the function Zo 
diverges (in accordance with a square-root law in the 
two-dimensional case) and F(E, 6) vanishes. 

In the range of energies satisfying the condition 1 E 
- ~ ~ ( q )  ( s J?(q), the scattering process becomes reso- 
nant because of the capture of an electron in an auto- 
ionizing band of electron-exciton complexes. Substi- 
tuting Eq. (40) in the elastic scattering amplitude T(O), 
we find that near a resonance 

We shall now give the expression for the reflection 
coefficient F in the Fano formula2': 

(T+E)" F ( E , 8 ) = F 0 - - - :  I + z Z  

here 

The expressions obtained make it possible to predict 
the characteristic form of resonance singularities of 
the energy and angular dependences of the coefficients 
of reflection of electrons by a monolayer of adsorbed 
atoms. It follows5' from Eq. (51) that for a fixed angle 
of incidence 6 the function F(E, 6) has a minimum at  E 

=-y [F(E + y =0) =0] which changes to a resonance peak 
a t  E =y4. The amplitude of the peak and the energy 
interval occupied by the resonance singularity a re  gov- 
erned by the value of the "profile index" y. The struc- 
ture appears most clearly for small values of y. The 
characteristic parameters Eo, 0, and r a re  different 
for different angles of incidence and a r e  mainly govern- 
ed by the dispersion law of electron-exciton complexes. 
This is illustrated in Fig. 3, which gives the results of 
our calculations of the coefficient of elastic reflection 
of monochromatic electrons by a monolayer of adsor- 
bed Xe atoms. The orientation of the electron beam 
relative to the crystallographic axes is shown in Fig. 
4. (The parameters of the model used have been list- 
ed above.) 

An experimental detection of such a structure would 
provide a reliable confirmation of the existence of 
autoionizing bands of bound electron-exciton pairs in 
monolayers of physically adsorbed atoms. However, 
one can suggest a somewhat different variant of an 
experiment involving determination of the angular de- 
pendence of the reflection coefficient for a fixed energy 
of the incident electrons (corresponding to a band of 

E, eV 

FIG. 3. Energy dependences of the coefficient of electron 
reflection from monolayer of Xe atoms plotted for different 
angles 0 of the incidence of electrons: 1) 0 = 0"; 2) 0 = S030'. 
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the function F(E, 0) in this case. 

FIG. 4, Orientation of an electron beam relative to the cry- 
stallographic axes of a two-dimensional lattice of Xe atoms. 

states of electron-exciton complexes). The results of 
calculations illustrating this possibility a r e  given in 
Fig. 5. 

We shall now analyze the threshold singularities of 
the function F(E,  8) which a r e  associated with the open- 
ing up of inelastic scattering channels accompanied by 
the creation of a f ree  exciton. We shall begin by not- 
ing that in the presence of a band of bound [~,(p,) < 0] 
states (within the framework of the adopted model this 
case corresponds to the values no > 0) the process of 
exciton creation is also possible for E e &,,,,,(p). We 
then clearly have to satisfy the conditions 

(here, p and p, are,  respectively, the exciton and elec- 
tron quasimomenta). Near the electron "trapping" 
threshold the energy dependence of the elastic reflec- 
tion coefficient is given by 

here, 

[we must bear in mind that i f  E =  E,(~II), the function 
D-' vanishes and 6 ,  has a nonanalytic singularity]. 

The threshold discussed above corresponds to the 
situation in which an electron that excites first  an ex- 
citon cannot leave a structure (a crystal) without re- 
absorption of the exciton excitation energy. However, 
a t  sufficiently high energies the process of reflection 
of an electron accompanied by simultaneous creation 
of a .  free exciton becomes possible if [E > ~,,,(p)]. We 
shall consider the nature of the threshold singularity of 

FfE,8), rel. units 
to / -  

FIG. 5. Angular dependences of the coefficient of electron re- 
flection from a monolayer of Xe atoms at  a fixed electron 
energy: 1) E =  7 . 5  eV; 2) E = 7 . 5 5  eV. 

For  simplicity, we shall consider only the one-di- 
mensional model for which the analytic form of the 
function Zo(E, k3 is known (see, for example, Ref. 22). 
According to Eq. (29), a t  low values of 6 E = I E - E, 1 ,  
we have 

where GI, b2, and b, a re  slowly varying functions of 
the energy and quasimomentum. The singularities 
F(E, 8) predicted by Eq. (55) a r e  fully analogous to 
those which a r e  known to occur in the case of the scat- 
tering amplitude of two particles near the threshold of 
a three-body reaction (see, for example, Ref. 30). 

CONCLUSIONS 

We have considered only one possible experimental 
arrangement designed to  detect a branch of autoionizing 
states of electron-exciton complexes. In this arrange- 
ment one should look for singularities of the angular 
and energy dependences of the coefficient of elastic 
reflection of slow monochromatic electrons from the 
surface of a solid covered with a layer of physically 
adsorbed atomic particles. However, one can expect 

.the resonance mechanism to appear similarly also in 
certain photoprocesses, for example, in the photode- 
tachment of an inner electron from an atom of a physi- 
cally adsorbed monolayer. There is also a consider- 
able interest in the nature of the appearance of states 
of electron-exciton complexes in experiments involving 
"transmission" through thin insulating films. The f i rs t  
experiment of this type, characterized by a high reso- 
lution and indicating the presence of bound electron- 
exciton states in three-dimensional organic crystals, 
was carried out recently by Sanche (Ref. 31).') We 
shall conclude by noting that bands of electron-exciton 
complexes can be expected also on the surfaces of 
molecular crystals, particularly on crystals formed 
from r a r e  gas atoms. 

The authors take this opportunity to express their 
deep gratitude to V. M. Agranovich, L. A. Bol'shov, 
A. M. ~ r o d s k i c  Yu. N. Demkov, G; F. Drukarev, 
A. M. Dykhne, and V. N. Ostrovskii for discussing 
the results reported above. They a r e  also grateful to 
I. S. Aleksakhin and S. S. Popov for discussing the 
possibilities of an experimental check of the theory. 

')The exchange interaction of decaying states in two-center 
systems was considered by us earlier in Refs. 9 and 10. 

')The system of equations (14) makes it  possible to allow con- 
sistently for the selection rules governing the momenta of the 
incident (1,) and scattered (1,') electron inter acting with the 
s-th center. However, this allowance is  of little importance 
in the subsequent treatment because it  results only in a 
redefinition of the nondiagonal parameter of the electron- 
core interaction (%*, see below), which can be reconstructed 
from the experimental data on the electron-atom scattering. 

3)Allowance for the interactions with 2 ,  # 0 is  of fundamental 
importance only in a resonance situtation when autoionizing 
states of shape-type potential resonances occur in the cen- 
ters." An analysis of the corresponding effects is of in- 
trinsic interest and will be made in a spearate communica- 
tion. 
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