
High temperature NMR experiments lend themselves 
easily to treatment with participation of FPR (Sec. 2)  
and yield quite reasonable values for their characteris- 
tics. Much attention is currently paid to NMR in the 
low-temperature region. It would be of interest to ex- 
tend the scope of this research by performing experi- 
ments in the vacancion regime, i.e., accompanied by 
production of nonequilibrium vacancy densities. The 
results of Sec. 3 provide for this regime a theoretical 
description that can be used also in the search for zero 
vacancies. 

I am deeply grateful to A. F. Andreev for attentive 
guidance and valuable advice, and to  V. I. Marchenko , 
for a helpful discussion. 
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APPENDIX 
! 

Taking into account the discussion, in Sec. 3, of the 
solutions of Eqs. (3. I?), we write down in explicit form 
only those functions F , ,  \ki, and +i, which a r e  needed 
for the calculation of the imaginary part of the sus- 
ceptibility (3.19): 
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The adiabatic-calorimeter method is used to investigate experimentally the heat capacity of the atomically 
ordered alloys Pt,Mn,Fe,-, (x = 0,0.2,0.3,0.4,0.5,0.8, 1) in the temperature interval 13-300 K. The alloys 
are antiferromagnetic at x = 0 and ferromagnetic at x = 1. The temperature and concentration dependences 
of the magnetic part of the heat capacity are discussed within the framework of the model of the nucleation 
mechanism of a concentration phase transition. 

PACS numbers: 65.40.Em 

It was shown by a number of that a ferro- fo r  the Pt$n alloy and a=3.8? A for the pt3Fe alloy. 
magnetic-antiferromagnetic phase transition is pro- In the antiferromagnetic state a t  T s T, = 164 K the lat- 
duced in quasibinary solid solutions based on the atom- tice of the Pt3Fe alloy becomes weakly tetragonal (c/a 
ically ordered P w n - P t 3 F e  alloys when the concentra- = 0.9998). The P t g n  alloy is a collinear ferromagnet 
tion of the magnetic components i s  varied a t  low tem- a t  T -' T, (T, = 390 K). 
peratures. The initial alloys have a t  room tempera- 
ture an fcc lattice with close parameters: a = 3.89 A ,  The solid solutions Pt$n,Fe,,, have a t  manganese 
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concentrations 0.2 ~x 6 0 . 5  a magnetic state charac- 
terized by the presence of two types of reflections on 
the neutron diffraction patterns; corresponding to a 
ferromagnetic (100) and antiferromagnetic (+$0) struc- 
ture, respectively. ' A similar picture is known to be 
observed also in the atomically ordered Pt,Fe-Pd,Fe 
alloys. The physical properties of these alloys in the 
region of the mixed state have a number of distinguish- 
ing features." The present paper is devoted to an 
investigation of the heat capacity of alloys in which a 
phase transition from the anitferromagnetic into the 
ferromagnetic state takes place when the concentration 
of the components is changed. 

The heat capacity of the alloys Pt$nxFe,, (x = 0 ,0 ,2 ,  
0.3,O. 4,O. 5,O. 8 , l )  was measured by the adiabatic- 
calorimeter method in the temperature interval 13-300 
K with an e r r o r  not larger than 1.5%. The samples, 
certified by neutron diffraction, were kindly supplied 
to us by V.V. Kelarev. The method used to produce 
and finish them a re  described in the relevant papers. 

1. EXPERIMENTAL RESULTS 

The results of the measurement of the heat capacity 
C, a t  constant pressure a s  a function of the temperature 
a r e  shown in Fig. 1. It is seen that Cp(T) of the Pt,Fe 
alloy has a X anomaly near T, = 164 K. The size of the 
heat-capacity peak, however, is insignificant. On going 
to alloys with x =  0.2 and 0.3, the heat capacitance a t  
the maximum increases strongly. The Cp(T) curve of 
the alloy with x=0 .4  shows two characteristic regions 
bounded by inflection points. It can be assumed that the 
observed anomalies of the heat capacity a r e  governed 
by the magnetic states of the alloys. 

In the general case the heat capacity can be expressed 
in the form 

where Clat, C,, C,, and C,,, a r e  respectively the lat- 
tice, magnetic, electronic, and nuclear contribution 
to the total heat capacity a t  constant volume (C,). 
C,,, = C, - C, is the dilation correction. 

According to calculations made for the investigated 
alloys in the region of the magnetic phase transitions 
(100-300 K) the main contribution to the heat capacity 
is made by two terms, lattice and magnetic. The lat- 
tice contribution can be estimated in the Debye approxi- 
mation if the Debye temperature 8, is known. For  the 
P$Fe alloy, OD= 258 K and is determined by linear 
interpolation of the Debye temperatures of the initial 
components, describes satisfactorily the results of the 
measurements of the thermal-expansion coefficient. 
Since the melting temperatures of the Pt&lnxFe,,,al- 
loys a r e  approximately equal, i t  can be assumed, ac- 
cording to  Ziman,6 that OD= 258 K also for alloys with 
arbitrary manganese concentration. Thus, the lattice 
contribution to the heat capacity in the considered tem- 
perature region is assumed to be the same for a l l  the 
investigated alloys. 

The magnetic contribution to the heat capacity, ob- 
tained a s  the difference C, - C,, = C,, is shown in Fig. 
2. It is seen that besides the described anomalies on 
the C,(T) curves, which become more pronounced on 
the C,(T) curves, an appreciable magnetic contribution 
is o b s e ~ e d  in the heat capacity of the alloys with 
x=O. 5, 0.8, and 1 a t  temperatures above 100 K. No- 
tice should also be taken of the shift of the heat-capaci- 
tance anomaly temperatures from 164 K for the alloy 
with x=O to 189 K a t  x = 0 . 2  and 191 K a t  x=0.3.  From 
a comparison of these data with those obtained by neu- 
tron diffraction2 i t  is seen that the temperatures corre- 
sponding to the anomalies of C,(T) a t  x = 0, 0.2, and 
0. 3 a r e  NBel points of the antiferromagnetic subsystem. 
In the heat capacities of the alloys with x = 0.4 and 0. 5 
however, there a r e  no X anomalies a t  the temperatures 
close to 100 and 300 K corresponding to the vanishing 
of the antiferromagnetic reflection and the ferromag- 
netic reflection on the neutron-diffraction patterms. 
As follows from Fig. 2, smeared maxima a r e  observed 
on the plots- of C, against temperature a r e  observed 
for  these alloys in place of the characteristic peaks. 

FIG. 1. Heat capacity of Pt,MrqFe,-, alloys as a function of 
temperature. 

FIG. 2. Magnetic heat capacity of Pt3wFel- ,  alloys as a fun- 
ction of temperature. 
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FIG. 3. Magnetic heat capacity of Pt,MlqFel-, alloys as a fun- 
ction of I1 - T / T N I  in logarithmic ( a )  and semilogarithmic 
(b) coordinates. For TcTN: +) x =  0, A) x =  0.2;  0) x =  0.3. 
For T > Tn: X) X =  0. The solid line is a plot of ( 2 )  with cr = 0. 5, 

To analyze the C,(T) curves of the alloys with x = 0, 
0.2, and 0.3, Fig. 3a shows in a logarithmic scale plots 
of their magnetic heat capacity against T =  (T - T,)/T,. 
Since near-zero coefficient of log T can correspond 
either to a tendency of C, to a constant limit o r  to a 
logarithmic increase, we show in Fig. 3b also plots of 
C, against logr. 

Figure 4 shows the concentration dependence of C, 
a t  T = 240 K, demonstrating the change of the heat ca- 
pacities of the investigated alloys in the case of a para- 
magnet ferromagnet concentration phase transition. It 
is seen that near x = 0 . 4  the magnetic heat capacity has 
a discontinuity, with C,,, of the ferromagnet larger  than 
that of a paramagnet. 

2. DISCUSSION OF RESULTS 

The behavior of the heat capacity of the alloy P d F e  
in the vicinity of T, is similar to that of the coefficient 
of thermal expansion, measured by Sumijama and 
Graham. The observed anomaly a t  T, rounds off in 
an interval of two degrees from the phase-transition 
point. It i s  known that the fluctuation theory7 predicts 
a power-law dependence of the magnetic heat capacity. 

Cm-j71-" (2) 

with an exponent 0 close to zero. According to Fisher 
and Langer,8 such a temperature coefficient of electric 
resistivity (TCR) has the same power-law divergence. 
It was shown earliere that the TCR of the atomically 
ordered Pt,Fe near T, has no fluctuation singularities 
and changes jumpwise. 

It is seen from Fig. 3 that the heat capacity of the 
Pt,Fe alloy a t  1 T / < 10" i s  constant. The assumption 
of a constant value by C,(T) in the immediate vicinity 

of the Nbel point is apparently determined by the pres- 
ence, in the antiferromagnet, of inhomogeneities that 
serve  a s  boundaries of the correlation region. Such 
inhomogeneities can be iron atoms in excess of stoichi- 
onietry, a s  well a s  ordering domain walls? The pres- 
ence of excess iron (-1 at. %) was revealed by chemical 
analysis and also by the difference between the N6el 
temperature of our sample (164 K) and that of the prac- 
tically stoichiometric alloy Pt,Fe (170 K). lo For the 
indicated finite correlation regions there can take place 
both a volume dependence of the ordering temperature 
(the so-called relative shift), and a relative "smoothing." 
The indicated types of distortions with respect to a 
phase transition in an infinite system lead, in our 
opinion, to a smoothing of the heat-capacity anomalies 
and to the absence of fluctuation singularities of the TCR 
near T,. 

Comparing the temperature dependences of the mag- 
netic heat capacity of the Pt$qFe,, alloys with the 
TRC of analogous alloys (Pd,Pt,-,),Fe in the transition 
region of the concentrations, i t  i s  easy to verify that 
their behavior in the vicinity of the NBel point is simi- 
lar .  For  both C, and the TCR one observes, with in- 
creasing concentration x in the alloy, f i rs t  a consider- 
able increase in the anomaly near  T,, followed by a 
smearing of the anomaly a t  the assumed T,. 

When the concentration of the components changes, 
ferromagnetic clusters (nuclei of a new phase4) a re  
produced with a probability P(x) in the antiferromag- 
netic matrix. The value of P(x) i s  determined by the 
Bernoulli distribution, which se ts  the probability of 
having, among the Z nearest neighbors of a given 
atom, no o r  more atoms of a definite sor t  when the con- 
centration of these atoms is x .  In the alloys 
Pt&In,Fe,, the ferromagnetic clusters a r e  produced 
when n 3 no manganese atoms a re  present in the 
nearest surrounding of the iron atom. At a certain con- 
centration x,, averaged over the crystal, the proba- 
bility of formation of ferromagnetic regions is equal to 
the probability of the appearance of antiferromagnetic 
regions. In this case the alloys have an antiferromag- 
net a s  the solvent matrix a t  x<x,, and a ferromagnet a t  
x > X,,. 

The appearance of ferromagnetic nucleation centers 
in an antiferromagnetic matrix is accompanied by the 
appearance of a surface energy of the nuclei a s  well a s  
by a change of the elastic energy in the crystal. An 
estimate of the internal pressure near x,,, obtained 
earlier1' for (Pd,Pt,,),Fe alloys, shows that i t  reaches 
tens of kilobars. In this case the concentration, just 
a s  the pressure,  can alter  the state of the antiferro- 
magnetic subsystem. It can happen that a second-or- 
der  phase transition takes place a t  certain pressures, 
and one of f i rs t  order a t  others. The transition between 
these phenomena occurs in a tricritical point. The 
heat capacity of alloys near such a point is described 
a t  T < 0 by relation (2) with exponent a = 0.5. l3 Larkin 
and pikinl"ave shown that allowance for the compres- 
sibility and for the interaction with the acoustic phonons 
leads to a first-order phase transition close to one of 
second order. At low striction near the transition tem- 
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FIG. 4. Magnetic heat capacity of alloys vs. the manganese 
concentration at T= 240 K. 

perature ( ~ > 0 )  the heat capacity of such a system di- 
verges logarithmically, and f a r  from it it has  the power- 
law dependence (2) with cu = 0.5. 

As  seen from Fig. 3. at T < 0, in the immediate vi- 
cinity of T, (1 T I  < 2 x  lo-'), the magnetic contribution 
to the heat capacity is described by the relation (2) with 
exponents cu = 0 . 0 6  for  the alloy with x=O. 2 and 

= 0.156 for  the alloy with x = 0.3. With increasing 
I T  1 the value of the exponent for  these changes, and 
becomes close to 0 .5  in the interval 2 X < 1 T )  < 2 
x lo-'. This i s  seen in Fig. 3a, where the solid line 
shows for  comparison a plot of (2) with a, =O. 5. 

At T >0 ,  in alloys with x = 0 . 2  and 0.3, the magnetic 
heat capacity decreases  practically jumpwise to a ce r -  
tain limit, and depends little on temperature with fur- 
ther  increase of ( T I .  The behavior of C, of these a l -  
loys a t  T > O  i s  governed apparently by the fact  that the 
phase transition at the NBel point is a transition into an  
inhomogeneous magnetic state characterized by the 
presence of ferromagnetic c lus ters  in a paramagnetic 
matrix. This determines the asymmetry of the tem- 
perature dependence of C, of the considered alloys rela- 
tive to T,. 

Part icular  interest  attaches to the alloys with x = 0 . 4  
and 0.5. An investigation of the magnetic and neutron- 
diffraction properties'*2 shows that the state of their 
antiferro- and ferromagnetic subsystems is essentially 
inhomogeneous. However, the Nbel and Curie points 
of these alloys could be determined from the vanishing 
of the neutron diffraction reflections. ' 1 '  On the plots 
of the magnetic heat capacity against temperature,  
these phase-transition points correspond to strongly 
smeared maxima. 

It follows from Fig. 4,  where the concentration de- 
pendence of C, is plotted a t  a temperature from the 
range T, <T<T,, a phase transition from the para- 
magnetic into the ferromagnetic state is realized near  
x = O .  4. It can be assumed that this concentration is 
close to x,, and is the point of intersection of the order  
parameters of the subsystem. As shown by Izyumov, 
Skryabin, and Laptev,15 a t  such a point the phase transi-  

tion becomes indeterminate when the temperature i s  
varied, and the characterist ic  features become smeared  
out. Therefore a smear ing  of the anomalies of T, and 
T, is observed for  the alloys with x = 0 . 4  and 0.5, which 
lie in the vicinity of the point of intersection of the or- 
d e r  parameters.  

We note in conclusion that the heat capacity investi- 
gated in this  paper reflects the distinguishing features 
of the magnetic s ta tes  of alloys with exchange interac- 
tions of opposite sign. The behavior of C, near  the 
NBel point in alloys with x<x,, is determined by the 
interaction between the antiferro- and ferromagnetic 
subsystems. 

In alloys with concentration nea r  x,,, owing to the 
inhomogeneity of their magnetic state,  the phase-transi- 
tion points of the magnetic subsystems are not very  
pronounced on the Cm(T) curves.  
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