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A quantum-mechanical theory of translational radiative transitions in atomic collisions is developed. It is 
shown that in the case of light atoms the idea of nuclear motion along classical trajectories cannot be used to 
describe spectral characteristics of such processes. However, in the case of heavy atoms the quantum 
approach is essential only at relatively high photon energies. A method is suggested for the reconstruction of 
the potential curves of quasimolecules from the experimental absorption spectrum. Specific calculations are 
.carried out for rare gas quasimolecules. 

PACS numbers: 34.50.Hc, 34.10. + x 

1. Infrared optical properties of dense atomic gases 
a r e  governed largely by translational radiative transi- 
tions which occur in collisions between atoms. This 
process represents radiative transitions in quasi- 
molecules formed by colliding atoms and they a re  not 
accompanied by a change in the electron state. Such 
transitions alter only the kinetic energy of atoms. The 
transition cross section considered as a function of the 
frequency includes information on the form of the po- 
tential curve of the electron term. The most interest- 
ing feature, mainly in connection with the possibility 
of experimental observation, i s  the photoabsorption 
reaction in collisions between r a r e  gas atoms. 

The published experiments1-6 have given extensive in- 
formation on the translational absorption spectra of 
strongly compressed mixtures of r a r e  gases. The in- 
tegrated characteristics of such spectra were sub- 
jected to a detailed theoretical analysis by Poll and Van 
Kranendonk.' In most of the investigations of this sub- 
jects-lo an empirical dipole moment of a transition and 
model potentials of the atomic interaction a r e  used to 
calculate the form of the absorption spectrum. How- 
ever, the nature of the spectrum i s  very sensitive to 
the form of the potential curve of a quasimolecule 
formed in collisions and calculations of this type a re  
not reliable. On the other hand, precisely for this 
reason the inverse problem of reconstruction of the 
potential curve from spectroscopic experimental data 
can be solved with a high precision if reliable informa- 
tion i s  available on the dipole moment of a phototransi- 
tion considered a s  a function of the distance between nu- 
clei. 

An asymptotic method for the calculation of the dipole 
moment of a transition i s  developed in the present paper: 
it i s  based on the existence of a small parameter in the 
form of the ratio of the characteristic atomic size to the 
internuclear distance. A quantum-mechanical treatment 
is given of the relationship between the form of the ab- 
sorption spectrum and the parameters of the interatom- 
ic potential and dipole moment of a transition. A com- 
parison of the results of the theory for an absorption 
spectrum of a mixture of argon and krypton with the ex- 
perimental data is  used to reconstruct the repulsive 
part of the potential curve of the ArKr(' Z+) quasimole- 
cule. 

2. The absorption cross  section of light for atomic 
collisions is governed by the familiar formula (see, for 
example, Refs. 11 and 12). The matrix element of the 
dipole moment operator of the quasimolecule, which 
occurs in this formula, can be reduced to the following 
form in the Born-Oppenheimer approximation: 

Here, R i s  the vector representing the internuclear dis- 
tance; and @j,, a r e  the wave functions of the motion 
of nuclei in the initial and final states. In the case of 
translational transitions the R-dependent dipole moment 
of a phototransition i s  

where D is the operator of the dipole moment of the 
quasimolecule; 9,, (r,, R) i s  tile electron wave func - 
tion; r, i s  the set of the electron coordinates. 

Our first task will be to calculate d(R). The poten- 
tial for the interaction of the atoms of r a r e  gases (and 
many other atoms) i s  repulsive even a t  internuclear 
distances considerably greater than the characteristic 
atomic size. Therefore, the translational radiative 
transitions in collisions of such atoms occur only when 
the distances between the atoms a r e  large. This makes 
it possible to represent the dipole moment d(R) of Eq. 
(2) a s  a sum of the short-range and exchange parts. 
Methods for the calculation of the long-range part of 
the dipole moment, associated with the multipole inter- 
action of atoms, have been developed to a sufficiently 
high degree. '3 However, a s  shown below, the prob- 
ability of a translational transition depends most strong- 
ly on the exchange part of the dipole moment d,,,(R) 
which i s  due to the overlap of the electron shells of the 
atoms. 

TABLE I. 

1 1 4  1 1  I Y  1 / 1 6  1 " ( "  - 
2075 4.379 Kr-Xe E I ~  14-Xe 1 tgk 0.082 1 :%; 0.026 12.045 1.915 14.474 4.602 1 Xe-Ne Ar-Xe 1 ii!? 1 :% 0.069 1 2603 :::: 1 3.692 :%: 

Kr-Ar 0.416 0.261 209 4.352 

Note.  In actual calculations we used the asymptotic coeffi- 
cients A and B found in Ref. 18. 
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We shall find de,,(R) using the electron wave function 
of a quasimolecule 9,, (r,, R) obtained employing the 
Racah genealogical scheme,14 i. e. ,  expressed in the 
form of a linear combination of the products of the 
wave functions of the atomic cores and two-electron 
wave functions of specific valence electrons (one from 
each atom)15: 

Here, I i s  the total electron spin of a quasimolecu~e; 
MI i s  the projection of this spin onto an axis which i s  
fixed in space; ~ f / ~ r n o ,  Ism,m,, and LSMLMs a r e  the 
quantum numbers representing the states of a valence 
electron, the atomic core, and the whole atom, respec- 
tively; G f t  a r e  the genealogical coefficients; N,, and 
N, are  the numbers of valence electrons in the atoms; 

o;::',"~ ( I , .  . . , r'-I, . . . , n+I,. . . Na) 

is the wave function of the atomic core; pel(tld,jb) i s  
the two-electron wave function of n-th and j-th specific 
electrons, corresponding to the situation when the n-th 
electron i s  localized mainly near the atomic core a, 
whereas the j-th electron i s  close the atomic core b. 

Then, the required dipole moment i s  identical, apart 
from a constant factor, with the quantity 

In the presence of a small parameterz' I ff - B IR <<I, 
where ff2/2 and $/2 a r e  the binding energies of elec- 
trons in atoms, the main contribution to d J z , ( ~ )  of Eq. 
(4) i s  due to the electron density localized near the in- 
ternuclear axis. Therefore, in the case  of the two- 
electron wave functions cp,, we can use the Gor'kov- 
~ i t aevsk i i  repre~entat ion"~ '~ 

(1% 26) =y,(lu)cp(2b)xI, 

%I ( l b , 2 a ) - y i ( l b ) c p ( 2 a ) ~ ~ ~  
(5) 

Here, 

a r e  the wave functions of electrons in isolated atoms 
for distances between the electron and the atomic core 
r, and r,, much greater than the atomic size; A and B 
are  the asymptotic coefficients. These wave functions 
correspond to zero projections of the orbital electron 
momenta of the internuclear axis. The expressions for 
the functions X, and x,, a r e  given in Ref. 17. 

If we select the coordinate origin at the midpoint of 
the internuclear distance and carry out integration, we 
find that 

) R~ - - -  .-I I.+*)+* I s r p - ~ = - " R ( ~ ( a ,  3, A )  - c ( $ .  a. R ) ) .  (7) x 1 , ( 1 + -  
a+13 

The integration domain in Eq. (8) is a triangle with the 
coordinates (-1,1), (1,1), and (1,-1). In the case of 
finite projections of the orbital electron momenta there 
is an additional small factor amounting to (R'm'+'m")-l, 
where m and m ' a r e  the projections of the electron or- 
bital momenta on the internuclear axis. Using then 
Eq. (3) for 3,,(r,,R) and averaging over the projection 
of the total spin M I  of the quasimolecule, we obtain 

Here, 

is the 9j Wigner symbol. 

Expansion of the functions c(ff,P,R) and c(B,ff,R) in 
terms of the small parameter R I ff - B I readily reduces 
Eq. (9) to 

where y = 2/01 + 2/8 - l / ( a  + 8 )  + 1 and 6 = ff +8. The 
coefficients d, and d, a r e  listed in Table I for some 
specific systems. 

The quantity d,,,,(R) calculated from Eq. (10) i s  
compared in Fig. 1 with the results of numerical cal- 
c u l a t i o n ~ ' ~  for the He-Ne and Ar -Kr systems, and also 
with the long-range dipole moment d,.,(R) (Ref. 13). 

3. We shall now determine the frequency and temp- 
erature dependences of the absorption coefficient of a 
gas K ( w ) ,  associated with the translational transitions 

FIG. 1. Dependences d ( R )  for HeNe and ArKr quasimolecules: 
the continuous curves represent de,cl;@) calculated from Eq. 
( lo) ,  whereas the dashed curves are the results of numerical 
calculation of kxch@) taken from Ref. 19; the dotted curves re- 
present the long-range part of the dipole moment dL.,(R) 
(Ref. 13). 
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A+B+Ao-A+B+AE (11) 
(PE i s  the increase in the kinetic energy of an atom 
because of the absorption of a photon). We shall do this 
employing two approaches. The first  approach i s  based 
on the motion of nuclei along classical trajectories. 
The second approach (quantum-mechanical) allows for 
the wave nature of the nuclear motion. We shall em- 
ploy initially a simple model: we shall assume that the 
interatomic interaction potential and the dipole moment 
of a transition decrease with distance R in accordance 
with the same exp(-6R) exponential law?' In the case 
of this potential this i s  justified by the fact that the ex- 
change interaction i s  affected most strongly by the in- 
ternuclear distance and this interaction decreases ex- 
ponentially on increase in R. 

It follows from the calculations that the absorption 
coefficient of a gas associated with translational transi- 
tions i s  a smooth curve with a single maximum (Fig. 
2). The position of the maximum i s  found from the con- 
dition that the distance between the phases of the nu- 
clear wave functions of the initial and final states, which 
is accumulated in the region of transitions, i s  of the 
order of unity. Then, 

where T i s  the gas temperature and ~1 i s  the reduced 
mass of the atoms. 

The absorption coefficient obtained by both calculation 
variants i s  governed by two parameters: 

The results of classical and quantum-mechanical ap- 
proaches a r e  identical in the limit e << 1. Since under 
real  conditions we have w,, << T, the classical approxi- 
mation i s  clearly adequate a t  low frequencies 
(w << w,,.). In this range, we have 

Moreover, a t  high gas temperatures in the case of 
heavy atoms the classical approximation describes sat- 
isfactorily the region of the maximum even at room 
temperature because w,, << T. 

The dependences of the absorption coefficient on the 

FIG. 2. Classical and quantum absorption coefficients in 
the model problem [ d m  a U ( R )  a exp(-6R)I. The continuous 
curves represent K~,(~)/K(w,,,), whereas the dashed curves 
give K~(w)/K(w,,,). 

parameter 0 for three values of the coefficient b i s  
shown in Fig. 2. Curves 1, 2, and 3 correspond ap- 
proximately to collisions of helium, neon, and argon 
atoms with heavier partners a t  room temperature. We 
can easily see  that in the case of helium and neon a cor- 
rect description in the region of the maximum (and also 
in the range where w > w,,) i s  provided only by a quan- 
tum-mechanical approach. In the case of heavier atoms 
this approachis essential only a t  frequencies w >> w ,,, . 

It i s  important to note also that the calculated absorp- 
tion coefficient of a gas depends strongly on the param- 
e ters  of the interatomic interaction potential and on the 
dipole moment d(R). Therefore, in real  cases one can 
solve much more accurately the inverse problem of re -  
construction of the repulsive part of the potential energy 
curve from the known dipole moment and the known fre-  
quency dependence of the absorption coefficient. 

On the basis of the above analysis, we shall tackle 
this problem by a quantum-mechanical approach. The 
effective potential energy will be represented by 

Ueff ( R )  =ee-'-U,+J(J+l)/2@, (14) 

where J i s  the rotational momentum of a quasimolecule; 
c , A, and Uo a r e  characteristic constants. This repre- 
sentation i s  justified for two reasons. Firstly, it fol- 
lows from the condition R >> a. - 1/a  = 1/B that the poten- 
tial energy U(R) in the region of the investigated tran- 
sitions i s  a sum of the exchange and long-range parts, 
and the exchange interaction-which decreases exponen- 
tially on increase in the distance R-is the one that de- 
pends most strongly on the internuclear distance. On 
the other hand, the exponent* nature of the dependence 
d(R) means that the range of radiative transitions cor- 
responds indeed to the repulsive part of the potential 
curve U(R) and the presence of a shallow well in this 
curve can be allowed for by adding a constant term Uo 
to Eq. (14). 

Application of the familiar formulas for the cross  
sections of radiative transitions14 and an allowance for 
the simultaneous induced absorption and induced emis- 
sion, together with the representation of the distribution 
of particles by the Maxwellian law, yields. 

-- -. 

(15) 
Here, w i s  the photon frequency; n, and n, a r e  the den- 
sities of the colliding atoms; E i s  the collision energy; 

where x,,(R) i s  the wave function for the radial motion 
of nuclei normalized on the k/2r scale; k = (2 NE)'" i s  
the momentum of the relative motion of the nuclei. 

If the wave functions x,,(R) a r e  solutions of the 
Schrodinger equation with the potential energy given hy 
Eq. (141, if R = R,, applies in the centrifugal energy, 
where R,, i s  the classical turning point, and if the 
dipole moment i s  represented in the form 

it is found from Eq. (15) that 
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In the case when J in Eq. (20b) i s  so  large that q '  a s -  
sumes only imaginary values it i s  necessary to equate 
51, to zero. 

A result of this type was ohtained earlier by Tani- 
moto. However, he used an empirical exponential r e -  
lationship for the dipole moment and an exponential ap- 
proximation for the interatomic interaction potential, 
which ignores the presence of a potential well. 

If w << w,,, it follows from Eqs. (18)-(20) that 

where 

Rr'da (Rr) (2%) IU (a/&) 2'"'+'6" 
K,-n,nl -- c2(pT)" 3 r (26 /~ )  (i+26/a)aS ' 

and R, i s  found from the equation U(R,)= T .  In the 
frequency range w >> T, we have 

Here, 

A comparison of the absorption spectrum given by 
Eq. (18) with the experimental spectrum of a mixture 
of argon and shows that the best agreement 
between the theory and experiment i s  obtained for 

Figure 3 shows the repulsive part of the potential 

0- 

.- -- 
J.2 j.( R,L 

FIG. 3. Repulsive part of the potential energy of the A ~ K ~ ( ' z + )  
quasimolecules; here, U(R) i s  the potential energy; curve 1 i s  
calculated on the basis of Eq. (11) with the coefficients (161, 
whereas curve 2 i s  based on the elastic scattering data.22 

TABLE 11. 

horn,,, cm-' K(Wrna)'nx~l?, X 10- cms 

theory theory I experiment, 

ArXe 

curve of the ~rKr( 'z+) quasimolecule deduced from Eq. 
(14) using the parameters (22). This figure includes 
also the repulsive part of the curve deduced experimen- 
tally from the elastic scattering of atoms. 22 The dif- 
ference between these two curves i s  slight. 

Table I1 gives the maximum values of the absorption 
coefficient deduced from Eq. (18) for room tempera- 
ture, together with the frequencies w,, at which such 
maxima a r e  observed. These values a re  calculated for 
the pairs ArKr, ArXe, and HeNe; in the case of ArKr 
it i s  assumed that the potential i s  given by Eq. (14) with 
the coefficient (22), whereas in the case of the pairs 
ArXe and HeNe the repulsive part of the potential energy 
curve i s  taken from the results on elastic scattering of 
atoms. 23,24 In the case of the HeNe system there a r e  no 
reliable data on the absorption coefficient. Consequent- 
ly, the results of calculations based on Eq. (18) with the 
potential of Ref. 24 a r e  compared with estimates given 
in Ref. 6 and with an extrapolation of the numerical 
data. 25 

4. A theory of translational reactive transitions in 
atomic collisions given in the present paper makes it 
possible to deduce information on the interatomic in- 
teraction potential by a comparison of the experimental 
and theoretical absorption spectra. It follows from our 
analysis that in the case of collisions between light 
atoms the main part of the absorption spectrum has to 
he described by a quantum approach which allows for 
the wave nature of the nuclear motion. In the case of 
heavy atoms or  very high temperatures this quantum 
approach i s  essential only a t  frequencies w >> w,,. 

The authors a r e  grateful to B. M. Smirnov for val- 
uable advice and to V. L. Shagalov for the help in the 
numerical calculations. 

We mean here collisions between atoms of different kinds 
because the translational radiative transitions are  forbidden 
for collisions between two identical atoms on the basis of 
the selection rules governing the parity of the electron term. 

') Unless otherwise stated we shall always use atomic units. 
') In this case we in fact use a mathematical procedure known 

from the theory of vibrational relaxation (see, for example, 
Ref. 10). 
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Contribution to the theory of heat exchange due to a 
fluctuating electromagnetic field 
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The generalized Kirchhoffs law [M. L. Levin and S. M. Rytov, Theory of Equilibrium Thermal Fluctuations 
in Electrodynamics [in Russian], Nauka, 19671 is used to obtain general expressions for the spectral and total 
Poynting vector of a fluctuating electromagnetic field in a flat vacuum gap between two arbitrary semi-infinite 
media of different temperature (Sec. 2; to simplify the derivation, the medium is assumed to be isotropic and 
spatially local). Some general consequences and particular cases are discussed (Sec. 3), and the case of good 
conductors is investigated in detail in the impedence approximation both for the normal and for the 
anomalous skin effect (Sec. 4). The heat-flow formulas are generalized in Sec. 5 (using the concept of the 
generalized surface impedance) to include anisotropic media with spatial dispersion. 

PACS numbers: 41.10.H~. 44.40. +a 

1. INTRODUCTION 

The question of uradiant" heat exchange was posed al- 
ready in the classical theory of thermal radiation. An 
example of i t s  solution is the Cristiansen integral for- 
mula (with respect to the frequency w)' for the energy 
flux between "gray" bodies. Interest in this problem 
was again increased in the 60's, when, in connection 
with experiments at cryogenic temperatures, attention 
was called to the fact that consideration of only travel- 
ing waves (of radiation) is valid only if the gap thickness 
I between the bodies is large, i.e., when I >> AX,, where 
kw is the Wien wavelength corresponding to the tem- 
perature of the colder body. On the other hand in the 
case of thin gaps (I s ~ , )  inhomogeneous waves (the 
near field) come into play and a s  a result the coeffi- 
cient of heat transfer through the gap can depend on the 
gap width 1. 

The presence (and even the role) of a near fluctuating 
field, of which sight was lost campletely in the classi- 
cal (i.e., geometrical-optics) theory of thermal radia- 
tion, was pointed out long ago.3 This field i s  essential 
in all cases close enough to the surfaces of the body 

and by the same token for all sufficiently thin cavities 
or  gaps." In particular, a general theory of thermal 
fluctuations of the electromagnetic field, developed by 
one of us,' was used by Lifshitzs to calculate the mole- 
cular adhesion forces between arbitrary bodies. 

The solution of any problem dealing with average 
bilinear quantities was subsequently greatly facilitated 
when a simpler and general method was developed6 for 
the calculation of correlators of a fluctuating electro- 
magnetic field-the generalized Kirchhoff's law-and 
made it possible in many other applications to obtain 
an even shorter solution of the aforementioned adhe- 
sion-force problem (Ref. 6, Sec. 18). It is clear that 
also for heat exchange (average Poynting vector in a 
gap between two bodies) the near field should also play 
an essential role at small gap thicknesses I. 

The heat flux in a flat gap between a semi-infinite 
medium and a well conducting nonradiating (cold) mir- 
ror was obtained already in Ref. 3 in connection with 
the question of experimental observation of the near 
field. There were pointed out, in particular, inter- 
ference deviations from homogeneity of the field at 
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