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We consider the magnetic ordering due to finite concentration of vacancies for a Fermi crystal with a planar 
triangular lattice and an hcp lattice. It is shown that for these lattices the ground state corresponds to an 
unsaturated ferromagnet with a moment equal to 1/3 and 1/4 of the saturation moment, respectively. 
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1, INTRODUCTION according to Andreev and ~ i f sh i t z , '  a restructuring of 
the ground state takes place in a three-dimensional 

The magnetic properties of quantum Fermi 
crystal, and zero vacancions can be produced. The have been the subject of many recent studies.' These 
vacancies can be produced in a nonequiabrium crystals include either the solid phases of He3 o r  the 
fashion. A two-dimensional lattice liquid with enough 

planar structures produced when He3 atoms a r e  ad- 
vacancies can be produced on the surface of the 

sorbed on various substrates. It was observed in ex- graphite by the He3 atoms if the degree of coverage is 
periment2 that on a graphite surface the He3 atoms form small. The situation with a small  but finite vacancy 
a lattice' Such a structure density can be of interest also for magnetic dielectrics. 
exists a t  densities n =  (0.585 to 1.05)n0 (no is the den- In the Hubbard model with infinite repulsion this situa- 
sity corresponding to one He3 atom for three minima tion correspond to a nearly half-filled band. 
of the potential relief of the substrate. ) 

The magnetism of He3 i s  of the exchange type, since 
it is determined by the spin of the He3 nucleus, and the 
dipole moment is therefore extremely small and cannot 
play a significant role a t  the transition temperature 
T , -  1 mK. The constant Jo for direct exchange of the 
positions of two atoms in the crystal, however, is 
quite small, and the reciprocal time r-' in which the 
atom jumps over to a new position in the liquid is quite 
large. The large value of T-' is due to the fact that the 
He3 atoms a re  not closely packed in the liquid, and the 
number of vacancies i s  appreciable. Therefore in the 
crystalline structures the probability of an atom hopping 
over to a vacancy position, i f  the lat ter  exists, should 
be of the same order. At sufficient vacancy density 
the magnetic properties of such crystals depend on the 
indirect exchange connected with the presence of vacan- 
cies, since the motion of the vacancies causes rearran- 
gement of the atoms. 

For  solid He3, which forms a bcc lattice, estimates 
yield J O x l  mK and T-'-10 K. For  a planar structure 
and for an hcp structure, which He3 can form at  suf- 
ficiently high pressures,  the values of Jo and T-' a r e  
unknown. However, the inequality 

itself should remain in force. The inequality (11) makes 
i t  possible, in the presence of a sufficient vacancy 
density, to neglect the direct  exchange and describe the 
system by the Hubbard model with infinite repulsion of 
the particles a t  one and the same lattice site. 

A finite vacancy density can be due to various causes. 
The formation of a localized vacancy in both a two-di- 
mensional and in a three-dimensional crystal calls for 
expenditure of some positive energy. If the vacancion 
band is wide enough, however, the energy of a delo- 

The present paper i s  devoted to a study of the mag- 
netic properties of such a model, neglecting all other 
types of exchange at low temperatures. Such a model 
was first  considered by N a g a ~ k a . ~  He found the ground 
states on the lattices that can be broken up into two sub- 
lattices, such that the site of one sublattice can have 
only si tes of the other a s  nearest neighbors (only the 
nearest-neighbor approximation is considered). Lat- 
tices that admit of such a subdivision will be called 
alternating. 

It is easy to show that for alternating lattices the 
ground state i s  ferromagnetic with a maximum possible 
summary spin. As for nonalternating lattices, Nagaoka 
has demonstrated that their ground state is not a ferro- 
magnetic state with maximum summary spin. 

One of us has recently proposed a method for the con- 
struction of the ground state of nonalternating lattices. 
It was shown that a finite vacancy density on a planar 
triangular lattice leads to a special ferromagnetic 
structure with a magnetic moment equal to 1/3 of the 
saturation moment. It must be noted that the calcula- 
tions of the ground state for an fcc lattice were made 
by Zaitsev,' but the results  he obtained for the magnetic 
structure a r e  incorrect, and the very value of energy 
of the ground state, assumed to be antiferromagnetic, 
agrees with the value of the energy in the ferromagnetic 
case. 

The purpose of the present paper is a detailed calcu- 
lation of the wave function and the ground-state energy 
for a planar triangular lattice. In addition, we refine 
here the previously developed method5 a s  applied to an 
hcp lattice and establish in fact, for the first  time ever, 
the form of the magnetic ordering in such a lattice and 
calculate the ground-state energy. 

calized vacancy can become negative. In this case, We confine ourselves to the case of one vacancy at 
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T = O  in the absence of direct exchange, i. e . ,  to the 
Hubbard model with infinite repulsion for nearly half- 
filled band. At a low finite density, the type of the 
magnetic ordering should not change. 

2. VARIATIONAL PRINCIPLE. CONSTRUCTION OF 
GROUND STATE WAVE FUNCTION 

The Hubbard model is described by the Hamiltonian 

where a,', a,; b,*, bi a re  respectively the creation and 
annihilation operators of particles with up and down 
spin; a,, is the matrix element of the transition of a 
particle from site i to site j, and I the repulsion poten- 
tial between two particles on one site. We confine our- 
selves to the nearest-neighbor approximation and write 
for two neighboring sites Oij = >O. The choice of the 
sign is connected with the fact that a,, is in fact the 
overlap integral of two wave functions for a crystal with 
vacancy positions at the si tes i andj (see, e.g., Ref. 71, 
and therefore i ts  sign should coincide with the sign of 
the corresponding matrix element for the hop-over of a 
particle in a two-well potential. 

In the limit I - w of interest to us, each site can be 
occupied not more than once, and therefore the model 
can be described by a purely tunnel Hamiltonian 

with the usual anticommutation relations replaced by 
the following: 

The relations (4) a re  connected with the fact that the 
Hamiltonian (3) acts only on a space of states in which 
no more than one particle is located on each lattice 
site. It is convenient to choose as the basis vectors 
of the states in this space a se t  of states with specified 
vacancy coordinates and with a definite projection of the 
particle spin on the z axis at each occupied lattice site. 
These vectors a r e  completely determined by the num- 
bers of the unoccupied sites and by the spin configura- 
tion, i. e . ,  by the numbers of the sites occupied by 
particles with down spin. For  one vacancy, we denote 
the basis state by the vector li, {a,}), where i is the 
number of the unoccupied site, and the symbol {a,) de- 
notes all  the indices (j,, j,, . . . , j,) that number the 
sites with the inverted spins. 

The state (i, {a,}) can be obtained from the state 
in which each site is occupied by a spin-up parti- 

cle 

Using the properties of the operators (4), i t  is easy to 
determine the result of the action of the Hamiltonian (3) 

on the state (5): 

H l i ,  ( a c ) ) =  Z Q i k a k U  b . + ~ ~ l ~ ~ ) +  z Qikbk(bI+ai)  b a + ~ a I Y , )  
k h 

where the configuration {a,") is obtained from the con- 
figuration {a,} by moving the particle k, without chang- 
ing the projection of i t s  spin, to the location of the 
vacancy i. We see thus that the Hamiltonian (3) de- 
scribes the hopping of a vacancy to neighboring sites of 
a Nagaoma "superlatticeM4 defined by the se t  of indices 
i and {a,}. 

We now expand the eigenstate of the Hamiltonian (3) 
in the se t  (5): 

The equation for the wave function @(r,, {a,}) is ob- 
tained by substituting the expansion (7) in the SchrG- 
dinger equation and using the property (6): 

For  a numerical calculation of the wave function of 
the ground state we use the Schradinger variational 
principle: 

E,=min(<Y I H I Y ) / ( Y  I Y ) ]  

where E ,  is the energy of the ground state. (The func- 
tion a is chosen to be real. ) 

We shall show f i rs t  how to obtain f rom (9) the known 
result concerning the ground state on alternating lat- 
tices. To this end we sum the obvious inequality. 

2akQ (ril ( a t ) )  Q (rk, ( a ; ) )  9 - Q i A [ Q 2 ( r i ,  (GI) +Q2(rhr  (a : ) )  ] (10) 

over i ,{~,},  and k and obtain a s  a result 

where N and D a re  respectively the numerator and de- 
nominator of the fraction in the right-hand side of (9), 
and Z is the number of nearest neighbors. If i t  is pos- 
sible to construct a function such that the inequality 
(11) turns into an equality, then this means that a 
ground state with energy E = -Za  has been found. But 
(11) become an equality only if (10) becomes an 
equality for any two neighbors on the superlattice. For  
alternating lattices this condition can be satisfied if the 
wave function @ (r,, {a ,)) does not depend a t  all  on the 
spin configuration {a,}, and the dependence on the posi- 
tion of the vacancy reduces to a reversal  of the sign on 
going from one sublattice to the other. It should be 
noted that there is no alternative, since for both planar 
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and three-dimensional lattices all  the si tes of the su- 
perlattice a r e  interconnected (see Ref. 4). The inde- 
pendence of the wave function of the spin configuration 
means that the crystal in the ground state is a saturated 
ferromagnet. 

The situation is different with nonalternating lattices, 
since i t  is impossible to effect for them the indicated al- 
ternation of the sign of the wave function. The in- 
equality (11) is in this case rigorous. The principle of 
constructing the ground state consists in the fact that on 
the superlattice the wave function is concentrated near 
those points that have the largest number of neighbors 
that a re  not neighbors to one another (for alternating 
lattices this is true for any point). These points should 
form a periodic lattice for the vacancy positions. 

Actually, when constructing the ground state we make 
use of the fact that on nonalternating lattices the state 
with the maximum summary spin and with the minimum 
energy turns out to be degenerate. In the situation with 
spins-up of all particles, this degeneracy makes i t  pos- 
sible to construct generally speaking various states 
with periodic wave function having a different number 
of zeros. 

Let us consider some such state. Since the vacancy 
is not located on a site corresponding to a zero of the 
wave functions, it is possible to reverse the spins of 
the particle on these sites without changing the energy. 
The result is  two sublattices with oppositely directed 
spins. For  convenience, we shall refer to the sublat- 
tices with up- and down-spins a s  A and B, respectively. 
The wave function corresponding to the case when the 
vacancy is permitted to be only on the sublattice A i s  
the zeroth approximation. When such a function is 
substituted in the functional (9) we obtain the same 
energy as  in the purely ferromagnetic situation, but 
of course, it is no longer a solution of Eq. (8). If we 
now consider wave functions that take on nonzero values 
on those sublattice sites which correspond to vacancy 
position on the subllatice B,  a s  well a s  to more com- 
plicated spin configurations, then obviously the energy 
will be lower. 

The sublattices A and B must be chosen that each 
sublattice site corresponding to the zerothapproximation 
have the maximum number of neighbors that a re  not 
neighbors to one another. It will be shown in the next 
section that this requirement makes the choice of the 
zeroth approximation for a triangular lattice perfectly 
unique. In the case of an hcp lattice, some refinements 
a re  needed. 

Triangular lattice 

The minimum energy a t  the maximum total spin cor- 
responds to the minima of the vacancy spectrum 

e (k) =28(cos kr,f cos kr2+cos k ( r , f  rZ)), (12) 

where r1 = (1, O), r2 = (-$, a / 2 )  a r e  the principal periods 
of the lattice [the unit of length is everywhere the dis- 
tance between the neighboring lattice sites; the spectrum 
(12) can be easily obtained if i t  i s  recognized that the 
wave function depends only on the position of the vacan- 

FIG. 1. Magnetic-ordering structure in the ground state on 
a triangular lattice. ) Sites with up spins, 0) with down 
spins. 

cy and if one goes over to Fourier components in Eq 
(811. 

The energy ~(k) has the minimum value -3S2 a t  two 
points belonging to one Brillouin zone 

This double degeneracy makes i t  possible to construct 
a state with a wave function that vanishes on centers of 
hexagons and reverses sign on going from neighbor on 
a hexagonal lattice (see Fig. 1). We note that such a 
wave function has the maximum number of zeros. By 
reversing the spins a t  the centers of the hexagons we 
obtain the zeroth approximation. The nearest neigh- 
bors of each sublattice site corresponding to the 
zeroth approximation are  not a t  all neighbors to one 
another. 

It is very important to take the symmetry into ac- 
count in the numerical calculation, for this decreases 
significantly the number of nonequivalent spin configu- 
rations. Since the spins on the sublattice B a re  re- 
versed, we a r e  interested only in those symmetry ele- 
ments that transform the sublattices A and B into them- 
selves. That subgroup of the entire crystal triangular- 
lattice group consisting of such elements will be called 
the symmetry group of the magnetic structure. The 
symmetry group of the magnetic structure is deter- 
mined by the elements 

where T, and T, a r e  translations by the vectors 

C ,  is a rotation through an angle n/3 about the origin, 
and u, i s  replacement of y by -y (see Fig. 1). The 
remaining elements of this group can be represented 
in the form of products of the elements (13) raised to 
the corresponding powers. In the higher approxima- 
tions the wave function will effect the same one-di- 
mensional irreducible representation of the magnetic- 
structure symmetry group a s  the zeroth-approximation 
function. The latter i s  determined by the characters of 
the elements (13) 

The concrete application of the group premises is  de- 
scribed in Sec. 3 of this paper. 
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FIG. 2. O and r) Sites of two neighboring basal planes of hcp 
lattice, a and r) sites on which the wave function with max- 
imum number of zeros does not vanish. 

Hexagonal close packed structure 

For  the hcp structure in the situation with maximum 
summary spin there a re  two branches of the vacancy 
spectrum, since the unit cell contains two sites. We 
a r e  interested in the lower branch: 

e (k) =Q{Zh(k) -[2 ( I +  cos krr) (3+2h(k) ) I"}, 

h(k) =cos kr,+cos kr,+cos k(r,+r,), 
(15) 

where r1 = (-1,0,0) and r, = (b, - 0 / 2 , 0 )  a r e  the princi- 
pal lattice periods in the basis plane, 7, = (0,0 2 m )  
is the period in the perpendicular direction. It is easy 
to determine from (15) that the minimum energy E = -451 
corresponds to values k - 7 ,  = 0 and A(k) = - 1. 

The Brillouin zone contains this a whole equal-energy 
line that gives the minimum energy. The infinite-fold 
degeneracy make i t  possible to construct a wave func- 
tion (this will be the wave function with the maximum 
number of zeros) which does not become equal to zero 
only on one straight line in each basal plane. All the 
lines a re  parallel and a re  s o  arranged that for  two lines 
on neighboring basal planes each site of one line has one 
nieghbor on the other (see Fig. 2). The wave functions 
on the nonzero sites has a constant modulus and rever- 
s e s  sign on going from neighbor to neighbor. In con- 
t ras t  to the triangular lattice, the wave function with 
the maximum number of zeros does not determine the 
magnetic ordering. This is clearly already from the 
fact that if all the spins a r e  reversed a t  the sites cor- 
responding to the zeros of such a wave function, the 
structure will not be periodic. 

It is possible to construct for an hcp lattice a periodic 
structure such that all the neighbors of the superlattice 
points corresponding to the zeroth approximation a re  
not neighbors of one another. It is easily understood 
that the zeroth approximation should be realized by a 
structure in which each site of sublattice A has a s  i t s  
neighbors only four si tes of the same sublattice. In 
this case, for any point of the sublattice corresponding 
to the zeroth approximation, only those neighbors 
which a re  obtained when the vacancies hop over from 
sublattice A to sublattice B (such configurations a r e  
in accord with the approximation) will be neighbors of 
one another. There a re ,  however, many such periodic 
structures. It is possible, for example, to arrange in 
each basal plane an alternation of parallel lines with 
non-inverted and inverted spins. The result is a sys- 
tem of corrugated surfaces, on each of which the spins 
a r e  ferromagnetically ordered, but on the neighboring 

v v v v  

r"ffr"fr v v v v  

FIG. 3. One of the possible magnetic structures on an hcp 
lattice. 

surfaces the spin projections a r e  opposite (Fig. 3). 
It is possible to insert between two surfaces with non- 
inverted spins several surfaces with inverted ones. 
Other more complicated structures a r e  also possible. 

It is remarkable that for all  such structures, the 
number of ineffective bonds per site of sublattice A 
between the configurations corresponding to the f i rs t  
approximation is the same. Therefore the choice of 
the magnetic structure cannot be based on the f i rs t  ap- 
proximation. It is easily seen that the second-approxi- 
mation energy will be minimal in the case of a minimal 
number of ineffective bonds between the superlattice 
si tes on which a vacancy can land in the second approxi- 
mation (such sites a r e  obtained if the vacancies a r e  
allowed to make two steps from sublattice A in any di- 
rection), the energy will also be lower if the number 
of the number of the configurations obtained in the 
second approximation per site of sublattice A is mini- 
mal. The last  requirement leads to a decrease of the 
denominator of the functional (9) without reducing the 
number of effective bonds in the numerator. 

An analysis of the different structures shows that 
these requirements a re  satisfied by only one structure, 
shown in Fig. 4. In each basal plane the sites of sub- 
lattice A a re  a t  the vertices of a hexagon. The bonds 
between the hexagons a r e  effected via neighboring 
basal planes. The unit magnetic cell of this zeroth-ap- 
proximation structure contains 32 sites (16 each in the 
neighboring basal planes). Twelve of these belong to 
sublattice A. From the results of a numerical calcula- 

FIG. 4. Structure of magnetic ordering in the ground state 
on the hcp lattice. and r) Sites with up spins, 0 and r) with 
down spins. The dashed lines enclose the unit cell. The 
coordinate plane xy coincides with basal plane, marked by 
circles. The z axis is perpendicular to the xy plane. 
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tion of the wave function in the higher approximations 
(see Sec. 4 of the present paper) i t  is seen that the 
average magnetizations if sublattices A and B remain 
the same a s  in the zeroth approximation. This leads to 
an unsaturated ferromagnet with a total magnetic mo- 
ment equal to $ of the saturation moment. 

Numerical calculations were made also for several 
other magnetic-ordering structures. In all  cases the 
energy turned out to be higher than for the structure 
shown in Fig. 4. This confirms the correctness of the 
principles used to construct the ground state. 

The spatial symmetry group of the magnetic structure 
is determined for  an hcp lattice by the following ele- 
ments (see Fig. 4): 

T,, T:, Tz, ~ V Z ,  ow, CO', (16) 

where TI, T,, and T, a r e  translations by the vectors 

o,, and o,, a r e  simple reflections in the planes yz and 
xy ,  C",s a crew axis of sixth order (rotation through 
an angle n /3  about the z axis with subsequent transla- 
tion by T8/2). The other symmetry elements can be 
obtained by taking the product of the operations (16) 
raised to the corresponding powers. For  example, 
T;'(C?J2uy, gives the slip plane. 

We note that the symmetry group of the magnetic 
structure contains the same rotation elements a s  the 
crystal group of the hcp lattice. The irreducible rep- 
resentation is determined from the zeroth-approxima- 
tion wave function and is given by the characters of the 
elements (16): 

3. DESCRIPTION OF THE CALCULATION 
PROCEDURE 

We note f i rs t  that the translational symmetry allows 
us, when summing over the index i in the numerator 
and denominator of (9), to confine ourselves to one unit 
magnetic cell. (We agree the vacancy position to de- 
termine the assignment to a particular cell). In addi- 
tion, there is no need to consider separately the equi- 
valent sites of the superlattice, i. e . ,  si tes that can be 
transformed by rotations and reflections from the sym- 
metry group of the magnetic structure. Consequently 
the summation in (9) can be additionally confined to 
nonequivalent configurations only. Allowance for the 
equivalent sites of the superlattice reduces to multipli- 
cation of each term of the sum over i and {ai) by a 
weight equal to the number of equivalent configurations 
per cell. There exist, however, configurations that go 
over into themselves upon transformation with negative 
character. The amplitudes corresponding to them a re  
zero and can be completely disregarded in the func- 
tional (9). 

Assume now that in a ceratin approximation, n out of 
all the superlattice sites on which vacancies a re  allowed 
to exist a re  nonequivalent with amplitudes a,, a,, . . . , 
a,,,. When account is taken of everything said above, 
the functional (9) takes then the form 

Here P, is the weight of the k-th configuration, @,+, i s  
the amplitude of the neighbor, and we have intro- 
duced a parameter 0 that vanishes if the corresponding 
configuration goes over into itself under some trans- 
formation with negative character, and is equal to 
unity in the opposite case. The summation over the 
nearest neighbors is restricted to those superlattice 
si tes on which a vacancy can be located in the chosen 
approximation. Each neighbor amplitude a,+, is ex- 
pressed in terms of one of the chosen amplitudes: 

where x(G:+,) is the character of the element (this can 
be also an identity transformation) that transforms a 
configuration with amplitude a,+, into an equivalent one 
with amplitude j .  

The following remark must be made concerning (19). 
Two equivalent configurations rk, and 9, can be made to 
go into one another either by one o r  by several trans- 
formations. In the latter case we have 

whence 

In the one-dimensional representation realized by the 
wave function @(r i ,  {a,}) the characters of all the ele- 
ments a re  equal to k 1. If the characters of the ele- 
ments G, and G, a r e  of opposite sign, then 

x(G,GZ-') =x(GI)x(Gz-')  =x(Gi)x(Gz) = - I .  

Consequently, the configurations @, and rk, go over into 
one another via transformations with negative charac- 
ters. Such configurations, however, a r e  excluded from 
the functional (18). Therefore in the case of several 
transformations i t  is immaterial ,which element is con- 
tained in (19). We shall henceforth call @, the neighbor 
of @,, bearing (19) in mind. 

It follows from (18) and (19) that to construct the 
functional the procedure to be followed is: 

1. Construct the number all  the nonequivalent con- 
figurations in the chosen approximation. 

2. Determine the configurations that go over into 
one another under transformations with negative charac- 
ter,  and find the values of B, for the different config- 
urations. 

3. Find the weights P, for the configurations with 
B k f O  

4. Determine for each configuration with Bk#O the 
nearest neighbors and the sign with which the corre- 
sponding amplitude enters. 

The foregoing procedure was effected with a com- 
puter. Each configuration was specified by the coor- 
dinates of the vacancy and of the spoiled lattice sites, 
i. e. ,  the si tes of sublattice A with spins down and the 
sites of sublattice B with spins up. The initial con- 
figuration corresponding to the zeroth approximation 
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was set manually. The remaining configurations were 
constructed by special programs (different for the two 
considered lattices), which generated the configurations 
obtained when vacancies hop from site to site. The 
number of the approxiinate corresponded to the number 
of steps made by the vacancy from the initial point in 
various directions. To determine the equivalent con- 
figurations the programs included special symmetry 
blocks to realize various rotations and reflections. 
For  a triangular lattice, the capability of the computer 
made it  possible to construct a functional in the fifth 
approximation, and in the third approximation for the 
hcp lattice. The obtained functionals were minimized 
by the standard steepest-descent method. The ampli- 
tude a, corresponding to the zeroth approximation was 
fixed at a, = 1. 

4. CALCULATION RESULTS 

The energy values obtained by minimizing the func- 
tional (18) for magnetic-ordering structures corre- 
sponding to the ground state (Fig. 1 for a triangular 
lattice and Fig. 4 for hcp lattice) are  given in Table I. 
This table gives also for each approximation the num- 
ber of nonequivalent superlattice sites on which a va- 
cancy can be located. 

In the case of a triangular lattice, good convergence 
of the energy i s  seen. For an hcp lattice the accuracy 
attained in the energy calculation was lower, since we 
confined ourselves to the third approximation. It i s  
seen from Table I, however, that for like approxima- 
tions the energies obtained for the different lattices 
have approximately the same relative accuracy. 

By way of illustration of the correctness of the 
choice of the ground-state magnetic structure, we pre- 
sent the results of a variational calculation of the energy 
for an antiferromagnetic structure on an hcp lattice 
(Fig. 3): 

Approximation: o I 2 3 
ElQ: -4 -5.13 -5.37 -5.44 

In first approximation, the antiferromagnetic ordering 
and the structure corresponding to the ground state give 
energies that agree to two significant figures. This 
means that in both situations the number of ineffective 
bonds per site of sublattice A is the same. In the 
succeeding approximations, as  seen from the tables, 
the antiferromagnetic structure gives a higher energy. 

Calculation shows that the wave function of the ground 
state is concentrated near the basic configuration, 
i. e. , superlattice sites corresponding to the zeroth 
approximation, and decreases rapidly for more com- 
plicated configurations. (The character of the decrease 
of the amplitudes as  a function of the number of steps 

TABLE I. Results of variational calculation of ground-state 
energy. 

1 1 Approximation 
Lattice type 

l o  , . . . .  1 1  1 2  1 3  1 4  1 5 -  

Number of nonequivalent T m l a r  
confiirations I / H c p  1 ~ ~ ~ 2 ~ ~ ~ ~ ~ f ~ 7  

EIQ 
-3 -3.79 -4.00 -4.04 -4.06 -4.07 

TrianguLv -4 -5.13 -5.46 -5.54 - - Hcp 

TABLE I. Values of amplitudes. 

I Step 

made by the vacancy with basic configuration i s  illu- 
strated by Table 11. ) In view of the large number of 
points i t  i s  impossible to present here all the calcu- 
lated values of the wave function. We give for the 
configurations of each step only severeal of the ampli- 
tudes with the maximum absolute value. The data of 
Table I1 correspond to calculation in fifth order for a 
triangular lattice and third order for the hcp lattice. 
Judging from these data, the amplitudes decrease ex- 
ponentially. We note that there is a considerable 
spread of the amplitudes for one and the same step, 
such that some of them differ by one or  two orders of 
magnitude. 

The probability that a vacancy is located on sublat- 
tice A and at the same time a basis configuration i s  
realized equal to ih:/d, where d i s  the single-site nor- 
malization sum, i. e. , the denominator of the func- 
tional (18) per site of sublattice A. We present the 
results of the calculation of d for a,= 1 in various ap- 
proximations: 

Approximation: 0 1 2 3 4 5  
Triangular lattice: 1 1.22 1.41 1.49 1!55 1.60 
Hcp : 1 1.16 1.35 1.46 - - 

These data seem to indicate convergence of the nor- 
malization sum; this means that the vacancy has a no- 
ticeable probability of being located on superlattice 
sites near the basic configuration, and the magnetic 
structure can be spoiled only in a microscopic region 
around the vacancy. Therefore the average magnetiza- 
tions of the sublattices A and B will be opposite. From 
these data we obtain an estimate of the probability of 
finding a vacancy on sublattice A with reversed spins 

W,," m0.6, W k0.7, 

i. e. , the highest probability is that of locating the va- 
cancy on sublattice A. This allows us the estimate the 
effective masses of the vacancy by considering the mo- 
tion only over this sublattice. In this approximation 
the band spectrum can be easily calculated at for small 
wave vectors it takes the form 

E,, (k) =E,+'l,Qk2a2, 

EHcp (k) ~E~+zlrOklza2+81t~OkI(1a2,  

where a i s  the distance between nearest neighbors on 
the initial lattice, and k, and kll a re  the wave-vector 
components normal and tangential to the basal plane of 
the hcp lattice, respectively. 

We have thus shown that, neglecting all types of ex- 
change except the one due to a small but finite vacancy 
density, the magnetic ordering of quantum Fermi crys- 
tals with planar triangular o r  three-dimensional hcp 
lattice correspond to an unsaturated ferromagnet. In 
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the case of the triangular and hcp lattices the summary 
magnetic moments a r e  equal respectively to 1/3 and 1/4 
of the saturation moment. The vacancies a r e  prefer- 
entially concentrated on a ceratin magnetic sublattice 
and upset the initial symmetrical density distribution 
in the vacancy-free crystal. 

We note that our results present a rigorous varia- 
tional estimate of the ground-state energy in the Hub- 
bard model with inifinite. repulsion and with nearly 
half-filled band fo r  these lattices. The authors thank 
V. L. ~okrovsk i i  for helpful discussions. 
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Onset of inhomogeneous magnetic ordering of the spins in 
a superconductor 
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The relative role of the magnetic dipole and of the indirect exchange interaction of localized spins in the onset 
of magnetic ordering in a superconductor is investigated. It is assumed that in the absence of 
superconductivity the ordering in the spin system would be ferromagnetic. It is shown that even weak 
exchange exerts a substantial influence on the value of the wave vector of the magnetic structure produced in 
the superconductor. 

PACS numbers: 74.30.Ci. 75.30.Et 

The question of coexistence of magnetism and super- 
conductivity i s  presently attracting increased interest 
in connection with the synthesis of superconducting com- 
pounds with a regular arrangement of magnetic atoms. 
Many compounds of this type have been synthesized by 
now"3 and their number continues to increase rapidly. 
There is at  present no doubt that antiferromagnetism has 
little effect on superconductivity, and approximately 
ten compounds of the GdMo,S, type a re  known, in which 
coexistence of superconductivity and antiferromagnetism 
has been found to take place. A situation of much 
greater interest is one in which, in the absence of su- 
perconducting pairing, the localized moments should 
become ferromagnetically ordered when the tempera- 
ture is lowered. This case is realized in the compounds 
ErRh,B, and HoMO,S,, which become f i rs t  magnetically 
disordered superconductors a t  a point T,,, and then go 
over into a ferromagnetic superconducting phase a t  a 
point T, <T,,. This situation is the subject of our 
study. 

detail in Ref. 5. It was shown there that in the region 
where superconductivity and magnetism coexist there 
is realized a helicoidal ordering of the localized spoins 
with wave vector Q, and near the point of onset of 
magnetic ordering. 

Q= (kFzgO-') Ib, 

where 5, the superconducting correlation length. The 
model with magnetic dipole interaction was investigated 
in Refs. 6 and 7. In this case the magnetic ordering 
in the superconductor is likewise helicoidal with wave 
vector 

Q= (kdh , )  ", 

where X, is the London penetration depth. In real sys- 
tems, the magnetic-dipole and the exchange interactions 
act  simultaneously, and we investigate in this article 
their relative contributions to the structure of the in- 
homogeneous magnetic ordering in the superconducting 
phase. 

The magnetic ordering of the considered compounds We note first  that a weak magnetic dipole interaction 
can be brought about by two main types of interaction: o r  an interaction of the order of the exchange interac- 
magnetic dipole interaction of localized moments, and tion does not alter the results obtained in Refs. 4 and 5 
indirect exchange via the conduction electrons. Spin for the case of pure exchange interaction. The situa- 
ordering in a superconductor in the model with indirect tion is different in the case of weak exchange interaction 
exchange interaction was considered in Ref. 4 and in against the background of the magnetic dipole interac- 
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