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We show that the motion, in a molecular chain, of an excess electron that interacts with nondipolar optical 
and electrically dipolar phonons is accompanied by a local deformation of the chain. When the electron 
velocity increases to its critical value, the localization region caused by the interaction with the nondipolar 
optical phonons decreases; when its velocity increases further the electron starts to get delocalized. If the 
localization of the electon is caused by its nonlocal interaction with the electrically dipolar phonons, 
increasing the electron velocity makes its localization difficult even at low velocities. 

PACS numbers: 36.20.Kd 

1. INTRODUCTION 

In Refs. 1 to 3 the effect of acoustic phonons with 
dispersion 

B,. i k )  =kV., (1.1) 

on the motion of an excess electron (or exciton) in a 
one-dimensional molecular chains was studied. With- 
out using the adiabatic approximation or  perturbation 
theory in the interaction force, it was shown that the 
steady motion of an electron (exciton) with velocities 
below the group velocity of longitudinal sound i s  accom- 
panied by a local deformation of the chain. This motion 
i s  described by a solitary wave which does not change 
i ts  shape and velocity and which i s  called a soliton. For 
velocities above the sound speed there a r e  no soliton 
solutions. The motion of the electron (exciton) i s  de- 
scribed by a spreading wave packet and i s  retarded due 
to the emission of phonons. 

In the present paper we study, without using the adia- 
batic approximation or  perturbation theory, the effect 
of optical non-dipolar and electrically dipolar and elec- 
trically dipolar phonons with dispersion 

on the motion of an excess electron. In (1.2) Vo corre- 
sponds to only the minimum phase velocity of the opti- 
cal phonons, so  that the motion of the electron can be 
accompanied by a deformation also a t  velocities above 
vo . 

We consider as our model a one-dimensional chain 
formed of identical molecules at a distance a from one 
another and possessing constant dipole moments which 
a r e  directed along the chain. Such a system is, in par- 
ticular. a model for the a-spiral  protein molecule in 

tron in quasi-one-dimensional molecular chains i s  of 
considerable interest. 

2. EQUATIONS OF MOTION FOR AN ELECTRON 
INTERACTING WITH NON-DIPOLAR PHONONS 

Turner and Anderson4 have evaluated the ground state 
energy and the wave functions of an electron in the field 
of an isolated electrical dipole. The overlapping of the 
electron wave functions in a chain formed by periodical- 
ly spaced molecules with constant dipole moments leads 
to a collectivation of electron states. An excess elec- 
tron having arrived in such a chain from a donor i s  de- 
scribed in the effective-mass (m) approximation by the 
Hamiltonian 

Ife, = - Y'(x,  t )  8, --- Y ( x ,  t ) h ,  
nz ) : I ( 2, a, 

where go i s  the energy of the bottom of the conduction 
band and * ( x ,  t )  the wave function normalized by the 
condition1' 

Let u,(t) be the displacement, which determines the 
longitudinal optical oscillation branch, of the atoms in 
the n-th molecule. If the displacements u,(t) a r e  not 
connected with a change in the intrinsic constant dipole 
moments of the molecules, then their interaction with 
the electron is determined by the local deformation 
potential, which in the continuum approximation i s  
given in the form 

where x /a  i s  the number of the site of the chain in the 
continuum approximation while x i s  the interaction pa- 
rameter. 

which the peptide gr?ups ("molecules") a r e  maintained If a, i s  the frequency of the intramolecular oscilla- 
a t  distances of 4.5 A from one another by hydrogen tions, the optical phonons in the chain with dispersion 
bonds, forming three quasi-periodic chains. Each pep- (1.2) a r e  described by the Hamiltonian 
tide group has a constant electrical dipole moment which M 
i s  approximately equal to 4 Debye. Protein molecules H. = I [ (g)' + B:u2+V: ($)'I h, (2.4) 
can transfer electrons from donors to acceptors so  that 
the study of the nature of the motion of an excess elec- where M i s  the reduced mass of the atoms responsible 
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for the intramolecular vibration. displacements which accompany the motion of the elec- 
tron, and also two integrals of motion-the total energy Regarding the expression 

H-Her+Hpn+H{.t 1 k-  d-q 
~ ( v ) = & ~ - - n L i . - T j ~  (y.uq---)d: 

2 Lna dz- (2.15) a s  the Hamiltonian of an electron interacting with the 
optical phonons, we get the equations of motion 

and the total momentum 

Because of the translational symmetry of the system 
we can look for the solutions of Eqs. (2.6) and (2.7) in 
the form of excitations that propagate along the chain 
with a constant velocity V. To do this we use the equa- 
tions 

3. APPROXIMATION OF SMALL ELECTRO-SOLITON 
VELOCITIES - 

In molecular lattices the inequality Vi<< 02Q: i s  usual- 
ly satisfied so  that for low velocities V -  V, we have ac- 
cording to (2.12) 1 c 1 << 1. In this case  the kernel w ( 4 )  
of Eq. (2.13) can be written in the form 

to introduce functions u(5) and ( ~ ( 5 )  which depend on the 
dimensionless variable 

g- (z-zo-vt) /a. (2.9) 

and the equation itself reduces to the stationary mod- 
ified non-linear Schrodinger equation5' 

d z ~  flcpz h2p=0 - + 4ap?-4aep - - 
d6' dE2 

(3.2) 
From Eq. (2.6) it then follows that2' 

with the following dimensionless parameters 

Equation (3.2) has an exact soliton solution 

Here 

When E = 0 Eq. (3.2) reduces to the stationary non- 
linear Schrodinger equation. Its solution, normalized 
by condition (2.14) can be obtained from (3.2) for the 
value E = 0. In that case A =*a and 

p  (g) - ( ~ 2 1 2 )  " ch-' a &  

According to (2.10) the function w(5) takes into ac-  
count the fact that the interaction of the electron with 
the non-dipolar optical phonons i s  not local, because 
of the influence of their spatial dispersion (V, * 0) and 
because of the retardation t ime due to the electron mo- 
tion (V+O). The two effects partially cancel each other 
so  that when V= V, the function w(5) i s  transformed into 
the delta-function (2. l lb) .  For very small  electron 
speeds ( V <  V,) the effect of the spatial dispersion dom- 
inates and the function (2. l l a )  i s  symmetric under a 
change in sign of 5. At velocities V larger than V, the 
time retardation dominates. According to ( 2 . 1 1 ~ )  only 
the regions [,< 5 contribute therefore to the integral 
(2.11). 

Hence the region where the soliton i s  localized [(p(5) 
-CO. 1p(0)] in the chain i s  determined by the expression 

Ax=2aa/a. (3.5) 

The continuum 'approximation i s  thus justified for pa- 
rameter values ff < 2n. 

When c # 0 but satisfies the inequality 

S U ~ E ~ ~ - < I ,  (3.6) 

it follows from (3.4) that 
Substituting (2.8) and (2, 10) into Eq. (2.7) we get the 

integro-differential equation 
fit d= X 

(2rnazdfz+ ~ + ~ { d i . w ( ~ . - " ~ ~ ( : . ) )  ~ ( 5 ) - 0 .  (2- 13) 

1 (I-t3 ) ( I - 4 ~ ~ 3  ) 
t= - In  

2;. 1tB ' 
(3.7) 

Solving (3.7) for (p2 we find, up to t e rms  of order (6 $I2, 
A- ~ ' ( 5 )  = - ch-?A;(l+4ei.  th'n;). 
Lu 

( 3 . 8 )  The electron states described by the localized solutions 
of Eq. (2.13) and satisfying the normalization condition 

It then follows from the normalization condition (2.14) 
that 

4 
>.==a ( 1  - - .a:). 

3 
(3.9) will be called electro-solitons. 

Knowing the solution of Eq. (2.13) we can use Eq. 
(2. 10) to evaluate the function u(() of the intramolecular Using Eqs. (2. lo),  (3. I ) ,  and (3.8) we find the func- 
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tion which determines the intramolecular displace- 
ments: 

Furthermore we can use Eqs. (2.15) and (2.16) to eval- 
uate the energy E(V) and momentum P(V) of the elec- 
tro-soliton which propagates with a constant velocity V. 
Up to terms of order cz  they a r e  determined by the ex- 
pressions 

1 
E ( V ) - E ( 0 ) + - m m l y ~  (3.11) 

2 
P ( V )  =m..lV, (3.12) 

where 

According to (3.8) and (3.10) the electro-soliton lo- 
calization region 

decreases with increasing velocity V. 

The solutions q(5) of Eq. (2.131, corresponding to the 
smallest A ,  can also be found in the approximation 
(3.1) through minimizing the functional 

with the normalization condition (2.14). The functional 
(3.15) with the normalized t r ia l  function 

which depends on one variational parameter becomes 
a cubic polynomial 

the minimum of which i s  reached for the value 
12 

y=l.-a ( L  - - saz) . 
5 

(3.17) 

Evaluating futher the total energy E ( V )  and momentum 
P(V) of the electro-soliton we find again (accurate to 
c 2 )  expressions (3.11) and (3.12) with the values (3.13) 
and (3.14). 

4. ELECTRO-SOLITON WITH VELOCITIES V>> V, 

For velocities V >> Vo such that V2- aZ52E, 1 c I i s  of 
order unity. In that case it i s  impossible to use the 
approximate Eq. (3.1) and it i s  necessary to solve Eq. 
(2.13) with the kernel of the integral operator (2. l l c ) :  

As the exact solutions of Eq. (4.1) a r e  not known we 
calculate ~ ( 5 )  corresponding to the smallest value of 
11 by a direct variational method, using the functional 

The t r ia l  function 

q ( f )  = (pYn)" exp (-p'Ez/2), (4.3) 

which depends on one variational parameter p, reduces 
the variational problem to finding the minimum of the 
function 

where the variable i s  z = i(2p2 I c 1 ) -'Iz while 

is the probability function. 

For large lz l (the case of small  pZ I c I ) we get, using 
the asymptotic expansion for 912) (see, for instance, 
Ref. 8, Eq. 7.1.231, after some transformations, up to 
terms of order  p6, 

The minimum of the function (4.5) i s  reached for the 
value 

In that case 

When the inequality pZ I c 1 << 1 i s  satisfied, it thus fol- 
lows from Eq. (4.6) that when the velocity increases the 
size of the electro-soliton diminishes. 

The energy and momentum of the electro-soliton a r e  
given by Eqs. (3.11) and (3.12) with the values 

E ( 0 )  =80-A, A=haa'/2nmcr', (4.7) 

If the inequality p2 I c 1 <<1 i s  not satisfied, we can 
transform Eq. (4.4) into 

D (f) =oxp(--$)'fexpt2dt 
0 

i s  the Dawson integral. 13 The value of p which mini- 
mizes the function F(p) i s  the root of the equation 

z4/2x,+z-2D(L/x), (4.10) 

where xo= p0(2 I c 1 )'Iz. Numerically solving Eq. (4.10) 
we find the function x/xo=p/po, which is  shown in the 
figure. 

It follows from the figure that when xo< 0.1, the func- 
tion x/xo i s  described by Eq. (4.6). When 0 <  xo< 0.304 
the function x/xo increases, which corresponds to a 
decrease in the size of the electro-soliton. After 
reaching i t s  maximum value, 1.643 at xo = 0.304, which 
corresponds to the critical velocity 

V,,~0,3n"'Mh'Q,'lmaXXX (4.11) 

the function x/x, decreases when the velocity i s  further 
increased, corresponding to a delocalization of the elec- 
tron. 
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When the interaction between the electron and the 
non-dipolar optical phonons i s  taken into account, the 
velocity-dependence of the size of the electro-soliton 
has thus a different character from that in the case of 
the interaction of the electron with acoustical phon- 
ons.'-3 The instability of the soliton i s  determined by 
the magnitude of the energy gap A [see (3.14), (4.7)]. 

5. INTERACTION BETWEEN THE ELECTRON AND 
ELECTRIC DIPOLE PHONONS 

The interaction with all the constant electric dipole 
moments of the molecules of the chain i s  taken into ac-  
count in the operator (2.1). If the displacements u,(t) 
a r e  connected with a change in the electric dipole mo- 
ments, their additional interaction with the electron has 
a non-local character. In the continuum approximation 
it i s  given by the expression 

where e i s  some effective charge, ? the effective per- 
mittivity introduced by Pekarg and takes into account the 
inertial polarizability of the molecules (I/;= 0 . 1  to 
0.3).  

The equations of motion of the system described by 
the sum of the Hamiltonians (2.11, (2.41, and (5 .1)  have 
the form 

(5.2) 

Using Eq. (2.8) to change to the real  functions u(5 )  and 
(P([), we get from Eq. (5.2) 

where w ( 5 )  i s  determined by Eq. (2.11). 

Substituting (5.4) and (2 .8)  in Eq. (5.2) we find the 
integro-differential equation 

We determine the solution of Eq. (5.5) corresponding 
to the lowest value of A by varying the functional 

under the additional condition (2.14) and a t  the value 
G-me'/dMa2tr'B2. (5.7) 

When I E I  << 1 we can use in the functional (5.6) the 
approximate Eq. (3.1). We then have 

FIG. 1. The coordinates are xo = (21 )'/?Io.and x/xo = /pa. 
The maximum value 1.643 is reached atno= 0.304. 

Applying the straight variational method and the trial 
function (4.3) we get after some calculations up to 
quantities of the order p4 

11=2 ( 2 / n )  "p-4p2, Izc8n-'"pz (p<Ya . (5.11) 

After substituting (5.11) and (4.3) into (5.8) we get the 
function 

the minimum of which, A = J(p,), is reached for the 
value 

where p,=2~(2/n)1/2/(1 + 8G) is the parameter deter- 
mining the size of the electro-soliton E=O. When the 
non-linearity parameter (5.7) changes within the limits 
0 . 1  to 10, p, increases monotonically within the limits 
0.09 to 0.20.  

It follows from Eqs. (5.12) and (2.12) that when I E I  
<< 1 and values of G 10 for which our approximation 
(p  << a is  justified, the size of the electro-soliton in- 
creases with increasing velocity. 

Using the explicit form of the function (4.3) we get the 
function 

The energy E ( V )  of the electro-soliton i s  given by (3.11) 
with the values 

The total momentum i s  given by the expression 

P ( V )  =m.:,v 

for the value 
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')unless otherwise stipulated, the integrations in Eqs. (2, I), 
(2.2) and in all  subsequent equations i s  between infinite 
limits. 

')When E < 0 the circuit  around the poles of the integrand in 
(2.11) i s  given by the rule 
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We calculate in this paper the temperature-dependence of the nuclear spin-lattice relaxation time T I  of 
semiquantum liquid hydrogen. We show that T I  is inversely proportional to the temperature T .  Such a T-  
dependence of T ,  is a universal consequence of the specific properties of semiquantum liquids. The results are 
in good agreement with experimental data on T ,  measurements in liquid hydrogen. 

PACS numbers: 67.90. + z, 61.20. - p 

A n d r e e ~ ' - ~  has recently developed a theory of semi- 
quantum liquids. These a r e  liquids in the temperature 
range Tdc< Tc< 8 (9 is the Debye temperature and T d  
determines the quantum indeterminacy of the energy 
which is connected with the delocalization of the par -  
t icles in the liquid which i s  caused by tunnel t rans i -  
tions). In his papers he showed that semi-quantum 
liquids a r e  characterized by a universal temperature-  
dependence of the thermodynamic quantities and the 
kinetic coefficients, which i s  caused by the specific 
properties of semi-quantum liquids. He showed, in 
particular, that the specific heat and the heat conduc- 
tivity coefficient a r e  proportional t o  the temperature T 
while the viscosity i s  inversely proportional t o  T, in 
good agreement with experimental data. 

One must expect that the specific propert ies of semi- 
quantum liquids will also appreciably a l te r  the tempera-  
ture-dependence of the spin-lattice relaxation (SLR) 
t ime of the nuclei. Indeed, for liquid hydrogen in the 
temperature range 14 to  20 K one observes experi- 
mentally an  inverse temperature-dependence of the 
SLR time of the nuclei4 and this  cannot be explained on 
the basis  of the theory of classical  liquids. In this tem- 
perature range the hydrogen must have the properties 
of a semi-quantum liquid. 

The aim of the present paper is the calculation of the 
nuclear SLR t ime of semi-quantum liquids using the 
theories developed in the above-mentioned 

When evaluating the SLR t ime we use a model analogous 
t o  the one used by Andreev3 when calculating the heat 
conductivity coefficient. Fo r  the sake  of simplicity we 
shall assume that the particles have spin $ (if the par- 
t icle spin i s  la rger  than $, it will not lead t o  any a l te r -  
ation in principle of the arguments which follows below) 
and, by analogy with Ref. 3 that perturbation of the form 

is applied to the system, where q is the  operator of the 
flux of the Zeeman energy between excited s ta tes  of the 
part icles in the liquid with energies c,*Aw, and %it iw, ,  
where w, i s  the NMR frequency and f i s  a harmonic 
generalized force. T o  evaluate the current  q we write 
down the Hamiltonian of the system: 

J i s  the interaction constant, and a, and a, ,are the 
creation and annihilation operators for  particles in 
s ta tes  with energies E,,. In  contrast t o  Ref. 3 we 
retain only the interaction which causes  the transition 
of particles between the levels  E,,- E,, , i.e., the transi-  
tion between the s ta tes  is accompanied by a spin flip. 
As we a r e  merely interested in the temperature depen- 
dence of the SLR t ime,  we shall  not define concretely the 
interaction mechanism. 
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