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laser excitation of high vibrational levels of polyatornic 
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An analysis is made of a method for calculating the rate coefficients of transitions in a laser field between 
vicinities of resonances in the band structure of the vibrational quasicontinuum of polyatomic molecules. It is 
shown that the dependences of the rate coefficients on the molecular energy and on the laser frequency are 
governed by the type of the strongest anharmonic interaction which locks the excited mode and by the nature 
of the redistribution of the vibrational energy of the molecules between the degrees of freedom. A study is 
made of the possibility of using the model of complete stochastization of vibrations in the description of the 
excitation of a molecule by infrared laser radiation. A model for the increase in the vibrational energy of the 
directly excited mode is proposed and this model gives the best agreement with the experimental frequency 
and energy characteristics of the SF, and SiF, molecules. The available spectroscopic data on the SF, 
molecule are used to find the dependence of the threshold energy of stochastization on the laser interaction 
frequency. 

PACS numbers: 33.80. - b, 33.10.Gx, 33.M.Ea 

T h e  p r o c e s s  of i sotopical ly  selective collisionless 
in f ra red  d i s soc ia t ion  of molecules in a laser f i e ld  is 
attracting attenti~nl '~ and t h i s  a p p l i e s  pa r t i cu la r ly  to 
the  n a t u r e  of t h e  exci ta t ion of high v ib ra t iona l  states of 
polyatomic  molecules.4~9 T h i s  includes de te rmina t ion  
of t h e  c h a r a c t e r i s t i c s  gove rn ing  t h e  exci ta t ion d y n a m i c s  
and of t h e  f requency and  e n e r g y  dependences  of t he  ef -  
f iciency of the  laser interact ion,  s t u d i e s  of t h e  methods 
and m e c h a n i s m s  of t h e  r ed i s t r ibu t ion  of t h e  v ib ra t iona l  
energy of t h e  molecules between t h e  d e g r e e s  of f r e e -  
dom,  etc. In contrast to e a r l y  s t u d i e s  of t h e  interaction 
of laser rad ia t ion  wi th  t h e  v ib ra t iona l  degrees of f r e e -  
dom of  molecule^,'^^" recent w o r k  on t h e  exci ta t ion of 
polybtomic molecu les  h a s  l e d  t h e  m a j o r i t y  of a u t h o r s  to 
t h e  conclus ion of t h e  need to s e p a r a t e  t h e  p r o b l e m  into 

two parts: s p e c t r o s c o p i c  a n d  kinet ic .  The spectro- 
s c o p i c  p r o b l e m  involves  investigation of the internal 
interactions and f o r m a t i o n  of t h e  spectra, w h e r e a s  t h e  
k ine t i c  p r o b l e m  involves  t h e  d y n a m i c s  of excitation of 
such spec t roscop ica l ly  complex s y s t e m s .  

An a p p r o a c h  to the solution of t h e  p r o b l e m  of the  ex- 
c i t a t ion  of a po lya tomic  molecu le  in two stages i s  sug- 
g e s t e d  in Ref. 6.   he f i r s t  s t a g e  is a cons ide ra t ion  of 
t h e  m o d e l  p r o b l e m  of exci ta t ion of a complex  mul t i level  
quantum s y s t e m  in a laser f ie ld  a n d  de te rmina t ion  of 
t h o s e  c h a r a c t e r i s t i c s  of t h e  s p e c t r u m  and  o p e r a t o r  of 
the in t e rac t ion  wi th  t h e  f i e ld  which govern the d y n a m i c s  
of t h e  populations.  T h e  nex t  s t a g e  should  b e  d e t e r m i n a -  
t i on  of t h e  c h a r a c t e r i s t i c s  of Ref. 6 f o r  real molecu les  
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allowing for their specific spectral ~tructure. '" '~ The 
present paper deals with this second stage. 

The problem is a s  follows. In the case of polyatomic 
molecules the large number of degrees of freedom 
causes a rapid r i se  of the density of vibrational quan- 
tum states. Nonlinear anharmonic and Cor iolis inter - 
actions rapidly induce perturbations of the integrals of 
motion and loss of the oscillator symmetry, which re- 
sults in a distribution of the dipole transition cross sec- 
tions between a large number of levels. The levels of 
a molecule subjected to a laser field a r e  broadened be- 
cause of the dynamic Stark effect. The range where the 
Stark-broadened states begin to overlap is known a s  the 
vibrational quasicontinuum. In the region of this quasi- 
continuum a laser field excites only those levels which 
lie close to resonances ntiw,,  where w,  is  the frequency 
of the laser field.' The dynamics of the populations in 
the vicinity of resonances is  then given by the rate 
equations 

The rate coefficient for a transition from the vicinity 
of the energy ntiw, to the vicinity of the energy 
( n +  l ) t iw ,  is equal to the mean-square value of the ma- 
trix element of the transition operator between the lev- 
els in these vicinities, multiplied by the density of the 
quantum states in the vicinity of ( n  + l )Rw, :  

(ti= 1). The rate coefficient for the reverse transitions 
is 

~ ~ + ~ = ~ ' ( p ~ ) ~ + ' g ( n o , ) .  ( 3 )  

The rate coefficients ( 2 )  and ( 3 )  a r e  those characteris- 
tics of a molecule whose calculation makes it possible 
to determine the dynamics of the level populations. 

The idea of describing the process of excitation of 
polyatomic molecules by the rate equation ( 1 )  has been 
put forward on many  occasion^.'^-^^ However, the rate 
coefficients have been found phenomenologically and the 
results obtained have not been in agreement with the 
experimental results w e n  for two parameters at the 
same time. For example, the dependence of the energy 
absorbed by a molecule on the energy of the laser 
 pulse^'^*'^ required specific phenomenological coeffi- 
cients, whereas the dispersion characteristic of the 
q u a s i c o n t i n ~ u m ~ ~ ' ~ ~ ~ ~  requires other coefficients. In- 
vestigation of the model problems of the excitation of 
multilevel systems of the planned type6v7 should make 
it possible to determine unambiguously the form of the 
rate coefficients ( 2 )  and ( 3 ) .  

Before we calculate the coefficients ( 2 )  and ( 3 )  on the 
basis of the spectroscopic data on molecules, it is de- 
sirable to point out certain properties of Eq. (1) which 
facilitate the analysis of the results obtained and sim- 
plify their comparison with the experimentally ob- 
served dependences and with the theoretical depen- 
dences reported e l ~ e w h e r e . ~ - ' ~  

It is convenient to rewrite Eq. (1) in the form 

The first  term on the right-hand side of Eq. ( 4 )  de- 
scribes spreading of the function pngn4, whereas the 
second term describes its directional motion upward 
between the energy levels under the action of laser ra- 
diation. If 

the second term is more important, whereas if 

the f i rs t  term i s  more important. Therefore, in some 
cases it is  convenient to calculate not the transition 
probabilities DT1 and q-' but the difference between the 
probabilities of upward and downward transitions, i.e., 
the probability of acquisition of energy o r  the coeffi- 
cient of directional motion of the distribution function 

It follows from Eq. ( 4 )  that the total energy acquired 
depends on the laser pulse energy in accordance with a 
power law if the coefficient Q, depends on the level 
number also in accordance with a power law. 

We shall derive the formulas for the ra te  coefficients 
using the example of excitation of a triply degenerate 
mode in a molecule of the T, or  0, symmetry. The 
structure of the spectrum of triply degenerate modes 
v, of such molecules has been largely investi- 
gated.12t13vaa,2s We shall use the technique of investi- 

gating the spectrum and representing its structure de- 
veloped by Sartakov.= The simplest form of the vibra- 
tional Hamiltonian of a triply degenerate mode is 

where a;,, and asti  a r e  the creation and annihilation op- 
erators of the vibrational quanta of the i-th degree of 
freedom of the mode v,. 

The eigenvalue spectrum of the operator (5) has a 
band structure12: 

where I,, , is the number of quanta in the i -th degree of 
freedom. We shall consider the levels lying in the vi- 
cinity of the energy I separated by c << w  << from the 
energy I,w,, where I , ~ I , , ,  +I,,,+I,,,. If I, >> 1 ,  we 
can regard I,,, a s  continuous variables. The energy 
levels in the vicinity of have the quantum numbers 
\I,,,; I,,,; I,,,), which a r e  located on a circle represent- 
ing intersection of the plane 

and of the second-order surface 

We shall also assume that an external field of inten- 
sity E and frequency w, interacts only with one of the 
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three degrees of freedom of the mode v,, for example, 
with the first  (this assumption does not liinit the gen- 
erality of the treatment). There may be transitions 
from the vicinity of the energy %' to higher states in the 
next band, corresponding to an increase in the number 
of photons in the excited degree of freedom by unity: 

The frequencies of transitions from states with differ- 
ent quantum numbers a re  diff erent. The anharmonic 
frequency shift of a transition is 

or, in other words, 

Using Eqs. (71, (81, and (9), we can obtain the rate co- 
eff icients in the cIassica1 limit1) I,,,; I,, ,; I,,, >> 1: 

where A is the normalization factor. The physical 
meaning of Eq. (11) is a s  follows: the quantity 
(Epol)213,1 is the square of the matrix element of the 
transition operator from the level I I,,,; I,, ,; I,,,) to the 
levels of the next band; 6(8~/81,,, - w,) is the density 
of the final state in the vicinity of a resonance, so that 

is the rate coefficient of the transition from the level 
(I,,,; I,,,; I,,,) in the upward direction. The averaging 
of this rate coefficient over all the levels which lie in 
the vicinity of I and for which the normalized (to unity) 
distribution function of the quantum numbers f deduced 
from Eqs. (7) and (8) is 

gives the expression (11). 

It is necessary to consider in greater detail the fol- 
lowing point. The initial Hamiltonian (5) has the eigen- 
vectors ( I,,,; I,,,; I , , , )  which are identical with the 
eigenvectors of the zeroth approximation. Under these 
conditions the laser field interacting with just one of the 
degrees of freedom of the excited mode does not affect 
other degrees of freedom of the same mode and, con- 
sequently, averaging of the rate coefficient character- 
ized by the distribution function of the quantum num- 
bers f is, strictly speaking, unjustified. Moreover, the 
absence of mixing of the quantum states makes invalid 
the approach based on the solution of model problems: 
which gives the expressions (2) and (3). However, the 
occurrence of even a very weak interaction of the type 

+ aJ.LaJ.la~~~~2+aJ,2aS,1a~sa~1+aJ,1a331a~sa~I, *((a, p, (13) 
which is again allowed by the ~ymmetry, '~ alters con- 
siderably the pattern. It mixes the levels which are  in 
the vicinity of a given energy and, consequently, justi- 
fies averaging with the aid of the distribution function f 
of Eq. (12) and the use of the model approach of Ref. 6. 
Mixing of the levels in the upper band ensures the dis- 
tribution of the transition cross sections (I,,,; I , , , ;  I,,,) 

- [I,,, + 1; I,,,; I,,,) between a large number of levels lo- 
cated near ( I,,, + 1; I,,,; I,,,) and justifies the use of the 
expression 

@pat)  21~,t8 (3H/313,t-mL) 

as  the rate coefficient of transitions from the level 
II,,,; I,,,; I,,,). In its turn, mixing of the levels in the 
lower band allows us to average the rate coefficients of 
the upward transition over all the levels from the vi- 
cinity of a given energy. 

The same results are  obtained for any other weak 
interaction that ensure mixing of the nearby quantum 
states. On the other hand, such a weak interaction does 
not alter significantly the rate coefficients of Eq. (11) 
which are  unaffected by the selection of the basis. 

A calculation of Eq. (11) subject to allowance for Eqs. 
(5) and (9) and normalization of the function (12) gives 
the expression 

D;+' = (Epol) l(A'- ')  e (I-A')@(Af)e(Ef-A'Z+IAf) 
8-a 

where 8 ( x )  is the Heaviside theta function and 

The coefficient Q,, i.e., the difference between the 
rate coefficients of the upward and downward transi- 
tions, can be calculated-within the framework of the 
assumptions made here -employing a formula similar 
to Eq. (11): 

The above approach and the main features of the cal- 
culation of the rate coefficients were tested by us by 
application to a triply degenerate mode. There were 
two important features of this calculation. Firstly, the 
rate coefficient of upward transitions from the ( { I } )  
lwel  with quantum numbers {I) is governed by the 
quantity (E p01)2116(w, - 8~/81,), which is the product of 
the square of the matrix element of the transition and 
the density of the final quantum states. To obtain this 
expression it is sufficient to allow only for the strong- 
est anharmonic interaction with the maximum value 
a ~ ~ ~ , , / a I ~ .  Interactions of higher orders or simply 
weaker interactions make no direct contribution to the 
results. However, their contribution appears indirectly 
via the form of the distribution function of the quantum 
numbers f. The use of the distribution function f (taking 
into account generally not only the energy but also the 
phase 9 of the vibrations) is another important feature 
of the approach. The point is this: when molecules 
are excited with laser radiation far  from all the quan- 
tum states (even those which are  in resonance) a re  
capable of participating in the same way in the energy 
acquisition process, i.e., the excitation process does 
not apply everywhere throughout the phase space of the 
molecule. In the example given above the distribution 
function of the quantum numbers f is given by Eq. (12). 
It is assumed that the excitation process involves only 
levels of one mode and only those which are  in the vi- 

1065 Sov. Phys. JETP 52(6), Dec. 1980 V. M. Akulin and N. V. Karlov 1065 



cinity of the energy I= Z w, and correspond to a fixed 
total number of photons in a mode at a fixed energy. 

In general, the classical expression for the rate co- 
efficients is written in the form 

The above equation is the classical limit for the more 
general expression 

D (8; 8') d g ( 8 ' )  E2(Tr ( G ( 8 - R )  >6 (&'-a) i-) ), 

8 ' = ( b r + a ;  8 ' -a ) ,  8 ) ~  (&+a; 8 - a ) ,  a*O, 

where T r  represents the trace operation only between 
the levels which are populated significantly in the pro- 
cess of energy acquisition and 2 is the density of these 
levels. In the classical limit, we have to make the sub- 
s t  itut ion 

and ign?re the noncommutative nature of the operators 
j? and H. For this reason the terms corresponding to 
laser excitation of hybrid vibrations disappear. Such 
corrections can be allowed for separately. 

Before calculating the rate coefficients in accordance 
with Eq. (16), it is necessary to consider in greater 
detail a possible structure of the function f. Strictly 
speaking, in the vicinity of each energy there is a dis- 
tribution function which is the result of numerous al- 
though relatively weak anharmonic interactions. Sit- 
uations are possible when the ergodic hypothesis is 
valid, i.e., when anharmonic interactions of higher or- 
ders mix all the levels lying in the vicinity of a given 
energy and the excitation process extends over the 
whole phase volume of the 6-like energy layer. In this 
case, we have 

There is also a possible situation in which the ergodic 
hypothesis is known to be invalid. In classical mechan- 
ics the inapplicability of the ergodic hypothesis is en- 
sured by the Kolmogorov criterionZB 

aH aH 1 ~ - - P - I  ar, ark w vmp ' 

for any value of rn and p, where the matrix element VmI,, 
is defined a s  

In more general cases of non-Hamiltonian or nonsta- 
tionary mechanics the situation is much more com- 
p l e ~ , ~  but even then there a re  stochasticity criteria. 
The questions on what happens when the condition (18) 
is not obeyed and to what extent it is possible to use 
the ergodic hypothesis are  dealt with in a number of 
papers (see, for example, Refs. 28 and 29). 

In investigations of the interaction of laser radiation 
with polyatomic molecules it is essential to use a quan- 
tum analog of the Kolmogorw criterion (18). There is 
no conflict between the use of the classical expression 
for the rate coefficients (16) and an allowance for quan- 
tum effects in the criterion (18). In fact, the nature of 
the rate coefficient itself creates a very strong anhar- 
monic interaction, the changes in the energies during 

transitions are large, and the quantum corrections to 
the transition cross sections a r e  small: at the same 
time, the interaction governing the function f is weak, 
the density of levels is high, and the role of the quantum 
corrections is considerable. 

It is usual to a s s ~ r n e ~ * ' ~  that reversal of the inequal- 
ity (18) not only permits ergodicity but also establishes 
it. Generalization of this conclusion to the quantum 
range can be represented in the form 

in other words, the difference between the energies of 
levels la) and I b )  should be less than the matrix ele- 
ment Gab of the transition between them due to the an- 
harmonic perturbation and the matrix element of the 
transition operator considered in the quantum case 
should allow for all orders of perturbation theory: 

~ ~ - < a ~ ~ l b > + ~ < a ~ ~ ~ c ) ( ~ . - ~ . ) - ~ < c l ~ l b > + .  . . . (20) . 
It is very inconvenient to use the criterion (19) to- 

gether with the expression (20) because of the need to 
know the actual values of E,, E,, and G,,. It is more 
convenient to employ a different criterion obtained by 
averaging (19) over the f i d  states: 

where g, is the density of the final states. In other 
words, ergodization occurs if the mean-square matrix 
element of the transition exceeds the characteristic 
separation between the levels of the f i n a l  states. By 
replacing the criterion (19) with the criterion (21), we 
are  in fact assuming the absence of any relationships 
which would result in unavoidable appearance of a large 
number of terms with small denominators from the 
series (20), i.e., we are  postulating comparability of 
the contributions of all the anharmonic corrections of 
the same order to the expression (20), which implies 
an approximate equivalence of all the state decay chan- 
nels. 

The opposite situation when a specific decay channel 
is preferred is not exceptional: it occurs, for exam- 
ple, in the case of the SF, molecule. Although the ex- 
istence of a preferential decay channel does not alter 
significantly the nature of the interaction of the distant 
levels, the change in the interaction of states which are 
close in the phase space is considerable. This situa- 
tion will be discussed in detail later. Here, we shall 
use the criterion (21) to estimate the ranges of the pa- 
rameters of the molecules within which stochastization 
of the vibrations occurs in the absence of favorable de- 
cay channels. 

For convenience, we shall introduce a parameter X 
representing the average anharmonic interaction. The 
K-th order anharmonic interaction corresponds to XK12. 
We shall regard the criterion (21) for the anharmonic 
interaction to be of the order of 2s, which corresponds 
to a total change in the quantum numbers by 2s. The 
density of such states is 

where d is the number of degrees of freedom. 
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The square of the matrix element of a transition de- 
pends on the energy distribution between the degrees of 
freedom corresponding to the investigated state. If 
decay of a localized state is considered, there a r e  
states in which all the vibrational energy n o  is con- 
centrated in one degree of freedom so that the matrix 
element of the transition is 

In the case of a delocalized state, i.e., a state corre- 
sponding to a uniform energy distribution between all  
the degrees of freedom, the matrix element is 

For these matrix elements the criterion (21) can be 
satisfied for 

n>4/hd, if n>d; h'"dt2 ,  
(22) 

for any n,if iHd>2  

in the case of initially delocalized states and when 

n> l/hzd' ( if hd>l ,  then n can have any value), (23) 

if the initial states a r e  localized. This means that the 
stochastic behavior can be observed for n>  4/Xd, and 
complete stochastization ( ie . ,  ergadicity or complete 
absence of localized states) occurs for n>  l/X2d2. How- 
ever, in the case of molecules with a large number of 
degrees of freedom d, d>> A'', a complete stochastiza- 
tion is observed for any value of n, i.e., beginning 
from the first  term. 

The case of complete stochastization corresponds to 
the following ergodic distribution function 

Localized states exist above the stochastization limit if 
4Xd< 1 or d < 1/4X. 

A typical number of quanta s transferred from one 
mode to another in one event (i.e., the characteristic 
change in the vibrational quantum numbers) is a s  fol- 
lows: in the case of localized states 

n9d 
dhn", n>d ' 

in the case of delocalized states 

and the probability of such transitions 

[the sum is taken over those values of s for which 
GYs)~Ys)> 11 has the following value for localbed 
states 

whereas in the case of delocalbed states, we have 

where w* is the characteristic vibrational frequency. 

The order of magnitude of the quantity X can be esti- 

mated from 

where q is the Born-Oppenheimer parameter. Typical- 
ly in the case of molecules we have A =  1/30 - 1/200. 
Consequently, the characteristic (number of dimen- 
sions of a system in which localized states can be ob- 
served above the stochastization threshold is d <  50. 
Molecules with this number of degrees of freedom are  
precisely those which can be regarded a s  promising 
from the point of view of laser photochemistry. Laser 
excitation of localized states above the stochastization 
threshold may ensure preferential occurrence of a 
chemical reaction in a nontrivial channel. 

There have been reports3' according to which the 
ergodic hypothesis gives results in good agreement 
with the experimental data for molecules which have 
d >  100 degrees of freedom. According to the above es- 
timates, the motion of a molecule with such a large 
number of degrees of freedom becomes stochastic be: 
ginning right from the first level. 

The above considerations ignore the possibility of the 
occurrence of vibrational Fermi resonances in mole- 
cules which can ensure specific preferential molecule 
decay channels. An allowance for this factor requires 
knowledge of the vibrational spectrum and of the anhar- 
monic interaction constants. The most thoroughly in- 
vestigated case is that of the SF, molecule. The large 
(but still incomplete) amount of spectroscopic data on 
this molecule makes it possible to estimate the critical 
energy above which the decay of states of an excited 
mode to the nearest hybrid states becomes significant. 
In the case of the SF, molecule the frequency of the in- 
frared-active laser-excited mode v3 = 948 cm" is clos- 
est to the frequencies of the hybrids v,+ v,= 973 cm-' 
and 3v6= 1030 cm-', and to the vibration v,+v, (Ref. 31). 
The transfer of excitation to these hybrid vibrations 
corresponds to minimal denominators in Eq. (20). How- 
ever, the transfer of excitation from the v3 mode to the 
hybrid v, + v4 cannot occur because of the absence (for 
symmetry reasons) of the anharmonic interaction con- 
stant. The constant governing the transfer of excitation 
from the v3 to the 3 ~ ,  mode is approximately 2.5 X lo', 
cm" and for the v3- v,+ V, channel this constant is A,, - 2.4 cm-l. It is this last channel that governs the cri- 
tical energy of the SF, molecule. 

The anharmonic correction to the Hamiltonian result- 
ing in the transfer of excitation from v3 to v, + v, is 

where Qa,,(E,) a r e  the coordinates of v,; Q,,,,, a r e  the 
coordinates of v,; Q,,,,, a r e  the coordinates of v,. 
Moreover, we have to allow for the anharmonic interac- 
tion of fourth order which results in mutual changes in 
the frequencies of the v3, v,, and v6 modes: 

HsJ?.B=~P. (Q,'+Qba+Q,Z) (Q2.a+Q~bZ+Q~Ca) 

+ L a  (QbQ~.'+Qb"zb2+Q.'Q1.') +% (QbQcQzbQlo 

+Q.QcQ~oQzo+QaQbQ~aQ~) +%JX(Q~' (EB)  

+QbZ(El)) (Q22+Q%bz+ Q22) +has[ (QbX(Ea)-Qa2(Ea) (2Q2bz-Q~.' 

-Qz.') +Qo ( E s )  Qb (Ea) (QzDa-Q*.? I (28) 
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McDowell et ~ 1 . ' ~  determined experimentally the con- 
stants %,,= -2 cm-' and us,= -1 cm-'. There a r e  no 
published values of the constants A,,, qss, o r  A=. We 
shall assume that they a r e  small and ignore them in a 
subsequent discussion. 

The effective transfer of excitation requires that the 
condition of resonance between vibrations of the  ex- 
cited mode and the nearest hybrid be satisfied: 

where a, 8, and I,,, a r e  defined in the same ways a s  in 
Eq. (6). Equation (29) is  obtained on the assumption of 
decay of a quantum corresponding to a vibration of the 
first  degree of freedom of the mode v, and amounting to 
-I3,,. It follows from Eq. (29) that 

We shall find the dependence of the minimum detuning 
from the harmonic position of the energy ~ ~ ~ ~ ( 1 , )  as a 
function of the number of quanta I, in the mode v,, since 
the decay of the mode v, occurs in the vicinity of this 
energy. Using Eqs. (29) and (30) and the relationship 
between the arithmetic and geometric means, we obtain 

where H.= uQ2+ u,~. This dependence is plotted in Fig. 
1, which shows that the critical energy depends on the 
interaction frequency. This energy increases as a re -  
sult of a shift of the interaction energy toward the red 
end. 

The existence of a leading decay channel alters also 
the nature of the distribution of the molecular energy 
between the degrees of freedom. A hybrid vibration be- 
comes detuned from resonance and the process of suc- 

FIG. 1. 1) Blue boundary of the zone of the v3 mode. 2 )  Red 
boundary of the zone of the v, mode. 3) Boundary of the zone 
of hybrid vibrations nu3+ v2+ us. 4) Boundary of v3- v2+ v6 
decay. 5) Stochastization region where v2+ v6 states are 
mixed with v3. In the case of the SF6 molecule at the frequen- 
cy of the main transition of the v3 mode the stochastization re- 
gion begins from an energy of the order of 7 quanta of v ~ .  The 
red boundary of the zone of the v3 mode shifts faster than the 
boundary of the v3-v2+ v6 decay and, therefore, excitation at 
frequencies strongly shifted in the direction of the red edge 
under conditions of two-frequency laser interaction may occur 
within the limits of one mode until a second decay channel is  
activated. 

cessive energy transfer ceases as soon as the number 
of quanta in the mode V, becomes less  than the critical 
value. If this situation occurs below the threphold of 
complete stochastization of Eq. (22), which may gener- 
ally lie above the minimum dissociation limit, the dis- 
tribution function becomes strongly nonequilibrium. 
It i s  convenient to use in this case the model of "diver- 
gence" of the vibrational energy of the mode excited di- 
rectly by laser radiation. This model presupposes that 
only the states having a t  least a critical number of 
quanta in the excited mode can be mixed and the energy 
concentrated in this mode E, is  higher than the average 
energy in each of the other degrees of freedom. The 
main contribution to the expression for the rate coeffi- 
cients is made by the statistically preferred states, 
which correspond to the minimum possible energy E, in 
the excited mode. The model of divergence of the vi- 
brational energy is characterized by i ts  own distribu- 
tion function f: 

f=A-'G(~~Ia,s+~sIs,z+~sIs,s-Ee). (32) 

This divergence model applies not only to the SF, 
molecule but also to a number of highly symmetric 
polyatomic molecules in which leading decay channels 
a r e  very probable. For  example, in the case of the 
SiF, molecule there a r e  grounds for expecting the ex- 
istence of a critical energy representing approximately 
14 quanta of the main transition in the v, band. 

We shall now give the results of calculations of the 
rate coefficients made using Eq. (16) and the distribu- 
tion functions (24) and (32). The case of complete lo- 
calization of the excitation in a triply degenerate mode 
is considered above [ ~ q s .  (14) and (15)]. We shall also 
discuss various forms of the strongest anharmonic 
interactions: 

H,,h=yIl'Is cos ( 6 1 - 2 6 ~ ) ,  01-201 (33) 
Hanh-yI,"'I,"'Z~" cos (6,-ft2-84, o l=o ,+o , ,  (34) 

~"h=a(I:l+Is,*+I,,s) +~(I,,tI*,a+Ia.,Is,*+I*,213,,), 
Hanh=fBII,'Iz'C sin ( 6 r - 6 a ) ,  0 1 = 0 2 .  

(35) 
(36) 

The rate coefficients Q and D for the Hamiltonian (33) 
and the distribution function (24) can be expressed in 
terms of the Whittaker function: 

TE2p2 
D ( T , A ) - -  I? - I? -- exp - 

2nosA ( i )  ( ( ~ ~ ~ ) w - 2 s o ( ~ ) '  

TT 0 1 A 2  
Q ( T , A ) -  Ixl Ezpzexp7W-I ,o  

(37) 

T7 

on condition that ~ / y  >> 1 o r  T/w>> 1. Here, A = q - w,; 
T s ($ = n wl/d is the average energy in one degree of 
freedom. In the case of high values of q ~ 2 / ~ y Z > >  1, 
Eq. (37) reduces to 

P7"Ep)' 1 1 Qas-.--- D - - .  
4o,'1AI5 IAI IAI" IAl" 

For the Hamiltonian (34) and the distribution function 
(24), we have 

where D, i s  the parabolic cylindrical function. The 
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asymptotic behavior in the limit w , w , A ~ / ~ T w , ~  '>> 1 is 
as follows: 

D=3 
yo," 

For the Hamiltonian ( 3 6 )  and the distribution function 
(24) ,  we have 

For the Hamiltonian (35) and the distribution function 
(24) ,  we obtain 

For the Hamiltonian ( 3 5 )  and the distribution function 
(32)  (corresponding to the model of divergence of the 
vibrational energy on the assumption that the critical 
energy depends weakly on the frequency), we obtain 

in which case the rate coefficients are independent of n. 

We can thus see that in a fairly general situation we 
can describe the dynamics of excitation of the vibration- 
al quasicontinuum of polyatomic molecules provided we 
use2' the rate equation ( 4 )  and the rate coefficients (16). 
I t  seems that a good agreement between calculations 
and experiment requires a numerical solution of Eq. ( 4 )  
with the rate coefficients of Eq. (16) for various values 
of the energy in a pulse and various excitation frequen- 
cies. However, even a qualitative analysis of the solu- 
tions of Eq. (4)  with the rate coefficients (15) and (37)- 
(43) ,  made by one of the present authors,34 has shown 
that in a series of symmetric polyatomic molecules of 
the S F ,  or SiF, type the best agreement with experi- 
ment is given by the model of divergence of the vibra- 
tional energy of the mode excited directly. 

In fact, it follows from Eq. ( 4 )  that the total energy 
acquired by a molecule w&> = dT d(O)  in a time t is 
governed by the nature of the coefficient Q 

I f  Q m  $)a, the total energy acquired in this way is pro- 
portional to the energy of a laser pulse taken to the 
power (1  - ol)-', 

i f  a= 1, the dependence is exponential. I f  Q is indepen- 
dent of ( I ) ,  as is true in the model of divergence of the 
vibrational energy or in some special case of the model 
of localization of the excitation energy in one mode, the 
energy acquired by a molecule is a linear function of 

FIG. 2. 1) Line absorption spectrum of the SiF, molecule. 
2) Frequency dependence of the coefficient Q of Eq. ( 15)  fo r  
high vibrational states on the assumption of excitation of just 
one mode. 3) Frequency dependence of Q on the assumption 
of complete stochastization [ Eq. (42 )]. 4) Frequency depen- 
dence of Q in the divergence model [Eq. (43 ) I ,  E,= 14 quanta. 
5) Experimental dependence of the effectiveness of excitation 
of the SiF4 molecule on the frequency of the second s tep  under 
conditions of two-frequency laser  interaction. 

On the other hand, the experimentally observed con- 
siderable width of the frequency characteristic of the 
effectiveness of the excitation of the S F ,  and S iF ,  mole- 
cules under conditions of two-frequency laser interac- 
tion4v2' clearly exclude the possibility of applying the 
model of complete stochastization in describing the 
process of energy acquisition by these molecules in a 
laser field, since this model gives rise to narrow fre- 
quency characteristics given by Eq. (42). In the case of 
the SiF, molecule the best agreement with the experi- 
mental results is given by the divergence model and the 
critical energy is 14 quanta (see Fig. 2). 

We shall now formulate the main conclusions of the 
present investigation. 

1. The rate equations of transitions between immedi- 
ate vicinities of resonances in the band structure of the 
quasicontinuum is governed b y  the nature of the 
strongest anharmonic interaction involving the mode ex- 
cited by infrared radiation and by the nature of the dis- 
tribution of the vibrational energy of the molecule be- 
tween the degrees of freedom. 

2. The anharmonic or Coriolis interaction in the s-th 
order of perturbation theory may cause decay of states 
(stochastization of vibrations) if the product of the den- 
sity of the states interacting in this order and the mean- 
square element of the interaction exceeds unity. 

3. In the case of polyatomic molecules with not too 
many atoms there may be a situation when the states 
corresponding to energy localization in one vibrational 
mode become stochastic later than the states corre- 
sponding to a uniform distribution of the energy between 
the degrees of freedom. In this case it is very likely 
that the decay of localized states is due to the presence 
of a leading decay channel, which results in mixing of 
the states containing at least n,, quanta in the directly 
excited mode (divergence model). 

4. The model of divergence of the vibrational energy 
of the directly excited mode ensures, in contrast to the 
other models, a satisfactory agreement with the exper- 
imental results for the SiF, molecule (as well as for 
the S F ,  molecule) simultaneously in respect of two in- 
dependent characteristics: frequency and energy. 

the laser pulse energy. 5. The critical energy may depend on the frequency 
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of the interaction. For example, in the case of the SF, 
molecule and one-frequency interaction at the frequency 
of the main transition, the available experimental data 
on the anharmonic constants gives an estimate of the 
critical energy which amounts to 7 quanta. 

an  he expression ( 11 ) remains valid also in the quantum case  
if we replace integration with slnmrnation and the 6 function 
with the Kronecker symbol. 

 nother her form of the r a t e  coefficients i s  suggested by Bagra- 
tashvili et d. 33 For  the CF31 molecule on the assumption 
that the characterist ic anharmonic interaction i s  higher than 
the density of resonances of the vibration frequencies. 

'N. R. Isenor, V. Merchant, R. S. Hallsworth, and M. C. 
Richardson, Can. J. Phys. 51, 1281 (1973). 

'R. V. Ambartsumyan, V. S. Letokhov, E. A. Ryabov, and 
N. V. Chekalin, Pis'ma Zh. Eksp. Teor. Fiz. 20, 597 
(1974) [ J E T P  Lett. 20, 273 (1974)l. 

'v. M. Akulin, S. S. Alimpiev, N. V. Karlov, and L. A. 
Shelepin, Zh. Eksp. Teor. Fiz. 69, 836 (1975) [Sov. Phys. 
J E T P  42, 427 (1975)l. 

4 ~ .  V. Kar lw  and S. S. Alimpiev, Izv. Akad. Nauk SSSR Ser. 
Fiz. 43, 366 (1979). 

'R. V. Ambartsumyan, Yu. A. Gorokhov, G. N. Makarov, 
A. A. ~ u r e t s l d r ,  and N. P. Furzikov. Kvantovaya Elektron. 
(Moscow) 4, 1590 (1977) [kv. J. Quantum Electron. 7, 
904 (1977)]. 
'v. M. Akulin and A. M. Dykhne, Zh. Eksp. Teor. Fiz. 73. 

2098 (1977) [Sov. Phys. J E T P 4 6 ,  1099 (1977)L 
'A. A. Makarov, V. T. Platonenko, and V. V. Tyakht, Zh. 

Eksp. Teor. Fiz. 75, 2075 (1978) [Sov. Phys. J E T P 4 8 ,  
1044 (1978)). 

'v. M. Akulin, S. S. Alimpiev, N. V. Karlov, and B. G. Sar- 
takov, 0 mekhanizme vozbuzhdeniya vysokikh kolebatel'nykh 
sostoyanir i dissotsiatisi i  mnogoatomnykh molekul v sil'nom 
IK lazernom pole (On the Mechanism of Excitation of High 
Vibrational States and Dissociation of Polyatomic Molecules 
in a Strong Infrared Laser  Field),  R e p r i n t  No. 58, Lebedev 
Physics Institute, Academy of Sciences of the USSR, M., 
1978. 

%. N. Bagratashvili, Yu. G. ~ a y n e r ,  V. S. Dolzhikov, S. F.  
qol'yakov, A. A. Makarov, L. P. Malyavkin, E. A. Ryabov, 
E. G. Sil'kis, and V. D. T i tw ,  Pis'ma Zh. Eksp. Teor. Fiz. 
30,  502 (1979) [ J E T P  Lett. 30, 471 (1979)]. 

'OG. A. Askar'yan, Zh. Eksp. Teor. Fiz. 46, 403 (1964);  48, 
666 (1965) [Sw.  Phys. J E T P  19,  273 ( 1964 ); 21, 439 
(1965)); F. V. Bunkin, R. V. Karapetyan, and A. M. Prok- 
horov, Zh. Eksp. Teor. Fiz. 47,  216 ( 1964 ) [Sov. Phys. 
J E T P  20, 145 (196511. 

"v. I. Gorchakov and V. N. Sazonov, Zh. Eksp. Teor. Fiz. 
70, 467 (1976) [Sov. Phys. J E T P 4 3 ,  241 (1976)l; V. I. 
Sazonw and V. Yu. ~ inkel ' sh te ih ,  Dokl. Akad. Nauk. SSSR 
231, 78 (1976)[Sw. Phys. Dokl. 21. 645 (1976)l. 

"v. M. Akulin, S. S. Alimpiev, N. V. Karlov, and B. G. 
Sartakov, Zh. Eksp. Teor. Fiz. 72, 88 (1977) [Sov. Phys. 
J E T P  45, 47 (1977)l. 

"v. M. Akulin, S. S. Alimpiev, N. V. Kar lw ,  and B. G. 

Sartakov, Zh. Eksp. Teor. Fiz. 74, 490 (1978) [Sov. Phys. 
JETP ,  257 (1978)). 

1 4 ~ .  V. ~ l e t s k i r ,  V. D. Klimov, and V. A. Legasov, Dokl. 
Akad. Nauk SSSR 237, 1396 ( 1977 ). 

1 5 ~ .  L. Kompa, P. L. F. Jahresbericht,  No. 39-71, Munich, 
1977; J. L. Lyman, J. Chem. Phys. 67, 1868 (1977). 

16v. T. Platonenko, Pis 'ma Zh. Eksp. Teor. Fiz. 25, 52 
(1977) [Sov. Phys. J E T P  25, 46 (1977)l. 

"v. S. Letokhov, in: Multiphoton Processes  ( R o c .  F i r s t  
Intern. Conf. University of Rochester, N. Y., 1977, ed. by 
J. H. Eberly and P. Lambropoulos) , Wiley, New York 
(1978). p. 331. 

"s. S. Alimpiev, N. V. Karlov, B. G. Sartakov, and E. M. 
Khokhlov, Opt. Commun. 26, 45 ( 1978). 

"P. V. Ambartsumyan, Yu. A. Gorokhov, V. S. ~e tokhov .  
G. N. Makarov, A. A. ~ u r e t s k i f ,  and N. P. Furzikov, 
Pis'ma Zh. Eksp. Teor. Fiz. 23, 217 (1976) [ J E T P  Lett. 
23, 194 (1976)l. 

M. Akulin, S. S. Alimpiey, N. V. Karlov, A. M. Prok- 
horov, B. G. Sartakov, and E. M. Khokhlov, Pis 'ma Zh. 
Eksp. Teor. Fiz. 25, 428 (1977) [ J E T P  Lett. 25, 400 
(1977)l. 

"v. M. Agranovich and V. I. Rupasov, Preprint  No. 11/132, 
Institute of Spectroscopy, Academy of Sciences of the USSR, 
y., 1976. 

2 2 ~ .  V. Shuryak, Zh. Eksp. Teor. Fiz. 71, 2039 (1976) [Sov. 
Phys. J E T P  44, 1070 (1976)l. 

2 3 ~ .  D. KBnsel, Chem. Phys. 33, 35 (1978). 
"K. T. Hecht, J. Mol. Spectrosc. 5, 355 (1960). 

G. Sartakov, Tr. Fiz. Inst. Akad. Nauk SSSR 114, 90 
(1979). 

2 6 ~ .  N. Kolmogorov, Dokl. Akad. Nauk. SSSR 98, 527 (1954); 
V. I. Arnol'd, Usp. Mat. Nauk 18, No. 6 ( 114).  91 (1963 ); 
G. M. Zaslavskir, Statisticheskaya neobratimost' v nelinefn- 
ykh sistemakh (Statistical Irreversibility in Nonlinear Sys- 
tems) .  Nauka, M., 1970. 

"A. V. Gaponov-Grekhov and M. I. Rabinovich. Usp. Fiz. 
Nauk 128, 579 ( 1979) [Sov. Phys. Usp. 22, 590 ( 1979)]. 

'$. A. Rice, in: Advances in Laser  Chemistry ( Proc. Conf.. 
Califo-~ia Institute of Technology, Pasadena, California, 
1978),  Springer Verlag, Berlin ( 1978),  p. 2; J. Ford,  Adv. 
Chem. Phys. 24, 155 (1973). 

"K. Sture, J. Nordholm, and S. A. Rice, J. Chem. Phys. 61, 
203, 768 (1974). 

3 0 ~ .  Kaldor, R. B. Hall, D. M. Cox, J. A. Horsley, P. Ra- 
binowitz, G. M. Kramer,  and E. B. Priestley,  in: Euro- 
physics Study Conf. on Multiphoton Processes,  Benodet, 
France,  1979, p. 101. 

3 1 ~ .  V. Bertsev,  T. D. ~ o l o m i f t s e v a ,  and N. M. Tsyganenko, 
Opt. Spektrosk. 37, 463 (1974) [Opt. Spectrosc. (USSR) 37, 
263 (1974)). 

"R. S. McDowell, J. P. Aldridge, and R. F. Holland, J. 
Phys. Chem. 80, 1203 (1976). 

3 3 ~ .  N. Bagratashvili, V. S. Dolzhikov, V. S. Letokhov, A. A 
Makarov, E. A. Ryabov, and V. V. Tyakht, Zh. Eksp. Teor. 
Fiz. 77, 2238 (1979) [Sov. Phys. J E T P  50, 1075 (1979)). 

3 4 ~ .  M. Akulin, Dissertation for  Candidate's Degree, M., 
1980. 

Translated by A. Tybulewicz 

1070 Sov. Phys. JETP 52(6), Dec. 1980 V. M. Akulin and N. V.  Karlov 1070 


