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The influence of ferromagnetically polarized regions (FPR) produced by vacancies in solid He, on the spin- 
lattice and spin-spin relaxation times and on the spin diffusion coeficient is investigated. The FPR absorption 
line shape is calculated for nonequilibrium vacancy densities at T - K. The values of the FPR diffusion 
coefficient of the numbers of the spins contained in the FPR are determined from an analysis of the 
experimental data. 

PACS numbers: 67.80.Mg 

1. INTRODUCTION fusion coefficient D, of the nuclear magnetization, on 
the size and mobility of the FPR. Reduction of the ex- The principal character istic feature of a quantum 
perimental data4-6 by means of these formulas makes it 

crystal i s  the large amplitude of the zero-point vihra- 
possible to determine the number of spins contained in 

tions of i ts  atoms and their delocalization a s  a result 
the FPR and the diffusion coefficient D, of a vacancion 

of the overlap of the atomic wave functions. The quan- 
"dressed" in this manner, and to estimate i ts  band 

tum-mechanical tunneling ahility manifests itself in the 
existence of an excitation svstem that i s  ahsent from width. 

non-quantum crystals. The mohility of these quasi- At T <  lo-' K the FPR can be regarded as almost im- 
particles and their interaction i s  easy to investigate in mobile: s o  that their influence on a nonstationary pro- 
solid He3, since the presence of spin-; particles in it ces s  such as relaxation i s  very small  even for large 
permits the use of the sensitive methods of nuclear mag- (nonequilibrium) FPR densities. On the other hand, 
netic resonance (NMR). the strong exchange interaction between the ~ e '  nuclei 

The availahle experimental data on NMR in solid He" 
a r e  summarized mainly in the review of Guver et a1.l 
The system of nuclear spins (2) in a constant external 
magnetic field H,, described by a Zeeman Hamiltonian, 
ar r ives  at  thermal equilibrium with a definite tempera- 
ture  (spin-spin relaxation) via a dipole-dipole interac- 
tion that i s  modulated by the motion by one of the types 
of the quasiparticles. The same mechanism i s  respon- 
sible also for the spin-lattice relaxation. 

The first part of the paper deals with the tempera- 
ture  region T- 1.5 K, where the dipole-dipole interac- 
tion is  modulated by delocalized vacancies-vacancions 
(V). 

In Ref. 1, the vacancion i s  regarded a s  a "bare" 
quasiparticle that moves through a homogeneous med- 
ium. Yet a vecancion in solid ~e~ produces around i t-  
self a ferromagnetically polarized region (FPR) of nu- 
clear spins: and this region influences substantially 
the vacancion mobility .,3 The character of the modula- 
tion of the dipole-dipole interaction i s  thereby altered. 

We derive below the dependences of the spin-lattice 
and spin-spin relaxation t imes,  a s  well a s  of the dif- 

- - 

leads to a relation between the direction of the FPR 
magnetic moment and the polarization of the nuclear 
paramagnet. By the same token, the existence of the 
FPR influences the absorption line shape in the case of 
stationary detection of the NMR signal. In the second 
part  of the paper, this dependence is  derived for weak 
and strong constant magnetic fields. 

The conclusion deals with the conditions under which 
the results  a r e  valid, and contains some numerical 
estimates. 

2. RELAXATION AND DIFFUSION 

Relaxation times 

At T- 1.5 K the V system i s  closely coupled to the 
lattice and they have the same constant temperature. 
The temperature of the Z system, which i s  "heated" by 
the R F  field, approaches asymptotically the temperature 
of the V system. The large mobility of the nuclear 
spins in solid ~e~ leads to a rapid change of the Hamil- 
tonian of the dipole-dipole interaction, so that it i s  pos- 
sible to use for the calculations the short-correlation- 
t imes approximation (see Ref. 7, Chap. VIII). We ob- 
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tain the correlation function that ensues from this ap- 
proach and ascertain the dependence of the correlation 
time on the size and mobility of the FPR. 

The dipole-dipole interaction in the Z system i s  de- 
scribed by the Hamiltonian 

where SijQ i s  an operator acting on the spins of the par- 
ticles i and j; BijQ i s  a random function of the relative 
locations of the particles i and j. 

Standard calculations lead to the following expression 
for the spin-lattice relaxation times 1: 

where the spectral densities J,(w) of the correlation 
functions a r e  in the case of polycrystalline samples - 

1, ( a )  ='/,& Re j g  ( t )  e-'W1dt, 
4 

where N1, i s  the Van Vleck second moment for the Ham- 
iltonian %, and g(t)  i s  the reduced correlation function 
of the random function Bi,(t) and i s  equal, by definition 
to the probability of Bij  (t) remaining constant during the 
time t; 

O , = - ~ H ,  (2.4) 

i s  the Larmor frequency; y i s  the gyromagnetic ratio. 

Since the dipole-dipole interaction radius i s  small, it 
can be assumed that the change of the local magnetic 
field a t  the point r, i s  connected with the change if i ts  
immediate spin surrounding. In the considered temper- 
ature region, the mobility and density of the FPR a r e  
large enough to assume the highest-frequency changes 
of the local field to he the result of passages of the 
FPR through the point r,. Let us find the probability 
that an immobile k-th spin located a t  the instant t =  0 
in a paramagnetic region "survives" a time t ,  i. e. , 
does not land in any of the diffusing FPR. A spin that 
lands in an FPR i s  excluded from the "survivors," so 
that the sought probability i s  obtained by solving the 
equivalent problem of diffuse motion of a spin with dif - 
fusion coefficient D, in a medium with randomly dis- 
tributed immobile and absolutely absorbing spheres of 
radius R ,  (R, i s  the radius of the FPR and D, i s  i ts  
diffusion coefficient). The corresponding aggregate 
of boundary conditions for the probability density 
p(r ,  r,, 0) = 6(r - r,), takes the form 

where Ri a r e  the radius-vectors of the vacancies. For 
times 

t>~-Zz /Dv  (2.6) 

(2 i s  the average distance between the FPR) we have a 
quasistationary case, and the approximate solution of 
the diffusion equation with the boundary condition (2.5), 
in the czse when there i s  only one FPR, i s  of the form 

The total probability that the k-th spin will not land 
in a single FPR is 

P,(r,, t).= 1 p, ( r ,  r,, t )d r  
D 

(51 i s  the volume outside the FPR) and can change only 
as a result of "running off" into an FPR. It can there- 
fore be determined by integrating the continuity equa- 
tion 

P,= 4 i n d ~  (2.8) 

with initial condition P,(r,, 0) = 1, where 
in=-& ~ . p ,  (2.9) 

i s  the normal component of the probability flux density 
through the FPR boundary; ds i s  the FPR surface ele- 
ment. 

Changing, for simplicity, to a coordinate system with 
center a t  the point r,, we obtain for the considered 
case 

where - 
erfc z=2n-" j e-Y'dy 

is  the complementary probability integral. 

The sought probability -the correlation function g(t)- 
i s  equal to 

Changing over in lng(t) to the "gas" approximation 

where N i s  the vacancy density, we find that for times 
satisfying the condition (2.6), the correlation function 
i s  exponential 

g ( t )  =exp (--t/.y.) 

and the correlation time is 

where p i s  the density of the solid He3; x i s  the vacancy 
density in the crystal. We note that r/rc-R,,/ l<< 1, and 
since we a r e  considering integrals of time for which the 
short-correlation-time approximation is valid, 

the condition (2.6) i s  satisfied automatically. Substitut- 
ing (2.12) in (2.3) we obtain for (2.2) 

The vacancion mechanism considered above deter- 
mines also the thermalization of the Z system (making 
the spin-temperature applicable to this system) a r e  
T- 1 K. For the spin-spin relaxation t ime we have' 

Ts-'='/2Jo+'lzJt+Jr, (2.16) 

where the J, a r e  determined by (2.3). Using formula 
(2.131, 

The distinctive character of the modulation of the local 
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magnetic field i s  reflected in (2.15) and (2.17) via 7, 

(2.13). 

The diffusion coefficient. Comparison with experiment 

The diffuse motion of the longitudinal and transverse 
components of the nuclear magnetization m a r e  indepen- 
dent, so that a distinction must be made between the 
diffusion coefficient D,, which determines the trans- 
port m ,  = m, + im,, from the diffusion coefficient D, , 
which determines the transport of the Zeeman energy 
connected with m, and depends on the character of the 
coupling between the Z system and the lattice.ll' The 
coefficient D, calculated by us  describes the magneti- 
zation transport connected with the spatial motion of the 
paramagnetic spins in the FPR. 

The macroscopic Bloch equations with the diffusion 
term a r e  of the form 

where m i s  the magnetization of the paramagnet, D i s  
the spin self-diffusion coefficient, is the magnetiza- 
tion of the FPR ensemble, and T2 i s  the time of trans- 
verse relaxation of this ensemble. Assuming that the 
deflecting RF pulse rotates the vectors m and A with- 
out changing their moduli, and recognizing that p 
=.Npo, where p and p, a r e  the magnetic moments of the 
FPR and of the He3 nucleus, respectively, while x i s  
the number of spins in the FPR, we obtain from the 
Curie law 

A temperature dependence of the spin-spin relaxation 
time T ,  i s  observed a t  T > 1 K, which corresponds for 
the employed fields4 (w0/2n - 3 MHz) to the case w,Tc 
<< 1. From (2.17) we have [cf. (2.13)] 

Tz=3. (10&f2.r,)-'. (2.25) 

For the temperature dependence of the diffusion coef- 
ficient D,, observed4 in the same temperature range, 
we obtain from (2.21) 

D e = D v ~ f l ' .  (2.26) 

From (2.23)-(2.26) we can obtain in the limit a s  T - expressions for the temperature-independent pa- 
rameters J rand  D,. The logarithms of expressions 
(2.23)-(2.25) in conjunction with logD, of (2.26) con- 
stitute algebraic systems of equations, solution of 
which yields 

Jr=[  ( ' / .n2p2)%.6D~ I .. ( ~ M z T ,  I , ) - ' ] " s  

for (2.23) and (2.261, 

for (2.24) and (2.26), 

#=[ (S / ln2pa)Lh-6D~I  - (5MzTZl ,)-']''l 

for (2.25) and (2.261, and 

Here T, I , ,  T2 I ,  to T = , and D,I, a r e  the correspond- 

Adding Eqs. (2.18) and substituting (2.19), we neglect ingvalues obtained by extrapolating to T =  the experimen- 

the term with Ti  (see the Conclusion) and recognize talcurves a t  T - 1 . 5 ~ ~ - ~ c o r r e s p o n d i n g  to expressions 

that A+ << rn, (xM<< 1 ). As a result we have for the 
(2.23)-(2.26). This reduction of the experimental data 

measurable quantities of Refs. 4 and 8 with the aid of Eqs. (2.27)-(2.30) yields 

ria,==-iyH,m+-rn+/T,+D,.V'm,, 
x= 2-5 and D, = 3 x (10-5-106) cm2/sec, in good agree- 

(2. 20) ment with the estimates of these quantities in Refs. 2 
where 

Dz-D+DvzJr2. 

The results call for a new look at the experimental 
data of Refs. 4-6. We note by way of introduction that 
the accuracy of the experiments considered by us i s  
not high enough to reveal the temperature dependence of 
the pre-exponential factor in (2.13) the vacancy density 
has an exponential temperature dependences) 

x=exp (-HT), (2.22) 

where E i s  the activation energy of the vacancies. 
Therefore in the reduction of the experimental data on 
the basis of formulas (2.15), (2.17), and (2.21) we 
shall assume that JY= (4/3)np~: and D, a r e  independent 
of temperature, In these approximations, the analysis 
of the available experiments makes it possible to de- 
termine such basic characteristics of the FPR a s  
and D,. 

We consider now the spin-lattice relaxation time T ,  
(2.15). It has a temperature minimum that corresponds 
to woT, - 1 (observed in fields w,/2 
=4.8-6.8 MHz at TmiD= 1-1.5 K. In the limiting cases 
of high and low temperatures we have respectively 

and 3 for the considered temperatures T- 1-1.5 K. 

The data of Ref. 5 yield A 20-100 and D, = (loms- 
lo-') cm2/sec. but the large scatter of the experimen- 
tal points in that reference, which makes a reliable ex- 
trapolation impossible, casts douhts on these results. 

We emphasize thatS/> 1 for all the curves reduced 
by us, so that the results of Refs. 4-6 can be regarded 
as an experimental confirmation of the existence of 
FPR. 

An estimate of the vacancion band width A - T(RO/al5 
(Ref. 2) yields A% 8-10 K (a i s  the distance between 
the atoms). 

3. ABSORPTION LINE SHAPE 

At T - lo-' K the equilibrium vacancy density in an 
He3 crystal i s  negligibly small: x - The in- 
fluence of the FPR on the absorption of the energy of 
the RF magnetic field will manifest itself when non- 
equilibrium vacancy densities a r e  produced. We as-  
sume also that T >  I-(I i s  the exchange integral). The 
line shape i s  described by the imaginary part of the 
magnetic susceptibility x(o) = x '(w) - ix ''(w). 
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Owing to the large vacancion exchange interaction, 
which couples the nuclear spins inside the FPR, we can 
neglect the internal structure of the region when it is 
acted upon by an external field of frequency up to w - lo9 Hz, when the natural modes of the FPR begin to 
be excited. It i s  necessary, however, to take into ac- 
count the participation of the boundary spins in the dif- 
fusion outside the FPR, due to direct exchange between 
the He3 nuclei (which is weaker than the vacancion ex- 
change), since diffusion is the mechanism whereby the 
macroscopic magnetic moment of the FPR relaxes to 
equilibrium in the magnetic field. This leads to the 
principal boundary condition: the magnetization of the 
medium on the interface with the FPR i s  parallel to the 
magnetization of the FPR itself. 

The considered alternating fields a re  weak enough to 
regard all  the cases described below a s  far from satur- 
ation. 

Weak constant field 

We consider an He3 crystal with an FPR, placed in 
constant magnetic field directed along the z axis, such 
that pH, << T, and a magnetic field H, << H, perpendicular 
to the constant field and rotating with frequency w. 

The imaginary part of the magnetic susceptibility in- 
troduced above is expressed in this case by the formula 
(see Ref. 7. Chap. 111) 

1 
Xw-- - "(0, q)  ~(v)do= - n (0, p) sin q sin' 0dqd0. 

4nHt 4nHt 
(3.1) 

where ~ ' 9 '  i s  the y component of the FPR magnetic mo- 
ment in the coordinate system that rotates with fre- 
quency w; n(0, cp) i s  the distribution, meaning the num- 
ber of FPR per unit volume with angle 0 between the 
vector of the magnetic moment of the FPR in the con- 
stant field H, and a magnetic-moment precession phase 
shift cp relative to the rotating field H,. 

The motion of the magnetization vector M of one FPR 
is completely defined by these two coordinates and con- 
stitutes a superposition of three motions: free preces- 
sion of M around the direction of the effective field Ha 
= H, + El; relaxation of M to an equilibrium position in 
the magnetic moment; and random thermal variation 
of the direction of M by rotation through small angles 
&I - 1/x. The last condition means that the kinetic 
equation that describes the variation of n(0, cp) i s  a Fok- 
ker-Planck equation in spin space: 

ri+div J=0, (3.2) 

where J = n v  + A(fn) i s  the distribution-function flux 
density; v i s  the sum of the velocities of the precession 
and relaxation motions; f(0,cp) i s  a function of the spin 
coordinates and must be calculated; the term with f de- 
scribes the thermal motion of M in spin space. 

In a spherical coordinate system that rotates with 
frequency W[SCS(W)], Eq. (3.2) takes the form 

1 a a 
n+--{sin sin 0 80 0 [ n ( ~ , + ~ . ) + ~ ( f n ) ] ]  

i a i a +-- 
sin0 acp sin 0 acp ( f n ) ]  -0. 

where Bf and qb, a r e  the rates of precession around He 

in the SCS(w); dR i s  the relaxation rate ((& = 0). To 
solve (3.3) we must express gf, Gf, and 8, in terms 
of the angles 0 and cp. We neglect in this case the ac- 
tion of the alternating field on the FPR via the para- 
magnetic medium, the e r ro r  being of the order of 
- w , x o H J ~  (w, = -yH, and ,yo i s  the static nuclear mag- 
netic susceptibility of He3). 

To calculate gR, we consider the relaxation of the 
magnetization of the paramagnetic medium in a constant 
field H,. The change of the magnetization vector is the 
sum of the precession and of the diffusion motion of the 
nuclear spins: 

m - r [ m ~ ~ o l + ~ ~ a m ,  iii-Q-'~mdQ=mnst. (3.4) 

The frequency of tunneling in self-diffusion, w,- 10' 
Hz, i s  much larger than the reciprocal relaxation time 
of the medium with the FPR. Changing over to the 
SCS(w,) and neglecting the left-hand side of (3.4), we 
obtain 

V'm=O. (3.5) 

Expressed in components, the spherically symmetrical 
solution of (3.5) i s  

m+ (r) =rlRom(Ro) sin 0, 
(3.6) 

rn,(r) =rtRO[rn(Ro) cos 0 - ~ f i o l + ~ f i 0 ,  

where m(R,) and B(R,), specified on the FPR surface, 
constitute the boundary conditions. 

The FPR magnetization change due to the diffusion 
flux through its surface consists of rotation of a vector 
M of constant magnitude. The continuity equation ex- 
pressed in terms of the components i s  

where 
I("'=-DV,m 

is the diffusion-flux density component normal to the 
FPR surface. From the principal boundary condition 
that the magnetization vectors be parallel it follows 
that 

~ + - M O  cos 8, &.---Me sin 0. (3.9) 

Substituting in (3.7) expressions (3.8) and (3.9), taking 
(3.6) into account, and integrating and eliminating from 
the two equations of (3.7) the modulus of m(R,), we 
obtain 

We note that time of relaxation from 8 = n to 8 = 0 i s  
lo-'' sec. 

The calculation of ef and Gf i s  based on simple geo- 
metric considerations. The free precession around 
the direction of the effective field in the SCS(w) con- 
stitutes motion of the vector M over the surface of a 
cone with angular frequency we = (Aw2 + ~ 2 , ) ' ' ~  (Aw 
= w - w,). The angles B(t) and cp(t) of interest to us a r e  
respectively the angle between the generator of the cone 
and the direction of the magnetic field, and the angle 
between the projections of the generator on the 0 = n/2 
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plane and the cone axis. The angle between the cone 
axis and the direction of the constant field Ho is 

Denoting the cone apex angle by 00, we get 

ws 0 ( t )  - w s  go cos 0 ~ + s i n  sin 8a cos (o . t+6 ) ,  

sin q ( t )  -sin On sin (o . t+6)  /sin 8 ( t )  , 
(3.11) 

where 6 i s  the initial phase of the precession. Differ- 
entiating (3.111, we can express after simple transfor- 
mations the sought quantities in terms of O and cp: 

Bt=m sin v, ipf--ol ctg 0 cos q-AO.  (3.12) 

To determine AO, 40) we note that a t  equilibrium in a 
constant field Ho the distribution-function flux density 
i s  zero in the laboratory frame. We have consequent- 
ly in the SCS(w) 

where 
N pHn exp (pHoT-' cos 8 )  no= -- 
4n T s h ( p ~ i T - ' )  

i s  the normalized equilibrium Boltzmann distribution 
function. From (3.13) we get, taking (3.12) and (3.10) 
into account, 

We point out the relation 
P% . &I-f - sln 0. 

T 

Putting n = no + n,, where n, i s  a nonequilibrium incre- 
ment, and linearizing the kinetic Eq. (3.3) with re -  
spect to the perturbation w,, we obtain, with allowance 
for (3.101, (3.121, and (3.141, in the stationary case 
n=O: 

(3.15) 
where 

v;, i s  the angle part of the Laplacian. We seek the 
solution of (3.15) by perturbation theory, using the 
small parameter pHo/T << 1. Confining ourselves to 
terms quadratic in PH,,/T, we obtain a sequence of 
equations for the approximations n:": 

I a AO a - [%(E:' sin2 0 )  + -- 
rl a9 

a:" ] 7 

1 
(3.17) 

vep'ii,"!- sin p cos' 0- - ctg 0 - - 1 + sin 20 [ (  3 ) 1 I 

The solutions of these equations take the form 

a,"' = sin cpF, (01, 

- ( 1 )  - AO 
nl - s in@, ( 0 )  +-cos cpY , (8 ) ,  

4 
(3.18) 

- (11- AO 
n1 - sin qF2(8 )  +-COS cpY, ( 0 )  + - 

q ( ) ' s i n v ~ ~ ( ~ ) ,  

whereF,, \L,, and 9, are  functions of 0 and a re  determined 
by integrating Eqs. (3.17) subject to the requirement 
that the solution be bounded on the interval [O,r) (see 
the Appendix). 

Formulas (3.18) make it possible to determine the 
absorption line shape by integrating (3.1). The ex- 
pression obtained is valid near resonance, inasmuch a s  
the expansion above in powers of p H d T  i s  also a ser-  
ies in powers of Ao/r). The condition Aw/r)<< 1, how- 
ever, i s  not too stringent, inasmuch a s  7- lo4 Hz. 

Leaving out the cumbersome calculations, we note that 
the term with F,, (as well a s  the equilibrium function 
no and a l l  the terms with coscp) vanishes when Eq. (3.1) 
i s  integrated. For our purpose it suffices to retain in 
second order only the term, which gives the depen- 
dence on Aw (the term with F, yields only a small cor- 
rection, expressed in terms of F,, to the value of the 
resonant maximum). We ultimately have 

According to (3.61, the distorting action of the FPR 
on the magnetization of the medium drops off slowly 
with distance. Each point of the paramagnet is per- 
turbed by a set of FPR with randomly oriented mo- 
ments. The averaged perturbation i s  negligibly small, 
so  that the influence of FPR on one another via the pa- 
ramagnetic medium can be disregarded. For the same 
reason we can neglect the corrections to the homogen- 
eous absorption in the paramagnetic medium. These 
corrections a r e  small also compared with (3.191, by 
virtue of the smallness of x,,H,,/M << 1. 

Strong constant field 

In a strong magnetic field !.kHO>> T the magnetic mo- 
ments of the FPR a r e  polarized along the field. The 
distribution function degenerates into a constant, n(O, 
cp) - N. The longitudinal components me and Me of the 
magnetization vectors remain unchanged in the approxi- 
mation linear in H, when the alternating field i s  turned 
on. Rotating transverse components a r e  produced in 
this case, however. The diffusion flux through the FPR 
surface is so  directed that the phase difference 
between the precessing m+ and M+ decreases. The 
absorption of the energy of the alternating magnetic 
field by the FPR i s  due to the slowing down of the pre- 
cession of i ts  magnetic moment by the diffusion flux 
through the surface. 

The magnetization of the paramagnet is  described hy 
the Bloch equation with diffusion term. In a rotating 
Cartesian system CS(w) we have [cf. (2.18) and (3.4)] 
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where i and j a r e  the unit vectors of the CS(w); He(-wl/ 
y,O,Aw/y) i s  the effective field in the CS(w). The 
spherically symmetrical stationary solution of (3.20) 
i s  of the form 

where C is a constant determined from the boundary 
conditions ; 

{ It+(TZAo)'l'"+ 1 
h 2D T2 

i s  the reciprocal length over which the influence of the 
phase-inhomogeneity center (the influence of the FPR on 
the paramagnet attenuates) ; 

[ i + ( T 2 A o ) ' ] ' " - 1  
k-{ 2DTi 

is the wave vector of the standing spherical wave; 

is the equilibrium value of the transverse component of 
the magnetization vector of the homogeneous paramag- 
net. 

We consider the case A<< 1. We can confine ourselves 
then to an isolated FPR in a paramagnetic medium. The 
imaginary part of the susceptibility i s  then given by 

X"=Xr"+h'zx." +N X" ( r )  dr, 
Q 

where 

and m, and My a r e  connected by the principal boundary 
condition 

MJM=%(RO)IXJIO.  (3.26) 

We determine the constant C by recognizing that the 
change of the magnetic moment of the FPR in the CS(o) 
i s  determined by the precession around the direction 
of the effective magnetic field and by the diffusion flux 
of the phase of the transverse component through the 
surface. From the continuity equation it follows in the 
stationary case that 

Substituting (3.21) in (3.27) and taking (3.26) into ac- 
count, we obtain 

b = x $ ~ / M R ~ A w .  Using formula (3.281, we easily 
obtain the line shape (3.22). In view of the complexity 
of the expression, we write down only the dependence 
of the signal at resonance on the FPR density: 

x f ' ( z )  =ooT2xo( i + h ' z M / 2 ~ ~ H ~ ) .  (3.29) 

In the opposite case h>> 1 the mutual influence of the 
FPR via the paramagnetic medium (this influence i s  
not made to vanish by the averaging, owing to the iden- 
tical orientations of the magnetic FPR) can be taken in- 

to account in the mean-field approximation. The change 
of the space-averaged (and by the same token, coor- 
dinate-independent) magnetization of the paramagnet 
is described by the Bloch equation, and the change of 
the FPR magnetization is described by the free-pre- 
cession equation. The connection between the FPR and 
the medium is given by 

and the self-consistency of the calculation lies in the 
boundary condition (3.26). It i s  easy to obtain from the 
foregoing an expression for the imaginary part of the 
susceptibility as the sum of expressions (3.24) and 
(3.25): 

4. CONCLUSION 

The correlation time (2.13) for the vacancion relaxa- 
tion processes at T - 1.5 K i s  Tc - 10" sec ,  thus justify- 
ing the use of the short-relaxation-time approximation 
(the conditions Tl>>c, T,>>c, andRdr,<<l).  With de- 
creasing temperature and with exponential decrease of 
the vacancy density, the vacancion regime "freezes out" 
and a transition takes place, within a time T, -I-'-  lo* 
sec,  to a regime in which the relaxation i s  determined 
by the tunneling of the nuclear spins themselves, there- 
by modulating the dipole-dipole interaction. 

In principle, relaxation i s  also possible on account of 
dipole-dipole interaction of the magnetic moments of 
the FPR and the ~e~ nuclei in a paramagnetic region. 
An estimate (Ref. 7, Chap. VIII), however, yields 
TI- T,- lo4 sec. Thus, an FPR ensemble relaxes very 
slowly: T;>,T,. Actually the line of the FPR sub- 
system should broaden just the same, on account of 
collisions with phonons, but a t  T- 1 K, in view of the 
smallness of x 4 < <  1, this line cannot be discerned a t  
all against the background of the broad line of the para- 
magnetic medium with T, from Eq. (2.17). 

Absorption that might be separable in an FPR system 
from the homogeneous absorption (3.23) in a paramag- 
net, would he observed if vacancy density x-  lo4 were 
produced a t  low temperatures T - lo-' K. The thermal 
change of the orientation of the FPR magnetic moment, 
which i s  possible in a field H - lo2 G, manifests itself 
in the temperature dependence of the line shape (3.19). 
The resonance maximum i s  in this case (assuming 
xo(T - lo-, K)- lo*, Ref. 10) to be x"- x;- 10". 

More convenient from the point of view of the analysis 
of the experimental data i s  the case of a strong magnetic 
field (H> lo3 G at  T- lom2 K). On approaching reson- 
ance, h tends to i t s  maximum value A,,- lo4 cm. Near 
resonance, the transition from the regime h<<1 to 
A>> 1 [formulas (3.29) and (3.31)] occurs a t  densities 
x -  lo-''. The lowest densities needed to observe the 
renormalization of T, [see (3.2911 and of the amplitude 
of the resonant absorption [(3.29) and (3.31)] depend on 
the concrete experimental condition. The ~ " ( x )  depen- 
dence makes it possible to monitor the vacancy density 
in the crystal, a factor that can be of use in the corre- 
sponding nonequilibrium experiments. 
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High temperature NMR experiments lend themselves 
easily to treatment with participation of FPR (Sec. 2)  
and yield quite reasonable values for their characteris- 
tics. Much attention is currently paid to NMR in the 
low-temperature region. It would be of interest to ex- 
tend the scope of this research by performing experi- 
ments in the vacancion regime, i.e., accompanied by 
production of nonequilibrium vacancy densities. The 
results of Sec. 3 provide for this regime a theoretical 
description that can be used also in the search for zero 
vacancies. 

I am deeply grateful to A. F. Andreev for attentive 
guidance and valuable advice, and to  V. I. Marchenko , 
for a helpful discussion. 

I 

APPENDIX 
! 

Taking into account the discussion, in Sec. 3, of the 
solutions of Eqs. (3. I?), we write down in explicit form 
only those functions F , ,  \ki, and +i, which a r e  needed 
for the calculation of the imaginary part of the sus- 
ceptibility (3.19): 

e ln(l+cos 8) -I h~t~--d0-cos0J 2 d cos 0-cos 0J 0 ctg 0 d0 
I-cos e 

Heat capacity of Pt,MnxFe,, alloys 

n 

( 2 ) ( 2 
8 + I-ln 2 -?+ lnsin 0 0 sin 0+ (1-113 2) In ctg- 

+cos 0 ln sin e ) +€I [(1-$)(;+1n~)-lnain0-1 I 
I-cos 0 

-Z ( l+cos  o ) I ~ ( I + ~ o s ~ ) - -  
2 2 

ln(l+cos e)ln(l-cos 13) 

e dB h(l-cos 0) + (2-sin 0) j 0 ctg do-cos o j - + j cl cos 0. 
sin 0 l+cos 0 
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The adiabatic-calorimeter method is used to investigate experimentally the heat capacity of the atomically 
ordered alloys Pt,Mn,Fe,-, (x = 0,0.2,0.3,0.4,0.5,0.8, 1) in the temperature interval 13-300 K. The alloys 
are antiferromagnetic at x = 0 and ferromagnetic at x = 1. The temperature and concentration dependences 
of the magnetic part of the heat capacity are discussed within the framework of the model of the nucleation 
mechanism of a concentration phase transition. 

PACS numbers: 65.40.Em 

It was shown by a number of that a ferro- fo r  the Pt$n alloy and a=3.8? A for the pt3Fe alloy. 
magnetic-antiferromagnetic phase transition is pro- In the antiferromagnetic state a t  T s T, = 164 K the lat- 
duced in quasibinary solid solutions based on the atom- tice of the Pt3Fe alloy becomes weakly tetragonal (c/a 
ically ordered P w n - P t 3 F e  alloys when the concentra- = 0.9998). The P t g n  alloy is a collinear ferromagnet 
tion of the magnetic components i s  varied a t  low tem- a t  T -' T, (T, = 390 K). 
peratures. The initial alloys have a t  room tempera- 
ture an fcc lattice with close parameters: a = 3.89 A ,  The solid solutions Pt$n,Fe,,, have a t  manganese 
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