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An analysis is made of the processes of photoionization and photodetachment of atoms in a homogeneous 
electric field without allowance for the interaction between an electron and the atomic core in the final state. 
The quasiclassical and semiclassical approximations are used to obtain the expressions for the total cross 
section of a given process and for the angular distribution of electrons. It is shown that the oscillatory energy 
dependences of the cross sections are due to interference between classical trajectories of electron motion in a 
homogeneous electric field. 

PACS numbers: 32.80.Fb 

1. INTRODUCTION 

Experimental studies of the photoionization of rubi- 
dium atoms in a static electric field112 have revealed 
oscillations in the energy dependence of the photoioni- 
zation c ross  section a t  photon energies both above and 
below the threshold in the absence of a static field. In- 
terpretation of these  result^"^ and a quantum-mechan- 
ical calculation5 a r e  in agreement with the hypothesis of 
the existence of quasidiscrete levels in a field which is 
a superposition of the Coulomb and homogeneous fields. 
However, oscillations of the c ross  sections need not be 
associated with the Coulomb field and quasidiscrete lev- 
els. Several theoretical investigations of the influence 
of electric fields on the absorption of light in solids 
(see, for example, Refs. 6 and 7) have yielded oscilla- 
tory dependences of the absorption coefficient on the 
frequency of light without allowance for the Coulomb in- 
teraction. In his book,8 Ansel'm explains these oscilla- 
tions by interference between the reflected and incident 
waves. 

We shall consider this effect in greater detail. We 
shall show that, irrespective of the interaction between 
an electron and the atomic core in the final state, the 
photo-process c ross  section exhibits oscillations re- 
sulting from the interference between classical trajec- 
tories of motion in a homogeneous field. 

2. OSCILLATORY STRUCTURE OF THE TOTAL 
CROSS SECTIONS 

We shall consider the photoprocess accompanied by a 
transition of an electron to a state of energy E = ft 'k / 
2p, where E = 0 corresponds to the photoprocess thres- 
hold in zero  static field. We shall consider only the 
case when E > 0, although photoionization o r  photode- 
tachment in an external field a r e  also possible when 
E c 0. According to the secular form of perturbation 
theory, the differential c ross  section of the photopro- 
cess  i s  (see, for example, Ref. 9) 

where V =  - i t i eph~e- i "T  is the transition operator (ep, is 
the polarization vector of a linearly polarized photon 
and x is i ts  wave vector); w = x c  i s  the photon frequen- 
cy; e and a re  the charge and mass  of an electron; 

$(r) is the wave function of the initial state; qk( r )  is the 
wave function of the final state normalized to 6(k - k'). 

I t  should be noted that Eq. (1) does not give the com- 
plete angular distribution of photoelectrons, because 
the direction of motion of an electron escaping from an 
atom changes under the influence of the static field. The 
angular distribution will be  derived in Sec. 4. 

Our main approximation will be to neglect the inter- 
action between an electron and an atom in the final state, 
which corresponds to the usual Born approximation in 
the absence of a static field. If the force F exerted on 
an electron by a static homogeneous field i s  directed 
along the z axis, the wave function q,, can b e  expressed 
in the form 

where @ i s  the Airy function defined a s  in Ref. 10. 

The next approximation consists of the conditions 

which correspond to quasiclassical motion and a r e  sat- 
isfied in moderate strong fields. I t  then follows from 
the asymptotic nature of O that 

1 
cpk(r)=-exp[i(ky+k,y)]sin 2x"' (2) 

We obtain from Eq. (1) 

e'k 
do =-[IMt12+IMt~la+21m(MtMt~' e~p(ii3lcos0~I')) Idor,  

2ncRapo 

M ~ = =  Jw(t)  ~ ( r )  elkr at, 
where kt is a vector with components kx ,  k,, and - k , .  

We shall also assume that the photoprocess probabil- 
ity i s  much higher than the ionization probability (or the 
probability of dissociation of a negative ion) in a static 
field and that the influence of the static field on the in- 
itial state can be ignored. Then, the first  two terms in 
Eq. (3) yield the photoprocess c ross  section in the ab- 
sence of a field and the inteference term gives r ise  to a 
correction due to the action of the field on the electron 
in the final state. We shall estimate the contribution of 
this correction to the total cross  section by represent- 
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ing the initial-state function in the form 

@ ( r )  =Rt(r) Y l m ( Q ) ,  (4) 

where I and m a r e  the orbital momentum and i t s  projec- 
tion for an electron in an atom. 

When the photon polarization is parallel to the field 
(n polarization), the dipole approximation gives the fol- 
lowing expression for M k 

where j ,  i s  a spherical Bessel function. 

If the photon polarization i s  perpendicular to the field 
(u polarization), assumed to be specifically directed 
along the x axis, the corresponding expression becomes 

We can similarly obtain Mk for any other polarization. 

In view of the large value of @, the main contribution 
in the integration of the interference term of Eq. (3) with 
respect to B, is made by the stationary point 6, = n/2 and 
the boundary points Ok= 0, n. In the case of the u polar- 
ization it follows from Eq. (5) that ) M,) differs from 
zero for 8, = n/2 if I +  m is odd and i t  vanishes in ac- 
cordance with the law cosa8, if I +  m i s  even. Therefore, 
the contribution of a which does not oscillate with re- 
spect to @ i s  proportional to /3"13 o r  j3-' for odd and 
even values of I + m, respectively. For Ok = 0 o r  n, the 
value of 1 M , . / ~  varies in accordance with the law (~in8,)~". 
Therefore, the contribution to B which does oscillate in 
respect of @ is proportional to  cos /3/,3"+' o r  sin p/pm+' 
for even and odd m, respectively (m 2 0). 

A similar analysis in the case .of the o polarization 
shows that the nonoscillatory contribution to  o is pro- 
portional to @"-I3 or /3-' for even or odd I + m, respec- 
tively, and the oscillatory contribution to o i s  propor- 
tional to sin P/P~"-"+' or cos P /~~" - "+ '  for even o r  odd 
m,  respectively (m 2 0). 

We shall now give the final formulas for the n and u 
polarizations in the I = m = 0 case: 

cos a-1 
o , , = I J ~ [ I ~ - + o ( ~ - ' ) ] ,  B 

where 

It follows from Eq. (7) that the positions of the oscilla- 
tion peaks a r e  given by 

where F i s  in volts per centimeter and the energy in re- 
ciprocal centimeters. Similarly, the values of EA at  
which cos f i  passes through i t s  average value a r e  given 

by 

,E.,'=[O.O3332F (n+'l ,)  ] ". 

The separations between the oscillations peaks (AE), and 
the widths of the peaks r, can be described by 

(AE) .=E,-E.-t, 

~ , -E~. ' -E:- , ,  n=1,2,. . . . 
We shall now give the distances between the oscillation 
peaks (AE), in reciprocal centimeters (for n = 1,2, and 
3, respectively) and compare them with the experimen- 
tal results  (the last value) in two fields: 

F=1018 V / C ~ :  16.6 0.8 8.2 7 
F=6146 V/cm: 55.2 32.4 27.2 28 

The widths of the oscillation peaks r, in reciprocal cen- 
timeters (for n = 1, 2, and 3, respectively) compared 
with the experimental results  (last column) a r e  a s  fol- 
lows: 

F=1016 V / C ~ :  5.6 4.4 3.8 4 
F=6146 V/cm: 18.5 14.6 12.8 16 

We can see that the theory is valid beginning from the 
second maximum (i.e., for 8 2 2n). Since the experi- 
mental data a r e  available only for f i rs t  three oscilla- 
tions, i t  i s  not possible to study the reduction in (AE), 
and r, on increase in E. The absence of oscillations of 
the experimental c ross  sections in the o polarization 
case can be explained, on the basis of Eq. (8) by the fact 
that the oscillatory component i s  the second order of 
smallness in respect of p-' and cannot be detected ex- 
perimentally. 

3. SEMICLASSICAL APPROACH 

We shall elucidate the physical n~eaning of the results  
obtained by considering the following classical problem. 
We shall assume that a source of electrons of intensity 
I is located a t  the origin of a coordinate system. For 
simplicity, we shall postulate that the emission of elec- 
trons is isotropic. We shall consider a plane P perpen- 
dicular to the z axis located at a distance z from the 
source. In t e rms  of cylindrical coordinates the z com- 
ponent of the current density in this plane P is 

where v is the initial electron velocity. 

Two curves in Eq. (9) represent the contributions,of 
two trajectories to the current density a t  the point 
( z , p ,  (D). These trajectories correspond to different an- 
gles of flight of an electron, 8, and @,, relative to the z 
axis, where 

ctg Ol , z= l [ i * t ( r )  ]/p. 

The influence of the interference t e rms  resulting on 
transition to a quantum-mechanical description can be 
estimated from semiclassical considerations in the 
same way a s  was done by Ford and Wheeler" in the case 
of collisions between heavy particles. 

The wave function in the plane P can be represented in 
the form 
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where S,  is the reduced action corresponding to the mo- 
tion along the j-th trajectory and qi is a slowly varying 
real  function. If we assume that S ,  i s  large compared 
with ti, the current density becomes 

Calculating Si for the motion of a particle in a homo- 
geneous field, we obtain 

Comparing Eqs. (11) and (12) with Eq. (9), we find that 
the interference contribution to the current density in 
the classically allowed region is 

(13) 
Here, jint represents the interference pattern in the 
plane P and i s  an oscillatory function of the variables 
Z, p, and v. 

We shall now consider how the inteference part  of the 
total current depends on v: 

where I' is the contribution of the classically forbidden 
region. In view of the quasiclassical nature of the mo- 
tion, the integral can be found by the stationary phase 
method. Then, aS = S, -S, considered a s  a function t 
has just one stationary point t = 0. However, M ( 0 )  = 0 
so that the point t = 0 makes no oscillatory contribution 
to I. In the classically forbidden region, the value of j ,  
decays exponentially and the main contribution to I' is 
again given by the point t = 0. In the next approximation, 
we have to allow for the boundary point t = (1 + 22/~)"~,  
which corresponds to p =O. Since for p =0, we have 

integration in the vicinity of the point p = 0 gives 

IW=I sin ~/3i3. (15) 

The oscillatory contribution to I is of the same form 
a s  in Eq. (7). The difference in the numerical coeffi- 
cient i s  due to lack of allowance for the anisotropy in 
the angular distribution of electrons emitted from the 
source. It should also be noted that, for the same rea- 
son, the phase of the oscillatory factor acquires an ad- 
ditional term n and the inaccuracy of the semiclassical 
analysis gives an extra phase a/2. This follows from 
the results of a quantum-mechanical treatment (see the 
end of Sec. 4). The extra phase n/2 appears because of 
inaccuracy of the calculation of the quasiclassical wave 
function. In the derivation of Eq. (10) we have assumed 
that the functions cp,,, a r e  real, whereas in fact they 
should be multiplied by phase factors deduced from the 
boundary conditions for quasiclassical solutions of the 
SchrBdinger equation. 

We thus find that, in contrast to the case considered 
by Ford and Wheeler, the oscillatory (in respect of the 
energy) contribution to the total energy .is not zero  and 

is found by integration near p = 0. This is due to the 
fact that the total probability of electron emission should 
depend not on the whole interference pattern in the P 
plane, but only on the interference inside the source, 
which corresponds to the trajectory with p = 0. This be- 
comes even more obvious when the one-dimensional 
problem i s  considered. Interference between the trajec- 
tories directed along and against the field yields the 
following expression for the current: 

I = I , ( I + C O S  $), (16) 

where I, is the current corresponding to  F = 0. It is 
clear from Eq. (16) that interference in the one-dimen- 
sional case is much more effective. 

The trajectories which a r e  at the limit of the class- 
ically allowed region interfere a t  any distance (no mat- 
t e r  how close to  the origin). Their contribution is rep- 
resented by the nonoscillatory terms in Eqs. (7) and (8). 

The conclusions reached above allow u s  also to inter- 
pret  the dependence of the oscillatory contribution made 
by the polarization to the c r o s s  section. Favorable con- 
ditions for interference, resulting in oscillations, occur 
when photoelectrons escape from an atom mainly along 
and against the field. According to Eqs. (5) and (6), this 
is true only for m = 0 in the case of the a polarization 
and for m = * 1 in the case  of the o polarization. 

4. ANGULAR DISTRIBUTION OF PHOTOELECTRONS 

We shall justify the semiclassical approach and find 
the angular distribution of photoelectrons by considering 
a stationary variant of perturbation theory. The sta- 
tionary part  of a photoelectron function satisfies a sys- 
tem of coupled equations which can be decoupled, in the 
f i rs t  order of perturbation theory in respect of the el- 
ectromagnetic interaction, so that the wave function f 
of the final state i s  described by 

where n r  is the number of photons with a given polariza- 
tion and wave vector x ;  T i s  the normalization volume; 
V is the transition operator introduced above. 

After calculation of the current density in the plane P 
introduced in Sec. 3, we find that the differential c ross  
section of the photoprocess is 

where G(r,  r ' )  i s  the Green function of the left-hand side 
of Eq. (17). The total c ross  sections is found by inte- 
gration in the plane P and i s  independent of z because of 
conservation of the total current. 

The function G(r,  r') can be expressed in terms of the 
integral of the time-dependent Green function of an el- 
ectron in a homogeneous electric field. Using the well- 
known expression12 for the latter, we obtain 
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where 
r - r ' )  1 F 

S ,  (r, r') = ------ + - Fr(z+zl)- - rS+Et. 
22 2 24p 

As before, we shall assume that the motion i s  quasi- 
classical and that the reduced action S is large. Then, 
the integral (18) is found by the stationary phase method: 

exp [iaTT,, (r, r')Ifil 
G (r. r ')  = - 

[l + (2 + z')/l - ens (r, r,) 1' : z;,: ' 
-1 

(19) 

where E,,, = * 1, 

and the stationary points a r e  found from 

If we assume that the dimensions of an atom a r e  small 
compared with p, z, and 1, we obtain 

The expression (20) has the same structure a s  the 
semiclassical formulas (9) and (13). A complete agree- 
ment is obtained by assuming that V(r)q(r) = const* 6(r), 
which corresponds to an isotropic structure-free 
source, and if the extra phase a/2 arising from the in- 
accuracy of the semiclassical treatment is subtracted 
from the cosine term in Eq. (13). Since r and r' cannot be 
separated in the expression for S,(r, r'), the results  of 
integration in Eq. (21) depend on the relationship be- 
tween r, r', and 1. In general, only numerical integra- 
tion can be carried out. 

5. ALLOWANCE FOR THE INTERACTION IN THE 
FINAL STATE 

Allowance for the interaction in the final state com- 
plicates greatly the quantum-mechanical treatment. It 
is simpler to use the semiclassical approach. We shall 
show how to estimate the distance between oscillation 
peaks of the cross  sections using the ideas put forward 
in Secs. 3 and 4. Let the interaction between an electron 
and the atom in the final state be described by the poten- 
tial u (z,p). Let us  consider the trajectories of a photo- 
electron directed parallel and antiparallel to the z axis. 
We have seen earlier that these a r e  the trajectories that 
determine the oscillatory structure of the cross sections. 

The difference of the actions i s  
* 

AS=2 [2p(E+Fz-U(z, 0)) 1'" dz, 

where z ,  i s  a negative root of the equation 

The oscillatory contribution to the cross  section i s  pro- 
portional to cos(hS/ti). The phase in the cosine term 
should be modified allowing for: 1) the inaccuracy of 
the semiclassical approach; 2) the three-dimensional 

nature of the real  problem; 3) the structure of an atom. 
It follows from the above discussion that in the U = 0 
case the sum of the corrections to the phase vanishes 
(or becomes 2n). We shall assume without proof that 
the same result is also obtained for U +O. Then, the 
positions of the interference maxima is given by 

j 12p(E+Fz-U(z,0)) J8"dz=nnfi, (22) 
2. 

which (apart from the term f i / 4 ,  which is small com- 
pared with aS) is identical with the Bohr-Sommerfeld 
quantization rule for the potential U', defined by 

These a r e  the quantization conditions used by Freeman 
et ~ 1 . ' ~ ~  for the Coulomb case U(z, 0) = - e2/)zl. The 
positions of the oscillation peaks obtained by them from 
these conditions a r e  in good agreement with the experi- 
mental results, confirming the validity of the semiclas- 
sical approach. 

However, the approach adopted above has a different 
physical meaning compared with that employed by Free- 
man et ~ 1 . " ~  Freeman et al. in fact imposed the condi- 
tion that the quasiclassical function vanishes a t  z = 0 and 
Eq. (2) implies the requirement of an interference maxi- 
mum a t  z = 0. This is the origin of the difference 1rR/4. 
However, in view of the inaccuracy of the semiclassical 
approach a t  low values of n i t  is not possible to check 
which of these treatments is in better agreement with 
the experimental results. 

We shall simply point out that our approach is more 
general because it makes i t  possible to predict oscilla- 
tion peaks and calculate the distances between them for 
any type of interaction U, whereas the results  of Free- 
man et ~ l . ' * ~  a r e  obtained only for U =  - e2/r  using a 
special analysis of the classical motion along quasi- 
periodic trajectories and the potential - h/r - Fz. Our 
results  a r e  not related to the existence of quasidiscrete 
levels in a field U(r) - Fz. For example, if U(r) i s  
identical with the zero-radius potential, there i s  one 
quasidiscrete level studied by Demkov and Drukarev,13 
but the number of oscillations of the photodetachment 
c ross  section is infinitely large. 

The author is grateful to A. K.  ahi it is, M. K. 
~ a f l i t i s ,  and I. Ya. Berson for numerous and valuable 
discussions. 
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