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The problem is considered as to how dynamic susceptibility arises in an isolated degenerate system as a result 
of interaction with phonons. This susceptibility consists of a narrow Lorentz peak and a smooth background. 
In the lowest approximation with respect to degenerate-center concentration, the centers clad with phonons 
lead to an anomalously strong (in a broad temperature range) and temperature-independent decay of phonons 
of the viscosity type. One consequence of such a decay is that the heat conductivity below the Debye 
temperature is proportional to the temperature. It is also found that the interaction between the phonons and 
the centers becomes strong at sufficiently low temperatures. The results are practically independent of the 
nature of the degenerate center and are of quantum origin. 

PACS numbers: 66.70. + f, 63.70. + h 

1. INTRODUCTION ficients that enter into the answer, and depend on the 
nature of the center and the specific form of its inter- 

Two questions a r e  considered in this work. Firs t  is 
action with the phonons. For  the sakgof convenience, 

the dynamics of an individual center, which possesses we shall frequently speak of spins in what follows. 
an internal degenerate degree of freedom by virtue of 
the fact that the acoustic phonons produce transitions 
between the degenerate levels. The second is the re- 
action of such phonon-clad centers on the field of the 
acoustic phonons. Here the specific nature of the de- 
generate center i s  almost of no consequence to us. 
This can be either the spin S o r  the total angular mo- 
mentum of the ion J(S, J > i) in the absence of a de- 
generacy-removing constant field, or  the same thing in 
a field which only partially removes the degeneracy. 
Further, this can be different cases of degenerate o r  
almost degenerate orbital motion, combined below in 
the term "pseudospin." For example, a dynamic 
Jahn-Teller system o r  else a tunnel state in the case 
when the level splitting can be neglected. 

In all cases, only one thing is of importance to us, 
namely that the phonons produce transitions between 
levels in the first  order in the interaction, and not 
merely modulate the levels. In other the interaction 
with the phonons must not be written down in the form 
of a single term that is  the product of some function 
of J, (or a,) with the phonon operator, but rather the 
presence is necessary of several terms which depend 
on different components of the vector J(or  a )  and which 
do not commute with one another. Thus, the considered 
phenomena have a purely quantum nature and disappear 
in the classical limit J-*. 

This i s  the essential difference of the results ob- 
tained below from the usually considered effects con- 
nected with phonon broadening of local levels (see, for 
example, the work of Krivoglaz et ~ 1 . ' ' ~  and the work 
of Duke and Mahan3). Along with this, a very similar 
formulation of the problem is contained in the paper of 
Ivanov and Fishman: where the absorption of sound by 
a dynamic Jahn-Teller system is considered. 

We now discuss qualitatively the picture that ar ises  
in the case in which an isolated center is clad by a field 
of phonons. Firs t  of all, we note that the results a re  
practically identical for centers of different nature. 
The entire difference reduces to the form of the coef- 

As is well known, a free spin has in a zero external 
field only a static susceptibility X-T-', while the 
dynamic susceptibility ~ ( w )  is identically equal to zero. 
Interaction with phonons leads to the result that each 
spin state survives a finite time and therefore should 
feel an external field of the corresponding frequency. 
Here the decisive role is played by the frequency de- 
pendence of the phonon field acting on the spin. 

As is well known, in the low-frequency limit the spin 
interacts with the field of the strain tensor (for exam- 
ple, see  the book of Al'tshuler and Kozyrep). As a 
result, it turns out that the spectral density of the 
phonon field acting on the spin is proportional to w3. 
This leads to the result that a Lorentzian line of finite 
width is not formed in lowest order perturbation 
theory, and the dynamic susceptibility ~ ( w )  has the 
form of a smooth background that is  temperature- 
independent. The width of this background is of the 
order of the Debye frequency 6, with Imx -w a t  
w<<O. A Lorentzian peak of finite width l? ar ises  only 
upon taking into account the effects of the next higher 
perturbation theory, and it turns out that in the static 
limit w-0 the susceptibility is somewhat less than 
the static susceptibility of the free spin, although, as 
before, i ts  smooth part i s  proportional to T-' .  The 
difference between the adiabatic and isothermal sus- 
ceptibilities introduced by Kubo is, however, com- 
pletely absent here. 

It should be emphasized that such a coincidence of 
the two static susceptibilities does not always occur 
(see, for example, the work of Lazuta7). The general 
form of the function 1mx(w)w-' is shown in Fig. 1. It 
should be remarked that the de'scribed picture of the 
frequency dependence of the susceptibility is a conse- 
quence of the weakness of the spin-phonon interaction 
a s  w - 0. Such a weak coupling takes place only in 
three-dimensional systems. In the case of a lower di- 
mensionality, the coupling is much greater; however, 
the discussion of the spin susceptibility in such sys- 
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FIG. 1. 

tems goes beyond the bounds of this work. It should 
also be noted that Krivoglaz and Loss also studied the 
dynamics of an isolated spin in the presence of de- 
generacy. However, in their case (the field of critical 
fluctuations) the spectral density of the field acting on 
the spin was proportional to w. As a result, a Lorent- 
zian line of finite width appeared even in first  order 
perturbation theory. 

Up to now, in speaking about the susceptibility, we 
have not specified the type of interaction the response 
to which the susceptibility describes. In particular, 
it can be describing the reaction to a local strain. But 
in this case, in the case of a finite density of centers, 
the latter react on the phonon field. This leads, even 
in the case of a weak interaction, to anomalously strong 
viscous-type phonon damping proportional to w2 (we 
recall that damping from static defects is proportional 
to w4). Such a damping can be called (somewhat arbi-  
traily) "spin viscosity." In the range of frequencies 
away from the Lorentzian peak the damping is due to 
the background and does not depend on the temperature. 
In the case of a Jahn-Teller system, the damping has 
been discussed by Ivanov and Fishman4 from a some- 
what different point of view. This damping leads to 
very important physical consequences. First ,  there 
ar ises  an anomalous temperature dependence of the 
thermal conductivity: if we neglect other mechanisms, 
then a t  T<<B the thermal conductivity turns out to be 
proportional to T, while a t  T >>8 it does not depend on 
the temperature. Second, a term proportional to o 
appears in the spectral density of the phonon field that 
acts on the spin, thanks to which the spin-phonon in- 
teraction becomes strong at sufficiently low tempera- 
tures and the need ar ises  of solving the self-consistent 
problem of the dynamics of the spin-phonon system. 
We propose to discuss the solution of this problem in 
the following. 

2. CHOICE OF MODELS; DIAGRAM TECHNIQUE 

As was already noted in the Introduction, the nature 
of the degenerate center i s  almost of no significance 
to us. However, i t  i s  nevertheless convenient in what 
follows to carry out the entire analysis while keeping 
in mind some specific models, to the description of 
which we now turn. 

1. The spin (total angular momentum) in the field of 
elastic oscillations is in the isotropic case, 

H , = g [  ( J i ,  J j } - Z / ~ J ( J + l ) ~ ~ l e i j ( R ~ ) ,  (1 

where {J,,J~} =J,Jj +J,Ji, R, a r e  the coordinates of 
the spin, and E i j  is the strain tensor. 

2. As is known, the crystalline field partially re- 
moves the degeneracy, and then, in place of the 
(W +l)-fold degeneracy of the levels, there ar ise  sev- 
e ra l  ser ies  of levels of lower m~l t ip l i c i ty .~  If we a re  
interested in the frequency of the phonons and in tem- 
peratures that a r e  greater than corresponding splitting, 
then this splitting is unimportant and, a s  before, we 
can use the Hamiltonian (1). In the inverse limiting 
case, we a re  interested only in the lowest multiplet. 
It is  only necessary that there be transitions between 
its  components in the first  order in the interaction, 
We shall not discuss the possible situations. We only 
note that there is  no splitting in a field of cubic sym- 
metry and in place of (1) we have 

3. In the case of the dynamic Jahn-Teller effect o r  
of the tunnel state (when we can neglect in it splitting 
of the levels), in the case of twofold degeneracy, the 
Hamiltonian takes the form 

where Z and X a r e  numerical matrices. 

In what follows, it i s  necessary that the phonons not 
only modulate the degenerate levels, but also produce 
transitions among them. For  this, there should not be 
a direction n in the xz plane such that (a n) commutes 
with H,. It i s  not difficult to establish the fact that the 
corresponding commutator differs from zero in the case 
in which X is not proportional to Z, i.e., if Xi, # CZi ,. 
In the Jahn-Teller case, the matrices Z and X a r e  of 
the same order; there is  a more detailed discussion of 
this, for example, in Ref. 4. In the case of the tunnel 
state, the matrix X is small in comparison with Z, 
since i t  should be proportional to the penetrability of 
the barrier.  

For  what follows, i t  is  convenient to write down the 
interaction (1)-(3) in unified fashion: 

where QQre operators acting in the space of the func- 
tions of the degenerate state [the combinations Ji in 
(1) and (2) o r  u, and ox in (3)], while &" a r e  the com- 
binations of components of the tensor &,,. 

For  calculation of the dynamic susceptibility below, 
we shall use the technique of Abrikosov, proposed by 
him for the study of the Kondo effect.'' We shall now 
formulate this technique briefly in a form that is  con- 
venient for us (see also the work of Walker''). In place 
of the Hamiltonian (4) we introduce a new Hamiltonian, 
which describes an ensemble of infinitely heavy parti- 
cles situated in the immediate vicinity of the point R, 
and interacting with the phonons: 

Here a; and a, a r e  the creation and annihilation op- 
erators of the particles (for definiteness, fermions) 
a t  the point R,, and M is a quantum number that dis- 
tinguishes the states inside the multiplet (for example, 
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the projection of the angular momentum). If the mass 
of the particle approaches infinity, then i ts  orbital 
motion becomes classical and classical statistics a r e  
applicable for its description. Here - A  in (5) is the 
chemical potential, which tends to minus infinity, and 
the averages of the occupation numbers (aia , )  = (n,) 
a r e  proportional to exp(-A/T), i.e., they tend to zero. 

The ordinary temperature diagram technique is ap- 
plicable to the Hamiltonian (5) (see, for example, the 
book of Abrikosov, Gor'kov and ~ z ~ a l o s h i n s k ~ i ' ~ ) .  
Since A-*, each closed fermion loop is proportional 
here  to exp(-X/T), i.e., it is  exponentially small. 
Therefore, in the calculation of the susceptibility, it 
i s  necessary to consider only a single closed loop, 
and it is not necessary to take into account diagrams 
that have a large number of such loops and correspond 
to the interaction of two o r  more particles located at 
the point %. In addition, since a single particle i s  
located a t  the point R,, the susceptibility should be 
orthonormalized in a suitable way. As a result, we 
obtain the following for the susceptibility that describes 
the reaction to the action conjugate to the operator P: 

xp=N-' Sp { e - n d T T ( P ( ~ ) ,  P ( 0 )  )), 

In the case of magnetic susceptibility, P is the spin o r  
total angular momentum, while in the case of reaction 
to a strain it is one of the operators Qb determined by 
the equations (1)-(4). We emphasize once again that in 
the calculation of x it is necessary to keep only the part 
that is finite in the limit as A'*. Obviously, if there 
is more than one center, the normalizing factor in (6) 
should be the product of the numbers of particles N 
for all the centers. 

The first  few perturbation-theory diagrams for x 
a r e  shown in Fig. 2, where the lines with arrows 
correspond to the Green's functions of the particles 

and the wavy lines a r e  the Green's functions of the 
strain tensor A,#,. For calculation of the suscep- 
tibility a t  real frequencies, it is necessary to continue 
the temperature diagrams analytically. This is done 
in two stages. First, it is necessary to formulate a 
diagram technique for the complete Green's function g 
and the complete vertex part I?, both continued to the 
real  axis; the diagrams for these a r e  shown in Fig. 3. 
We then must express the susceptibility in the form 
of an integral of these quantities. 

The first  part of this program in our case is very 
simple. We choose the frequencies of the wave lines 

FIG. 2. 

FIG. 3. 

to be the independent frequencies over which the sum- 
mation i s  carried out. This can be done s o  that they 
enter into the arguments of the g-functions with a 
positive sign (see Fig. 3). After this, i t  is  necessary 
to replace the sums over the frequencies by contour 
integrals, introducing the Planck function N(w) a s  a 
weighting factor. In the calculation of these integrals, 
i t  is not necessary to take the poles of the Green's 
function go into account, since the residues a t  these 
poles a r e  proportional to N(h)-exp(-X/T). Thanks to 
this circumstance, the integration contours can be 
deformed s o  that they encircle the real  axis. But the 
function A(U) has on the real z axis a jump equal to 
I m ~ ( w ) ;  a s  a result, the contour integrals a r e  easily 
transformed into integrals along the real axis, and a 
simple diagram technique develops a t  real frequencies: 
to each wavy line there is juxtaposed a quantity 
n-lN(w)ImA(w), and the frequencies of the wavy lines 
must be s o  chosen that they enter into the argument of 
go with a positive sign; i t  is  necessary to integrate 
from -* to +* over all the frequencies of the wavy 
lines. 

It is  seen from the specific analytic form of the ex- 
pressions corresponding to the diagrams of Fig. 3 for 
r(wl + w, w,), that the vertex part is an analytic function 
of two independent variables: ul +w and w,, on each of 
which it has a cut along the real axis. The general 
proof of this assertion can be found in the work of the 
a ~ t h o r . ' ~  Since the analytic properties of the Green's 
functions a r e  also known,'' continuation of ~ ( w )  to the 
real  axis is easily carried out (see Ref. 13 and the work 
of GinzburgI4) and the following expression exists for 
the retarded susceptibility: 

Here g is the retarded Green's function, the plus and 
minus signs on I?, indicate the signs of the imaginary 
parts of the corresponding arguments (for example, 

r p + - ( 2 ,  y) - rp (x+ i6 ,  ~ 4 6 ) )  ; 

the trace is taken over the projections of M. In the 
derivation of this formula, a shift of a l l  the energies 
by an amount h was carried out. As a result, the fac- 
tor [exp(x/T) +I]-' under the integral, which appears 
upon replacement of the sum over w, by an integral, 
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was replaced by exp {- ( x  + A)/T). 

It remains to discuss the properties of the function 
ImA(o). For noninteracting phonons it has the form 

where m is the mass of the elementary cell, v, is  its 
volume, u is  the index of polarization. Obviously, ImA 
can be represented in the following fashion: 

where 8 is the characteristic phonon frequency, which 
we shall call the Debye frequency, s is the mean sound 
speed, defined by the equation 3s-' =2s;' +s iS;  A(w) 
i s  a cutoff factor, equal to unity a t  w<<6 and decreas- 
ing rapidly with increase in w a t  ~ r ;  >>b, and d is a 
frequency-independent tensor, for which, in the Debye 
approximation, we have 

d~Pq-doSi jbq+dt  ( 6 t p 6 j q + 8 i q S j P ) ,  

3. SUSCEPTIBILITY 

We shall use perturbation theory in the calculation of 
the susceptibility. This is  valid if the dimensionless 
spin-phonon coupling constant.f2 =62(0ms2)-1 is small. 
Here, however, it is  impossible to limit ourselves only 
to the first  order perturbation theory, and it is  neces- 
sary to take into account also that part of the contribu- 
tion of second order (proportional to f4)  which leads to 
a finite width of the Lorentz line. 

We need to know the Green's function g and the vertex 
part rP for the calculation of the susceptibility. We 
shall f irst  discuss the matrix structure of these quan- 
tities. We begin with the Green's function and consider, 
for example, the third diagram of Fig. 3 for o. Since 
go -6,tM, this diagram is proportional to 
Q ~ Q ~ Q ~ ' Q ~ ' ~ , ~ ~ ~ , , , ,  where d,,~ is  the corresponding 
combination of components of the tensor d. In the case 
of interactions that a r e  invariant to a transformation 
of any symmetry group [for example, (1) and (2)j, this 
quantity is  a scalar and is proportional to tiM%. In the 
case of the interaction (3) E, =XE and E, =ZE can be re- 
garded formally a s  components of some magnetic field 
with zero mean value. Naturally, this analogy i s  valid 
only if (E,&,) =0, which we shall assume in what fol- 
lows for simplicity. After this, it is clear that in this 
case the diagram i s  proportional to 6,%, since there i s  
no constant magnetic field in the system. A similar 
consideration is obviously possible also for all  other 
diagrams, and therefore g-  6,%. 

We now proceed to r;lM and show that if P is trans- 
formed according to the irreducible representation of 
the symmetry group, then (rP)Mw -PYfM. For  this we 
consider a s  an example the fourth diagram of Fig. 3; 
it is proportional to 

(Q'Q'PQ'Q") ~ , ~ d v v , d w , .  

I t  is quite obvious that this quantity should transform 
like P in symmetry transformations and, consequently, 

that it is proportional to P,%. It is clear that this 
same reasoning i s  true also for all the remaining dia- 
grams determining I It i s  no longer necessary to 
consider the interaction (3) separately, since we have 
in fact reduced it above to the interaction of the spin 
with a plane fluctuating magnetic field. All these con- 
siderations of general character a r e  confirmed by di- 
rect  calculations, using a specific form of interaction. 

We now proceed to the calculation of g(w). We first  
consider the first  diagram of Fig. 3 for a; to it cor- 
responds the following analytic expression: 

In what follows it is  convenient to make an energy 
shift, replacing w - A by w. After this, obviously, 
~("(0)  describes the renormalization of the energy 
zero. Making use of the free Green's function go = u" 
for its calculation, we obtain 

where we have taken it into account that A(%) is  an even 
function. Since ol(0) does not depend on the tempera- 
ture, i t  can be included in A. Then it is not difficult to 
write the Green's function of first  order in the form 

d x  z N ( x ) A ( x )  - Z 
(a) - [Yz-l - - 

x+m+i6 ] = x + f i ( ~ ) .  (13) -- 

We see that in first  order no finite damping ar ises  
in the Green's function, i.e., a s  before, there is a pole 
a t  w =O; here, however, the residue a t  the pole be- 
comes less than unity and a non-pole background incre- 
ment g,(w) arises. It is also evident that the retention 
of terms of order .fa in the denominator is  an exaggera- 
tion of the accuracy. 

Finite d'mping of g does ar ise  only in the next order 
of perturbation theory, i.e., when account is taken of 
the second and third diagrams of Fig. 3. The contribu- 
tion of the second diagram is easiest to obtain by sub- 
stituting (12) in (10) and separating the terms propor- 
tional to f 4, while the contribution of the third diagram 
must be calculated by using the functions go. As a re- 
sult, we obtain 

In the function U ( ~ ) ( L L , )  we can separate out the terms 
that vanish in the limit w =O;  they give a contribution 
of order f 4  to the renormalization of the residue Z and 
the background part of the Green's function and a re  of 
no interest in what follows. The part that is finite in 
the limit w = O  leads first, to an additional shift in the 
energy zero and is also of no importance in what fol- 
lows, and second, to a finite damping. As a result, 
the part of a i2 )  that is  of interest to us can be written 
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in the form 

(15) 
where the integral in the first  term is taken in the 
sense of the principal value. 

As a result, we get for the Green's function 

where Z and g, a r e  determined by the expressions (13a). 
The function g,(w) has a pole with residue Z a t  the 
point w = - ir,, where 

It is clear from the physical requirement ro>O that @ 
is  positive. This can be established with the help of 
actual calculations, using the interactions (1 )- (3), and 
a general proof can also be given, based on the defini- 
tion of P. However, we shall not concern ourselves 
with this. The functions o, and g, possess an important 
property: 

In the order f 2  in which we a re  interested, the inter- 
action does not change the normalization in (7), i.e., 
N =G exp(- X/T), where G is the multiplicity of the de- 
generacy of the considered system. Actually, we 
represent the number of particles N in the form of an 
integral of the Green's function2: 

N=- n-' dx n ( x )  Im g,, ( z )  =-e-MT Gn-' d z  e-zr'/TIm g ( z )  , (1 9) 
Y -00 -- 

where n(x) is  the Fermi function. By virtue of (18), the 
integrand on the right side of (19) does not increase ex- 
ponentially. Substituting the expressions (16) and (13a) 
in (19), it is not difficult to verify that the terms of 
order f2 actually cancel out. 

We now proceed to the study of the vertex part 
r,(x + w, x). As is seen from (7), we need different 
branches of this analytic function of two variables. 
Here, obviously, l?y and can simply be calculated 
by perturbation theory since in this case the poles of 
all the functions g, lie on the same side of the contour 
of integration, and therefore the integrals over the 
intermediate frequencies a r e  finite in the limit r o - 0  
and cannot compensate for the smallness of the inter- 
action. As a result, we obtain 

% j r,++(x+o, t )= i  +- ~ ~ , z , J N , A , ~ , ( x , + ~ + ~ ) ~ ,  (x ,+x ) ,  
ne' -m (20) 

ap=Sp (Q"PQ"P) d,,. ( S p  P Z )  -'>O, rp - -=  (rp++) *. 

The situation is more complicated in the case ri-, 
since a t  w = O  there i s  an intermediate state in which 

Ig,l2 is under the integral sign. Here the poles of the 
functions g, and g: contract the contour of integration 
and the corresponding integrals diverge a s  I?,- 0. As 
a result, the integral equation for ri' takes in our 
approximation the form 

bp=Sp (Q'Q"PQ"Q") dvv.dw, ( S p  Pz)-I .  

We attempt to solve this equation by iteration. It is 
easy to show that a divergence develops in the second 
term a t  w -ro and ro - 0 only in the second iteration, 
and it is  of the same order a s  the divergence of the 
first  iteration of the third term. This means that in the 
solution of Eq. (21), the first  iteration of the second 
term must be taken into account by perturbation 
theory, while the second iteration i s  used for recon- 
struction of the kernel in the third term, s o  that this 
kernel takes into account not only the diagram with the 
cross  (fourth diagram of Fig. 3) but also the two rungs 
of the ladder (third diagram). As a result, Eq. (21) 
must be rewritten in the form 

This equation is easily solved if we note that at 
w << T, 6, the important region of integration over x, 
in the third term is close to the poles of the last two 
Green's functions. Since the remaining factors under 
the integral change little in the case of such x2, we 
can set  x, = - x- x, in them and, moreover, neglect 
the dependence on (L.. As a result, we obtain the fol- 
lowing equation: 

where the function g, has been substituted for go in the 
calculation of K(x). 

The solution of this equation has the form 
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The temperature dependence of r, is obviously the 
same a s  of r,. The same dependence i s  possessed by 
the paramagnetic-resonance linewidth due to the Raman 
scattering of the phonons (see the work of Al'tshuler 
and Kozyrev15). This is not accidental, since we have 
actually taken into account the very same process in the 
limit, when the resonance frequency is equal to zero. 
Everything said above about P can be said about yP. 
The substitution of (2), (13), (16) and (20) in (7) leads, 
after long calculations (see the Appendix), to the fol- 
lowing rather complicated expression for the suscep- 
tibility: 

In this expression, the first  term is the usual Lorentz 
peak with width r,, and with an amplitude somewhat 
changed by the interaction in comparison with the usual 
value $T-' Lfor the magnetic susceptibility, 

=S(S +1)/3~. The second term is a Lorentz peak 
with width r, and with a small amplitude proportional 
to f2.  Both these terms a re  calculated under the as- 
sumption that w << T, 6; at  high frequencies allowance 
for them is an exaggeration in the accuracy, since they 
a r e  proportional to.f4. Finally, the last term is the 
background part of the susceptibility, which begins to 
fall off only a t  w >O. The nature of the background is 
very simple. This is  the amplitude of the elastic scat- 
tering of a quantum of the field conjugate to the op- 
erator P, accompanied by the emission of a virtual 
phonon. The ordinary energy dependence of this ampli- 
tude is due to the fact that, because of the degeneracy, 
the energy denominators corresponding to phonon-free 
intermediate states a r e  equal to the energy of the 
quantum w. In the next section, in the discussion of 
phonon damping, we shall return to this question. 

The following expression is obtained from (25) for 
the static susceptibility: 

c,=e-' dxxA. 
0 

We see that this susceptibility is somewhat smaller 
than for the free system, and the difference increases 
with increase in the temperature. This is not sur-  
prising, since the phonons always generate transitions 
between levels (spin flip) and the intensity of this pro- 
cess obviously increases with the temperature. 

The expression (27) is identical with the ordinary 
isothermal susceptibility. This can be established if 
we check the fulfillment of the sum rule (see, for ex- 
ample, Ref. 7): 

The corresponding calculations a r e  given in the Appen- 
dix. For  what follows, i t  is necessary to neglect in- 
significant small increments in (25) and use the follow- 
ing simple expression for  xP(w): 

We see that the imaginary part of the background sus- 
ceptibility does not depend on the temperature and is 
proportional to o a t  w<<6. Comparing the imaginary 
parts of the background and peak, and taking (17) and 
(24) into account, it is not difficult to verify that the 
background gives the principal contribution to the sus- 
ceptibility if the condition 

i s  satisfied. Since the sign of Imx should be the same 
a s  the sign of w, the constant pp is positive; we can 
say the same about it that was said above about P.  

The widths r, and r,, a s  well a s  the amplitude of the 
background p,, have a purely quantum nature, i.e., 
they vanish in the classical limit. It is easiest to 
understand this through the example of the interaction 
(1). Actually, the energy of the interaction is finite a s  
J-.o only if g2 -J-'. But here it follows immediately 
from (14), (24), and (25) that r, and p, a r e  propor- 
tional to J-', and that r, -J-2. 

4. THE EFFECT OF DEGENERATE CENTERS ON THE 
PHONONS 

Thus, we have obtained the expression (28) for the 
susceptibility of a center clad with phonons. If the con- 
centration of such centers is finite, they lead to a 
change in the phonon spectrum. We now consider this 
phenomenon and the physical effects connected with it 
in the case in which the quantity nf4 is small, where n 
i s  the atomic concentration of the centers. Taking the 
expression (4) into account, we obtain 

gzn ( ~ , , ( k ,  o ) = ~ : P J  ( k ,  o ) - - ~ i z J  (k, o ) k q x p q l m ( o ) k , ~ l , ( k ,  w ) ,  
m 

(30) 
xpq1."(o , .=  C cPdlc!mY~*(o) 

P 

for the phonon Green's function D in this approxima- 
tion. In the derivation of this expression, we have 
taken into account the symmetry of x in pq and Lm. 

We shall now assume that the phonons a r e  described 
by the Debye model and limit ourselves to consideration 
of the isotropic case, in which 

then we have for the transverse and longitudinal Green's 
functions 

D,(k,  o)  = { ~ ~ - ( s , k ) ~ + f  n ( k ~ ) ~ ~ ~ ( o ) } - ' ,  

D,(k,.  o) = { o z - ( s l k ) 2 + f  n ( k s ) ' 6 [ x i ( o )  +xZ(o) I}-'. 
(32) 

In the case of the interaction (I), the isotropy certainly 
exists, and xi,, '0, and therefore, X, =-  x0/15, 
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x2 = xo/ lO,  where x0 =xi  ji j .  In the general case, there is  
no isotropy but this obviously has no influence on the 
basic physical results obtained below. 

We f i r s t  consider the region of high frequencies, 
where the condition (29) is satisfied and the suscep- 
tibility is  determined by the backgrouhd. In this case, 
the phonon damping of the x-th branch (x = t, I )  and the 
renormalized sound speed s: have a t  w << 8 the form 

- 
where F, is the combination of the products (Qp)2qp, 
entering in the expression for D,. 

Thus, in this region of frequencies, the damping 
does not depend on the temperature and i s  proportional 
to u2,  i.e., it is  large in comparison with the damping 
by static defects, which is proportional to w4. As was 
pointed out in the Introduction, such a damping for a 
Jahn-Teller system has been obtained in Ref. 4. One 
can connect the temperature-independent "spin vis- 
cosity" coefficients with the damping (33) 

where p is  the density of the body. 

It follows from (33) that the scattering cross  section 
of a phonon by a center is proportional to w '. The same 
frequency dependence exists also for resonance scat- 
tering of a phonon by a multi-level system if the fre- 
quency of the phonon i s  significantly greater than the 
energy of the resonances which is natural, since in 
our case these energies a re  equal to zero." 

We now consider the reverse limiting case, in which 
the background can be neglected. If w << r the re- 
normalized sound speed has the form 

s/=sXZ (1 - p f n @ ~ - ' ) ,  (35) 

where @ is  the corresponding combination of the con- 
stants m. We see that upon a decrease in the tem- 
perature, one of the sound speeds vanishes and, con- 
sequently, the system loses stability. Below this tem- 
perature, a state ought to develop with nonzero mean 
values of the operators Qp. It should be emphasized 
that such a phase transition, due to interaction with 
phonons, could be realized only if the remaining forms 
of interaction (for example, exchange) were significant- 
ly weaker. Somewhat later we shall see  that the sim- 
ple theory developed above for the dynamics of an iso- 
lated center, which does not take into consideration the 
change in phonon damping by interaction with such cen- 
ters,  becomes inapplicable before the phase transition 
occurs. Therefore, the problem of the phase transi- 
tion requires additional analysis beyond the framework 
of the present research. 

The phonon damping a t  w << r also has a viscous 
character, but it depends strongly on the temperature. 
The following expression holds for it: 

We shall not write out the simple formulas for the 
range of frequencies 1, < w < w,. 

Equation (9) is  the basis of the theory developed 
above. According to this equation, the damping 
ImA - w at  small w. Such a frequency dependence was 
obtained for ideal harmonic phonons and can obviously 
change if allowance is made for their damping. How- 
ever, the damping of the ordinary type, due to scatter- 
ing by static inhomogeneities and anharmonism, de- 
pends on a high power of the phonon frequency (see, for 
example, the book by Kr iv~glaz '~ )  and therefore does 
not change this dependence.') Along with this, the con- 
tribution of the background part of the susceptibility to 
the damping turns out to be very important. In order to 
understand this, we must substitute ImD in place of the 
combination of 6 functions multiplied by (2w,,)". As a 
result, a s  is not difficult to establish, the following 
increment appears a t  T - 0 and w > w,, in addition to the 
contribution to ImA in the form (9): 

where the constant A depends on the form of the phonon 
spectrum a t  large k and on what combination of atomic 
displacements replaces the tensor E i j  in (4) in the 
microscopic treatment (see, for example, Ref. 4). 

It thus turns out that at 

the dependence of ImA on the frequency is not cubic 
but linear. This means that the theory developed above 
is not applicable a t  such frequencies. In the calculation 
of the damping, a range of frequencies of the order of 
the temperature was important [see (17)j. Therefore, 
if T >  w,, but < ul, and the Lorentz peak is calculated 
correctly, only the expression for the background 
turns out to be incorrect a t  w< w,, However, a t  
T < w,, a l l  the obtained results a r e  inapplicable and it 
is necessary to solve the entire problem of the self- 
consistent spin-phonon system. We propose to do this 
later in another work. We also note that if F is not too 
small, the frequency w, is greater than that tempera- 
ture a t  which, according to (35), the sound speed 
vanishes. 

It remains' for us to discuss the question a s  to how 
the interaction of the phonons with the degenerate cen- 
ters  affects the thermal properties. The corresponding 
calculations a re  rather cumbersome and we shall give 
them in the Appendix. It is  shown there that the basic 
contribution to the heat capacity i s  made by the back- 
ground and has the form 

where the constants A, and A, a r e  given below by the 
formulas (A.15). We see that a t  all  temperatures the 
degenerate centers lead to small corrections to the 
known temperature dependences for the lattice heat 
capacity. 

The result for the heat capacity turns out to be the 
most interesting. As has already been mentioned 
above, the background part of the susceptibility leads 
to the result that the cross section for phonon scat- 
tering by the center is proportional to w2. This means 
that the mean f ree  path length of the phonon a t  T <<b 
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is proportional to T-' and does not depend on the tem- 
perature at T>>0. This easily permits us to estimate 
the heat capacity if we use the well-known formula 
H =1/3Cls. AS a result we get, with account of (33), 

where the constants K, and K, a r e  of the order of unity. 
They can be calculated by the Kubo formula (see, for 
example, the book of Lifshitz and Pitaevskii17). This is 
done in the Appendix; their values a r e  given there. 
Formula (40), of course, is  applicable only in that 
range of values of the parameters in which the scatter- 
ing by the degenerate centers determines the free path 
length of the phonons. We again emphasize that the ex- 
pressions (39) and (40) a r e  valid only if T > w,. 

5. DISCUSSION OF THE RESULTS. SOME 
GENERALIZATIONS 

The obtained results a r e  based on an assumption that 
f a  is  small; more exactly, the deviation of Z (13a) from 
unity should be small, which a t  high temperatures 
means smallness of the quantity f2T@-'. The question 
ar ises  a s  to what values of f a  a r e  encountered in nature. 
Here, of course, too small anf  would be uninteresting, 
since the considered effects become unobservable. 

We f i rs t  discuss the case of r a re  earth ions. The 
spin-phonon interaction of such ions has been studied 
experimentally (see, for example, the works of Baker 
and Currelll" and Pela et ~ 1 . ' ~ ) .  I t  was found in these 
works that the value of g changes in order of magnitude 
from hundredths of an electron volt to several electron 
volts. If we use the definition (11) for f a  and assume 
the atomic weight of the elementary cell to be of the 
order of one hundred then to this range of values of g 
there corresponds a change of f a  from to several 
units. In particular, this means that the characteristic 
energy w,, defined by (38) and limiting the regions of 
applicability of the theory from below, can be found to 
be very large, lying in a range easily reached by ex- 
periment. Thus, if f a  -0.1 and n -0.1, then w,- 0.030. 

It should be noted that if fa<< 1, then the effects con- 
sidered above, which a r e  associated with the influence 
of the centers on the phonon, take place even for con- 
centrated systems (n - 1) if the characteristic energy 
0f4 of interaction of the centers through the phonon 
is greater than the exchange energy and the energy of 
the magnetic-dipole forces. 

In the case of Jahn-Teller systems, the value of the 
coupling constant g is limited by the requirement that 
the effect by dynamic. Roughly speaking, this means 
that gs8.  But here f turns out to be of the order of 
10-a-10-5 and, consequently, the considered effects 
much less pronounced. 

We now discuss the case of a tunnel state. Obviously, 
the developed theory is applicable only at frequencies 
that a r e  greater than the separation of levels in the 
neighboring wells. In the interaction (3) the second 
term describes the transitions induced by phonons be- 
tween the potential wells, and is proportional to the 

amplitude of transmission through the barr ier  9, which 
has the same exponential smallness as the tunnel split- 
ting of the levels. In the case of interaction with pho- 
nons, according to (24) and (25), the observed quanti- 
ties-the peak width and the background amplitude-are 
expressed in terms of the commutator and a r e  therefore 
proportional to $2' and 9. Here, if the quantity w, turns 
out to be much greater than the level splitting, the 
thermal properties described above should change 
strongly even before this splitting begins to appear. 

The quantity g can be of the order of a single electron 
volt (see, for example, the work of Black and Hal- 
perinaO), to which corresponds f a  =l. Therefore, if 
the splitting is less than one degree, the effects con- 
nected with w, should be taken into account a t  
n -10'2 if 9210-2. We have seen that there a re  cases 
in nature in which f2 -1. Strictly speaking, our theory 
is inapplicable there. However, we now advance argu- 
ments by virtue of which it can be thought that the re- 
sults a r e  valid a t  T<<6  and w<<8, with some changes, 
also a t  f -1. We begin with the width of the Lorentz 
peak. Account of diagrams with three phonon lines ob- 
viously leads to a contribution of the order of @f "(T/B)' 
and iff '(T/0)'<< 1, it can be neglected. Obviously one 
can also neglect the contribution from the more com- 
plicated diagrams. So fa r  a s  the background and the 
amplitude of the Lorentz peak a r e  concerned, account 
of the more complicated diagrams a s  T-0 should lead 
to a renormalization of the corresponding amplitudes, 
s o  that they will be functions of f a ,  and of the order of 
unYy. The contribution linear in w to the imaginary 
part  of the background susceptibility must be regarded 
a s  the first  term of the low-energy expansion of this 
quantity in w/0. 

All the results obtained above a r e  the consequence of 
formula (9), according to which ImA - w3. Such a de- 
pendence of ImA on w takes place only for three- 
dimensional systems. In the case of systems of lower 
dimensionality (two dimensional o r  quasi-one dimen- 
sional), this dependence is significantly weaker and, 
correspondingly, the spin-phonon interaction is much 
stronger a t  low frequencies. 

The dependence of ImA on w in low-temperature sys- 
tems i s  easily determined by means of well-known 
formulas for the phonon frequencies of such systems 
(see the book by Landau and Lifshitzal). Thus, in two- 
dimensional systems or  quasi-two-dimensional, if we 
neglect layer interaction, ImAll - w2&(w) for the com- 
ponents of the tensor A parallel to the layer, where E 

is the sign function, and ImA 1 1  ,, - E(W) for mixed com- 
ponents. In quasi-one-dimensional systems, in the fre- 
quency range in which filament interaction is in- 
significant, ImA ,, - w for the longitudinal component and 
ImA ,, - 1 wl -Ihc(w) for  the mixed component. Obvious- 
ly, each of the enumerated cases of behavior of ImA 
requires special analysis. As an illustration, we note 
that if ImA - w, then the theory becomes logarithmic 
in order f 

In conclusion, the,author expresses his thanks to 
A. V. Lazuta for numerous discussions of the problem 
of spin dynamics, a s  a result of which the idea for this 
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we arrive a t  the expression paper developed. Further, the author thanks A. G. 
Aronov, V. L. Gurevich, R. N, Gurzhi, M. A. 
Krivoglaz, M. A. Ivanov and B. P. Toperverg for 
interested discussions of the results. 

APPENDIX 

1. According to (20) and (24), the susceptibility can 
be separated into three terms; the first, x,, is obtained 
if we replace the vertex in (7) by unity, the second, x,, 
if we substitute in (7) terms from (20) and (24) that a re  
linear in a,, and, finally, the third, x,, is  obtained by 
substitution of the last term from (24) in (7). 

The expression for X, can be reduced to the form 

Thanks to (la), there a r e  no increasing exponents under 
the integral sign in the case of negative x. Taking 
(13a) and (16) into account, and also the fact that, in 
under our assumptions ro<< T, we obtain after simple 
calculations 

(A. 2) 

The quantity X, can easily be reduced to the form 
- f k = P 2 a p - [ I ( o ) + ] . ( - a )  1, ne2 (A.3) 

- 

1 "  (2%-z)  ' A ( x i - z )  
l ( o ) = -  j d z d z ,  

exp ( x i / T )  - exp ( x / T )  
gi~z+o)gXx,+o)Im[g,(x)gt ( x i )  I .  

-- 

Here the integrand with respect to x and xl has in the 
upper half plane, besides the poles of the functions 
g:(x) and gF(x,), only distant singularities, connected 
with A and Lexp(x,/T) - exp(x/T)] -I, which lie above 
the real axis a t  distances of the order of 6 and T. We 
raise the contour of integration to these singularities. 
As a result, in addition to the contour integral, a term 
ar ises  for J that is due to the poles of the functions g: 
and is of the form 

The function g, can be replaced on the contour of inte- 
gration by go +g&, after which the integrand turns out 
to be proportional to u,, and therefore account of the 
contour integral is an exaggeration of accuracy. We 
consider J, in more detail. Just  a s  before, we raise 
the contour of integration, recognizing that now the 
residue a t  the pole of gf(x) is equal to zero. We then 
replace gl on the contour by go +g2,al and expand in 
To/T; an expression is obtained in which there a r e  no 
singularities up to the real  axis, to which we and 
therefore one can return along it. As a result, we ob- 
tain 

o.'(x) + o , (x+o )  +x2N [- 
x+iS x+o+iS I )  ' (A. 5 

Substituting this expression in (A.3) and taking into 
account that a t  o << T and w << E) we have 

In all  the integrals here, with the exception of the first, 
we can set  w =0, since the entire calculation is true 
only a t  w << T, 8, and large x a r e  important under the 
integral. After this, the terms containing o, vanish, 
since Reo,(O) =0, and we finally get for X, 

There remains the calculation of x,. If we replace g 
by gl in the corresponding expression, then we can 
neglect the dependence of K(x) on x, and, a s  a result, 
we get, in the case o<< T,6, 

I t  is also not difficult to verify that the interference 
term, which contains gl and g,, i s  negligibly small. 
Adding together (A.2), (A.7), and (A.8), we get 
formula (25). 

2. We now prove that the susceptibility that we have 
calculated satisfies the sum rule (27). It i s  not possible 
to use (25) for this, since its terms proportional to I?, 
a t  large w a r e  calculated incorrectly. Therefore, it is 
necessary to carry  out the proof in general form, using 
(7), (20), and (24). It follows from (7) that 

1m X(o)  = ( ~ - e - * ' ~ ) ~ e - " ~ N - ~  Im G ( o ) ,  
* 

G ( o )  = (2ni) -*  d z e - d T [ g ( z + o ) g ( s )  r++ ( x + o ,  x )  

Here G(o) i s  a function that is regular in the upper 
half plane. Obviously, (27) is rewritten in the form 

f d o  Im G ( a )  = ~ e ~ l ~ i V G - ~ .  (A.10) 
-- 

If we replace the quantity raB in G(w) by unity and sub- 
stitute in (A.10), then we obtain an identity. This fol- 
lows from the definition (19) for N and the known sum 
rule for g:12 

jh lm g ( z ) ,= -n .  (A.II) 
-- 

The remaining part of G' falls off like w-, a s  w-a 
and therefore the corresponding' integral is equal to 
zero. It i s  easy to verify this by writing it down in the 
form 

The zero is obtained here because of the fact that the 
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contour of integration in each of the components can be 
deformed into an infinitely distant semicircle. 

3. For the calculation of the heat capacity we use the 
formula for the correction that must be introduced in 
the thermodynamic potential 51 when the interaction i s  
turned on.'? This formula, after replacement of the 
sum over the frequencies by an integral, and with ac- 
count of the expressions (32), can be transformed to the 
form 

Since we a r e  interested in effects of order n, we have 
replaced the total Green's function of the phonon in this 
expression by the free Green's function. Making use of 
the sum rule (27) and discarding the terms known to be 
temperature independent, it i s  not difficult to obtain 
the following form (A.12) 

If we substitute the expression for the Lorentz peak in 
place of Imx in this expression, then, because of the 
factor x2 in the numerator, we do not have to take into 
account the damping r, in the denominator. As a re- 
sult, it turns out that this part of A51 is proportional 
to f and is negligibly small. The contribution from 
the background can be written in the form 

Now, using the well-known formula for the heat capacity 

it is  easy to obtain the expression (39) of the main 
text, where the constants A, and A, a r e  determined by 
the expressions 

4. As is known, the operator of the thermal energy 
flux of the phonon gas has the form 

(A. 16) 

The Kubo formula" for the thermal conductivity can be 
written in the following form: 

x (o) - (3Ti~)-~[@- (o) 4.. (0) I ,  (A.17) 

where aaB is the retarded Green's function of the op- 
erators q,. Since we neglect the dimensions of the 
centers, by virtue of the vector nature of the vertices 
in the diagram series in @ we need retain only the 
first  diagram, which is a simple loop, and, as a re- 
sult, we have for n : 

x (a)= (3(2n)'Tio)-I c J dkut: ($)' [O.(k. u )  -@.(k. 0) 1. 
P 

(A.18) 

where the expression for @,(k, w )  is obtained after 
analytic continuation of the corresponding temperature 
diagram, and d,(k, w )  is  the retarded Green's function 
of the operators ak, and a:,, . In the limit w = 0, this 
expression i s  easily transformed to the form 

(A. 19) 

-- 
In this integral, the principal contribution a t  T<<8 
is rnadeby x - T a n d a t  T > @ w e h a v e x - 6 .  But, by 
virtue of (29), the Lorentz part of the susceptibility is 
small a t  such x and the entire damping i s  determined 
by the background. For  free phonons u is  infinite. 
Therefore, we a r e  interested in the contribution to n 
which diverges in the limit as f 4n - 0. This contribu- 
tion i s  obviously connected with the pole of the function 
d. But, from the definition of the function d o r  D and 
formula (33) for the damping, it is clear that near the 
pole, 

d,(k, a)= (o-s,k+is,y,)-I. (A.20) 

After substitution of this expression in (A.14), we find 

In both limiting cases, this integral is easily evaluated 
and, a s  a result, we obtain 

Note added in proof, (Oct. 3, 1980). In the paper of 
V.V. Kokshenev [J. Low Temp. Phys. 20, 373 (1979)], 
for the case of a mixture of orthohydrogen in solid 
para-hydrogen, a viscous-type damping of the photons 
was qbtained, similar to (32), and the corresponding 
expression for the thermal conductivity i s  in satisfac- 
tory agreement with the experimental data. 

Note added in proof (25 December 1980). In formula 
(A5), in the first  term under the integral sign, a term 
~ ' (x ) iOx~N has been left out in the braces. Allowance 
for this term expression (A.6) somewhat, and an ad- 
ditional term 

appears in (25). At the same time, in expression (25) 
for b no account need be taken of the term proportional 
to a,, therefore in the high-temperature limit 

The phrase after (25) should be replaced by the follow- 
ing: "We see  that this susceptibility is  somewhat lower 
that for the free system, and in the high-temperature 
limit this difference vanishes; this is not surprising, 
since the investigated effect is of quantum origin." 

 he author is  grateful to V. L. Gurevich who called his at- 
tention to this circumstance. 

2 ' ~ e  a re  only considering dielectrics. In metals, the effect 
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In expression for I,,, in Eq. (42), the coefficient 16/3 should be replaced by 8/3. In Eqs. (45) (last two 
lines), (45'), and (45") all the terms with the exception of V/R must be multiplied by 3. The expression 
for u(V) at T<< A should take the form 

The value of u,( n is 20 at T<< A and (1 + 4 ~ / 3  n u  at T>> A. 
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