
Fig. 2, of G,(A)I,=, on the detuning from resonance at 
various temperatures but at a constant saturation level 
z = 10. 

In the limit w,>> 8 and we<< 8 we get for G,(A)~,., the 
simple expression 

which corresponds to  the standard magnetic-resonance 
line shape under saturation conditions. The width 6 of 
this line is determined by the alternating-field ampli- 
tude and by the relaxation times: 

Comparison of the approximate result (23) with the 
conductance G,(A)~, ,, calculated from (19) and (20) 
shows that the width of the real  resonance curve prac- 
tically coincides with (24). 

Thus, an investigation of the function G,(A) I,=, at  
sufficiently low temperatures (tanh(oo/28)- 1) makes it 
possible in principle to study the resonance characteris- 
t ics of spins localized inside a tunnel junction. The 
sensitivity of the method proposedfor detecting the mag- 
netic resonance may turn out to be very high. As al- 
ready noted, the resonance signal is comparable with 
the tunnel-conductivity peaks, which a r e  reliably ob- 
served a t  a rather small  number of impurity moments. 
For example, it follows from the data of Bermon et al.' 
that the presence of 10" iron ions in the oxide layer of 

an Al-A4O-A1 junction leads to a considerable ampli- 
tude of the conductivity anomalies. Under the experi- 
mental conditions of Ref. 6, the iron ions a r e  concentra- 
ted in a narrow layer, and this makes it necessary to 
take into account the interaction between the impurity 
spins, something not done in our model. Allowance for 
the spin-spin interaction, however, does not al ter  the 
result  qualitatively, and furthermore the number 10" is 
apparently not the lowest one a t  which anomalies in the 
conductivity can be observed. At the same time, for 
typical parameters, for modern EPR installations 
5 x 10'0-1011 spins i s  the limit. 
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Surface absorption of electromagnetic waves in metals by 
random boundary inhomogeneities 
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Absorption of an electromagnetic wave by scattering of grazing electrons by random inhomogeneities of the 
surface of a metal, in a parallel magnetic field, is investigated theoretically. On the basis of diffraction theory, 
the effective electronic diffusivity coefficient of a slightly rough boundary is found as a function of its 
statistical characteristics. Additivity is established for the contributions of volume and surface collisions to the 
electromagnetic absorption, and the possibility is demonstrated of introducting a surface scattering frequency 
v:' of the grazing electrons. The dependence of the surface impedance, the diffusivity coeficient, and the 
frequency v:' on the mean height and length of the irregularities, the constant magnetic field, and the skin 
thickness, frequency, and polarization of the external electromagnetic field is determined and analyzed. It is 
shown that there exists a quite broad range of values of the parameters within which surface scattering of 
electrons dominates over volume scattering. 

PACS numbers: 78.20.Ls, 78.70. - g, 72.10.Fk 

1. INTRODUCTION we mention a number of  paper^"^ in which the role of 
reflection of electrons from a metal boundary in the 

Interaction of electrons with the specimen surface ex- phenomenon of cyclotron resonance was investigated. 
e r t s  a substantial influence on the high-frequency prop- When the reflection is nearly specular, the character of 
er t ies  of metals in a magnetic field H. As an example, the resonance changes because of the appearance in the 
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FIG. 1. Trajectories of the electrons: I, trajectory of graz- 
ing electrons, with characteristic grazing angles ( p - ( b / ~ ) ~ / ~ ;  
11, trajectory of volume electrons (X >RL). 

metal of grazingelectrons, whichdrift alongthe surface 
by virtue of multiple collisions with it. Their trajec- 
tories consist of small a r c s  of Larmor circles (Fig. 1) 
and do not emerge beyond the limits of the skin layer. 
Therefore the grazing electrons interact most effective- 
ly with the electromagnetic wave and make the principal 
contribution to the cond~c t iv i ty .~  

1. ~ a r i i e r , ~  the problem of the anomalous skin effect 
was solved for a metal with an ideal surface, when the 
field H i s  parallel to the specimen boundary. It was 
found that an electromagnetic field of frequency w de- 
cays in the interior of the metal over a distance b, = 
(k,l". Here 

is the complex wave number, w, is the plasma frequen- 
cy, c is the velocity of light, R i s  the maximum radius 
of revolution of an electron in the magnetic field, and v 
is the frequency of collision of the electrons with vol- 
ume scatterers. The constant C, depends on the polar- 
ization of the electric field E with respect to the vector 
H 112: if E I IH, then C, = 1, for transverse polarization 
(E IH, a = y), the constant C, = $. According to Ref. 4, 
the surface impedance is described by the following for- 
mula: 

Formulas (1.1) and (1.2) a r e  a consequence of the fact 
that the electrodynamic properties of metals a r e  deter- 
mined by grazing electrons, with characteristic grazing 
angles cp -(b,/~)'/ '  (Fig. 1). They a r e  valid under the 
conditions of the anomalous skin effect: the skin depth 
6, is small in comparison with the radius R and the ef- 
fective path length I* = v/lv -iwl (v i s  the Fermi veloci- 
ty of an electron). In addition, the characteristic path of 
a grazing electron between two successive encounters 
with the surface, 2Rp-(Rba)1/2, must be much smaller 
than 1 *. Consequently, 

where 51 is the cyclotron frequency. 

It follows from the expression (1.2) that a t  low temp- 
eratures o r  a t  high frequencies w, the electromagnetic 
absorption i s  determined solely by the frequency of col- 
lision of electrons with volume scatterers,  v. In fact, 
the real part of the impedance for w>> v, 

is independent of w, and for v- 0 the absorption dis- 
appears. The absence of absorption a t  v = 0 is due to 
the fact that in formula (1.2) only the volume relaxation 
of electrons has been taken into account, and their re- 
flection from the metal boundary i s  assumed to be 
strictly specular. But in a rea l  situation, the surface 
of a metal is not ideal, and consequently the reflection 
of the electrons will not be  strictly specular. From 
physical considerations, i t  is natural to expect that the 
electromagnetic absorption, along with (1.4), should 
contain an additional component, due to scattering of 
electrons by random inhomogeneities of the boundary. 
Then the surface absorption may be competitive with 
the volume, if v<< w. 

2. In order to explain the role of surface scattering 
of electrons, we shall calculate and analyze electro- 
magnetic absorption in the simplest and often used mod- 
e l  of an effective reflection coefficient ?. This model, 
proposed in his time by Fuchs,' describes the interac- 
tion of electrons with the specimen boundary by a sin- 
gle parameter p, which i s  the probability of specular 
reflection (0 9 =s 1). In order to find the surface ab- 
sorption, it is necessary to know the Fourier compon- 
ent of the surface current density j$)(k), which i s  pro- 
portional to a small power of the diffusivity 1 - p. It can 
be  extracted from the exact formulas for the current 
given in Ref. 4. If the inequality 

i s  satisfied, then in the main approximation with respect 
to  1 - p, the asymptotic behavior of the current density 
is described by the expression (3.7) of Ref. 4 [see (2.10) 
of the present article], and the impedance correspond- 
ing to i t  is given by formula (1.2). The correction of in- 
teres t  to us, jt)(k), i s  obtained in the form 

02(l-p) dk' k"+k'" 
(a) 

ja (k)=-- 16nsnlz Ba!m8a(k')1n- ~k-k'l'h ' (1.6) 

where B y  = 2, B,  = 1, and $,(k) is the Fourier transform 
of the a component of the electric field E(x): - 

8, (k) =2 dz cos (kz) Em ( 2 ) .  

0 

The impedance ~ k )  due to the current (1.6) i s  calculated 
by perturbation theory. As a result we have 

Here 
B, (50nS)"s 

a,= -- 
C, 24n'fi 

sin ( $) rz (+) f t h  (-1 

We note that when w>> v, the impedance 2:) is actu- 
ally a rea l  quantity. Although i t  is also small in compar- 
ison with lZ,l, nevertheless, since describes an ad- 
ditional mechanism of electromagnetic absorption, i t  
must be taken into account along with ReZ,. Thus the 
total absorption consists of two independent terms: 
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the f i rs t  of these i s  due to volume collisions, the sec- 
ond to surface scattering of grazing electrons. I t  is 
evident from (1.8) that there is a quite broad range of 
frequencies w, magnetic fields, and temperature within 
which the surface absorption i s  of the order of or  even 
exceeds the volume. For this, i t  is necessary that 

f (!?)''a.l-p< " ( " ) ' i 2  

Q R '  

The left inequality in (1.9) means that the probability 
1 - p  of diffuse scattering by the surface i s  larger than, 
o r  of the order of, the probability v(6/~)'/~/52 of scat- 
tering in the volume after the time between two consec- 
utive collisions with the boundary. The right-hand in- 
equality in (1.9) coincides with (1.5). 

We point out that Re 2':) depends on the magnetic field 
H but is independent of the temperature (of v )  in the 
range w >> v. At the same time, the volume absorption 
is a function of the temperature but i s  insensitive to a 
change of h. Therefore the surface electromagnetic 
absorption can be separated from the volume even when 
the left-hand condition in (1.9) is not satisfied. 

3. In investigation of the kinetic properties of metals, 
the information about the interaction of electrons with 
the surface is contained in the boundary condition to 
Boltzmann's kinetic equation for the electronic distri- 
bution function. The specularity-parameter model,8 in 
terms of which formulas (1.6) and (1.7) were obtained, 
was until recently widely used a s  a phenomenological 
boundary condition. It has a number of definite merits, 
of which the principal ones a r e  mathematical simplicity 
and the transparency of the physical interpretation of 
the results. Along with this, this model also has im- 
portant shortcomings. The principal one of these is that 
the model actually ignores the existence of a character- 
istic curve of scattering of the electrons by the surface; 
that is, it fails to take into account the finite probability 
of reflection in nonspecular directions. At the same 
time, i t  is the form of this characteristic curve that 
contains the specific mechanism of surface scattering. 
That the Fuchs model8 is unrealistic is also manifest in 
the fact that the parameter p does not depend on the geo- 
metrical characteristics of the surface or  on the angle of 
incidence of the electrons on the boundary. The contem- 
porary state of the theory of kinetic phenomena in bound- 
ed specimens, which requires a more accurate and heur- 
istic formulation of the boundary condition, has been 
covered quite fully in reviews of Andreevg and of Okulov 
and Ustinov.l0 In a number of papers,11'14 there have 
been obtained various versions of the boundary condi- 
tions that describe the scattering of quasiparticles by 
random potential surfaces of one kind or  another. 

In the present paper, the surface impedance is calcu- 
lated for a bulk metal placed in a parallel magnetic field, 
under the conditions (1.3) of the anomalous skin effect, 
with allowance for scattering by random inhomogeneities 
of the surface. As a boundary condition to the kinetic 
equation, an integral rvelation is used, which was f i rs t  
obtained by Fal'kovskii l3 and which describes the scat- 
tering of electrons by a statistically irregular boundary 

of a metal. The final formulas a r e  obtained in two li- 
miting cases: sufficiently large grazing angles q,  and 
small angles, when it is possible to justify the introduc- 
tion of a specularity parameter p dependent on the angle 
of encounter of the electrons with the surface. Compar- 
ison of the results obtained by this method with expres- 
sion (1.7) provides a possibility of analyzing the depen- 
dence of the effective reflection coefficient pd ,  on the 
magnetic field H and on the microscopic characteristics 
of the specimen boundary (height and length of the ir- 
regularities). The results of this paper, in conjunction 
with experimental investigations of surface absorption, 
open possibilities of studying the statistical properties 
of metallic surfaces. 

2. FORMULATION OF THE PROBLEM. CURRENT 
DENSITY 

1. We consider a metal bounded by a rough surface. 
We suppose that the irregularities of the boundary a r e  
random and statistically homogeneous and that the con- 
stant magnetic field H is parallel to  the mean surface of 
the specimen, x = 0 @z plane). The x axis is directed 
into the interior of the metal, the z axis along the vector 
H (Fig. 1). A plane monochromatic wave is incident on 
the interface in the direction of the x axis. The electric 
field vector E = E(x) em(-  iot) inside the metal depends 
only on the coordinate x. 

In order to  calculate the surface impedance, i t  is f i rs t  
necessary to find the nonequilibrium correction 

to  the electronic Fermi distribution function (E i s  the en- 
ergy and cF the Fermi energy of an electron), averaged 
over the random irregularities of the boundary. The 
kinetic equation for x has the usual form 

Here T is dimensionless time in the motion of an elec- 
tron along an orbit in the magnetic field H, v(t) is the 
velocity, and e i s  the absolute value of the charge of the 
electron. 

Equation (2.1) must be supplemented by a boundary 
condition, which is formulated a t  the mean surface x =  0. 
For  simplicity, we restrict  ourselves to an isotropic 
and quadratic dispersion law for the electrons. In this 
case, the boundary condition for the correction Xaver- 
aged over the irregularities has the formL3 

d'p' 

x [x(-p., PI -x(-P='. P') I ,  z=o. (2.2) 

Here p, = (pg -p2)li2 is the absolute value of the com- 
ponent of the momentum of the electron normal to the 
metal boundary a t  the surface x = 0 (p: = (p2, -p12)1/2), 
and p is the two-dimensional momentum in the yz plane. 
I ts  components p, and p, a re  canonically conjugate to the 
coordinates y and z respectively. We note that P, is 
simultaneously the z projection of the kinematic momen- 
tum of the electron, whereas its y component coincides 
with p, only a t  the boundary x =  0. In the boundary con- 
dition (2.2), the interaction of electrons with the rough 
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surface is characterized by the root-mean-square height 
0 of the irregularities and by the Fourier transform 
W(p) of their binary correlation function, which i s  nor- 
malized to  unity: 

Here W(p) is an even, real, and positive definite func- 
tion of p; it vanishes for p-a. The characteristic dis- 
tance a t  which W(p) decreases significantly is 2nE /L, 
where L is the correlation radius of the irregularities, 
i .e,  the mean horizontal dimension of the irregularities 
(Fig. 1). The integration in (2.2) extends over the re-  
gion IP'l -CPp bounded by the Fermi momentum pp .  The 
second term in the right side of equation (2.2) takes ac- 
count of the diffuse character of the reflection from the 
statistically irregular boundary and replaces the ex- 
pression (1 - p)x(-),, p) in the Fuchs modeL8 

The relation (2.2) has a rigorous microscopic (quan- 
tum) basis, if the following conditions a r e  satisfied. In 
the derivation of (2.2), the averaging over an ensemble 
of realizations of random inclinations to the plane x = 0 
was carried out on the supposition of a single scattering 
of electrons by the surface. But in a parallel magnetic 
field H, an electron collides with the specimen surface 
repeatedly. This means that in the present problem, the 
boundary condition (2.2) is applicable when successive 
scattering events may be considered independent. For  
this i t  is necessary and sufficient that the distance A, 
in the xy plane between two adjacent collisions of an 
electron with the boundary (Fig. 1) significantly exceed 
the correlation length L; that is, 

Furthermore, the second ("diffusive") term in the 
right side of (2.2), proportional to u2, has been written 
in the simplest (Born) approximation. A more accurate 
calculation of the diffusivity leads to the appearance in 
(2.2) of a term proportional to u4. This term (and terms 
succeeding it) may be discarded if the inequalities 

a r e  satisified. 

2. The equation of motion of an electron along the x 
axis is described by the formula 

where X =  - cp,/eH i s  the projection of the center of the 
orbit on the x axis, and where RL is the radius of revo- 
lution in the xy plane, perpendicular to  H. Depending 
on the value of X, the electrons in the metal divide 
themselves into two independent groups. One of these 
is composed of the volume electrons, for  which X>R,, 
i.e. x>RL (1 + COST). The volume electrons a r e  located 
in the interior of the metal and do not interact with i t s  
boundary. The second group consists of the surface 
electrons, which collide with the specimen boundary 
(Fig. 1). For them -R, <X<R,, o r  0 x<RL (1 + COST). 
It is only electrons of the second group that satisfy the 
boundary condition for the distribution function. For  
volume electrons, i t  i s  replaced by the condition of per- 
iodicity in T. The electromagnetic properties of metals 

with an almost specular boundary a re  primarily deter- 
mined by the surface electrons. The surface absorption 
effect of interest to us  is also due to this group. There- 
fore we shall find the distribution and current density 
of the surface electrons alone. 

The solution of the kinetic equation (2.1) with the boun- 
dary condition (2.2) can be written a s  the sum of two 
terms: 

The f i rs t  term in (2.5) is the distribution function of 
the surface electrons for specular reflection from the 
metal boundary: 

X n, (8 ,  A) el('-" Em (zf R, (cos h - cos r) ) . (2.6) 

Here n,(O, T) is a component of the unit vector along the 
electron velocity, 

n,--sin 8 sin r,  n,=sin 8 cos r,  n,=cos 8, 

0 i s  the polar angle with polar axis z ,  RL = R sin@, rp = 
a r c  cos(-X/R,) is the grazing angle of a surface elec- 
tron a t  the instant of i t s  collision with the boundary 
x =  0 (Fig. 1). In formulas (2.5) and (2.6), the angle of 
encounter rp must be considered a function of x and T, 

which i s  determined from the equation of motion x = R, 
(COST - cosrp). 

The second term in the expression (2.5) is the solution 
of the homogeneous equation (2.1). The form of the func- 
t i ~ n  P(rp, 8) can be determined from the boundary condi- 
tion (2.2). Here we replace x by X, in the integral term, 
since the reflection of the electrons is nearly specular. 
Hence we get 

The projections p and p,  of the canonical momentum 
a r e  connected with the angles 6 and rp by the relations 

p.=pp sin 8 sin v, p,-pr sin 8 cos rp, p,=p, cos 8. 

3. The Fourier component of the surface-electron 
current density i s  expressed in terms of the nonequilib- 
rium correction ~ ( x ,  T,  8) by means of the well-known 
formula 

whereN is the density of electrons in the metal, and 
where x,(O, T) = RL( l  + COST). 

In accordance with (2.5), the current density i s  a sum 
of two terms: 

surf 
j .  ( k )  =jb"' ( k )  +j:' ( k ) .  (2.9) 

The f i rs t  term f:)(k) is the current density of surface 
electrons for specular reflection. It i s  determined from 
(2.8) with substitution of x,(x, 7, 8) for ~ ( x ,  T, 8). An ex- 
act  expression for j$')(k) was given in Ref. 4. In the 
same place, the asymptotic behavior of f$(k) was cal- 
culated under the conditions of the anomalous skin effect 
(1.3): 

Ik-k'l -'h- (k+k l ) -5  

(kk' )  " (2.10) 
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This asymptotic behavior is due to grazing electrons 
with arrival angles cp S (b,/~)"~. 

The second term in (2.9) is due to diffuse scattering 
of electrons by the metal boundary: 

3Ne (*I dcp sin cp  j. (x)=--j dO.nzO j - 
2nmQ 

F(cp, 0 )  
sh(rcp) 

* 
x j d t  n,(0, t )eh(yr)cos[kR,(cos cp - eos 7) I, (2.11) 

where a = y, z; m i s  the mass  of the electron. It is ob- 
vious that the second term &)(k) is much smaller in 
modulus than the first; that is, 

3. SURFACE IMPEDANCE 

By virtue of the inequality (2.12), we can find the im- 
pedance of the metal by perturbation theory, using a s  
zeroth approximation the expression (1.2), which is de- 
termined by the current density j,b)(k). In the approxi- 
mation linear in jk)(k), the correction to  the impedance 
is, 

where the prime denotes differentiation with respect to 
x. In the expression (3.1), the Fourier component &,(k) 
is the solution of Maxwell's equation with current densi- 
ty j$)(k). According to Ref. 4, the function 6,(k) can be 
written a s  a Mellin contour integral: 

The Mellin transform M(z) i s  determined by the fol- 
lowing formula: 

The only singularities of M ( z f  a r e  simple poles located 
on the real axis. 

The current density f($(k) permits simple asymptotic 
expansions if the explicit dependence of the function 
F(cp, 8) on i ts  arguments is known. Formula (2.7) con- 
tains, under the integral sign, the product of two 
6< sharp" functions: W and x0. The correlation function 
W(p - p') has a maximum a t  the point p' = p, with char- 
acteristic width Ap' - 2116 /L. Under the conditions (1.3) 
of the anomalous skin effect, the distribution function 
b(0, cp', 0') i s  a maximum a t  cp' = 0 (grazing electrons), 
with width Acp' "cp - ( 6 ~ ) " ~ .  In the variables p', this 
corresponds to a maximum at the point Ip'j =pp with 
width Ap'"ppcp2"pR6/R. The limiting cases in which 
f,")(k) has simple asymptotic behaviors a r e  determined 
by the relation between the characteristic momenta 
2&/L and ppcp2. Let the irregularities of the boundary 
be statistically isotropic, i.e., let the characteristic 
scattering curve W(p) depend only on the modulus P rip1 
of the two-dimensional momentum p: and let the corre- 
lation radius L be a constant quantity. 

1. We f i rs t  consider the case of "low-angle" incidence 

of the electrons on the specimen surface: 

cp2e2nli /p4.  (3.4) 

According to (3.4), in the formula for  P(q,  6) the ac- 
tual range of integration in the arrival term is consid- 
erably smaller than in the departure term, and there- 
fore the second term in (2.7) may be neglected in com- 
parison with the first. Then 

The small value of the arrival term in this case means 
that the boundary condition (2.2) is essentially equival- 
ent to a condition with a specularity parameter P that 
depends on the angle of encounter of the electrons with 
the metal boundary: 

The degree of diffuseness 1 - p(p,) is found to  be re- 
lated to  the mean coefficient of reflection V of a plane 
wave, with wave vector (fix/&, p/@, from a statistically 
irregular surface, f i rs t  obtained by Bass1': 

The asymptotic behavior of the current density &)(k) 
under the conditions (1.3) and (3.4) is expressed in 
t e rms  of the asymptotic behavior of &(k) a s  follows: 

. (') 5 
1 ,  ( k ) =  2 --a. ( l -pcPf) . -  'kaR)R"" 7 j? ( k )  exp ( - $) . (3.8) 

Here the complex quantity (1 - p,,,), is an effective co- 
efficient of diffuseness, introduced so that the impe- 
dance z:) may be described by formula (1.7). The func- 
tion 1 -p(p,), like the reflection coefficient V, has, 
within the framework of (3.4), different asymptotic be- 
haviors a t  large and at small values of 2nR/pFL.l5 Ac- 
cordingly, the value of (1 - pat ), will also be different, 
depending on the value of the parameter 2nE/p,L. 

For  fine-scale irregularities we have 

A,r'('l ,)  oZp, p L  exp (n i l lo )  
( I - p e r f ) .  =-- - 

7560. hL ( nh ) (kaR)" 
w ( 0 )  (3.9) 

at 2nli/p,LBI. 

In the case of coarse-scale irregularities and small- 
angle incidence (3.4), it is necessary to take a s  (1- p,ff), 

xah w ( x )  d z  (3.10) 

In formulas (3.9) and (3.10), the constants a r e  A, = 5, 
A, = 3. Furthermore, we have introduced here the di- 
mensionless correlation coefficient w ( x )  mW(tix/L)/L2, 
which is independent of L and decreases significantly 
over a distance Ax-1. We note that in typical metals 
with pp/ti-108cm", the case (3.10) is realized. But 
for small electron clusters, the case (3.9) may occur. 

In order to demonstrate that the correction z(,s) is des- 
cribed by formula (1.7) with 1 - p replaced by (1 -pal),, 
it is not obligatory to substitute the asymptotic behavior 
(3.8) in (3.1) and to carry  out the calculations indicated 
in (3.1). I t  is sufficient to  notice the fact that the cur- 
rent jk)(k) under the condition (3.4) is proportional to 
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j't)(k). This means that the total current j r f ( k )  has the 
form (2.10), but with a renormalized wave number k,: 
instead of it, there now occurs in (2.10) 

Therefore the total impedance of the metal is given by 
the expression (1.2) with the indicated renormalization. 
On using the inequality (1.5), we arr ive  a t  formula (1.7) 
for Z$). 

2. In metals with large-scale irregularities of the 
boundary (pPL/2rti>> 1), the case inverse to (3.4) may 
occur: 

when the width of the characteristic scattering curve i s  
considerably smaller than the characteristic arrival  an- 
gles of the grazing electrons, cp - (b/R)'I2. Then in the 
integral (2.7) for F(9 ,  e) ,  the function w(lp-p'l) will 
be sharpest, and consequently the departure and arrival  
terms a re  quantities of the same order. Furthermore, 
the condition (3.11) actually means that the transfer of 
momentum during scattering is small; that is, the colli- 
sion integral (2.7) of electrons with the boundary may be 
written in the Fokker-Planck approximation. As usual, 
expanding the difference p:[,y,(O, cp, 8 )  - ~ ~ ( 0 ,  cp', e')] in 
the neighborhood of the point p' = p(9' = cp, 6' = 6) through 
terms quadratic in p - p', we get 

Thus in the case of "steep" incidence (3.11), the bound- 
a ry  condition (2.2) for the distribution function does not 
reduce to a specularity parameter. The reason for this 
i s  obvious: the state of an electron reflected by the met- 
a l  surface with momentum (p,, p) is entered into by in- 
cident particles with all  possible momenta, and not only 
those that a r e  incident a t  the specular direction, with 
momentum (-P,, p). 

After substitution of (3.12) in (2.11), the calculation of 
the asymptotic behavior of j t)(k) i s  carried out by the 
standard method. The formula for the current takes the 
following form: 

jr (I/,) B,, ].tn ( k )  = 
(k.R)" c2k. 

(l-p,rr).-- 
16n'b.Y 2 7 4~ 

Although the boundary condition (2.2) in this case con- 
tains nonlocal t e rms  of the type (3.12), i t  is neverthe- 
less  convenient to introduce an effective diffusivity co- 
efficient (1 - p*!), in order that the impedance Z,, may 
have the customary form (1.7) [after substitution of 
(3.13) in (3.1) and performance of the calculations indi- 
cated in (3.1)]. Then we get 

We note that the formulas for (1 - ~ e i J a  and for the 
relative correction to the impedance z',J'/.Z, a r e  in 
qualitative agreement with the results  of ~a l ' kovsk< '~  
and of Okulov and Ustinov,16 who investigated the role 
of surface scattering in the anomalous skin effect in the 
absence of a magnetic field. One can show this easily 
by expressing the coefficient of diffusivity (1 - ?ar ), in 
t e rms  of the characteristic angle of grazing p - ( 6 , / ~ ) ' / ~  
and taking into account that when H = 0, the role of graz- 
ing electrons is played by those particles that move 
along straightline trajectories with cp - 6/1*. 

4. DISCUSSION OF RESULTS 

We shall discuss the results  obtained. The express- 
ions given above for the effective diffuseness parameter 
(1 - p ~ f ) ,  a r e  functions of the magnetic field H, of the 
statistical characteristics 0 and L of the irregular boun- 
dary of the metal, and also of the skin thickness 6,. It 
i s  interesting to note that even for a Fermi sphere, the 
degree of diffuseness (1 -perf), of the boundary depends 
on the polarization of the external electromagnetic wave. 
This dependence is due to the anisotropy of the electro- 
dynamic properties of the metal in a parallel magnetic 
field, which manifests itself in the scattering of elec- 
trons by even a slightly rough surface. A criterion for 
applicability of the results  i s  the inequality (1.5) with 
1 - 9 replaced by (1 - G,~),. This inequality is a nec- 
essary and sufficient condition for use of the method of 
successive approximations for solution of the kinetic 
equation (2.1) with the boundary condition (2.2). 

For  an arbitrary relation between w and v, the effec- 
tive coefficient of diffuseness is a complex quantity, in 
consequence of the fact that i t  actually depends on the 
complex angle of encounter of the electrons with the sur- 
face, 

At high frequencies w >> v, however, the angle cp, i s  
real, cp, = ( 6 , / ~ ) ' / ~ ,  since in the main approximation 
the impedance (1.2) becomes purely imaginary and the 
external wave undergoes total reflection. Therefore the 
degree of diffuseness (1 - pat), also becomes a real  
quantity. 

The additivity of the contributions of volume absorp- 
tion and of surface absorption by grazing electrons, 
which for w >> v i s  expressed by formula (1.8), enables 
us  to introduce an effective frequency of surface scat- 
tering of them, vt). I t s  relation to (1 -p,ff)a is deter- 
mined by the formula 

This formula has  a lucid physical meaning: &' is the 
product of the "probability" of diffuse scattering 
(1 -pH,), by the characteristic "frequency" ni2/cpa of the 
periodic motion of the grazing electrons along the x ax- 
is. I t  is noteworthy that the surface electromagnetic 
absorption caused by scattering of grazing electrons by 
random inhomogeneities of the boundary can be obtained 
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directly from the expression (1.2) for the impedance 
L,(v) of a metal with a specular boundary, by replacing 
the quantity v by the sum v+ &). Here the relation be- 
tween w and v+v(t) in unimportant. 

We shall give formulas for the frequency vt) in the 
three limiting cases  considered above; for simplicity, 
we shall assume that the correlation function of the ir-  
regularities is Gaussian [w(x)  = nexp(-*/4)]. For  fine- 
scale irregularities (3.9), 

For  coarse-scale irregularities and for low-angle in- 
cidence, we find from (3.10) and (4.2) 

Finally, in the case of steep incidence and coarse- 
scale irregularities (3.14), we get 

It is evident from the expressions (4.3) and (4.4) that 
the frequency of surface relaxation vt) is a real  quantity, 
whatever the relation between o and v, since in these 
cases  vt) is independent of the electrodynamic charac- 
teristics of the metal. The reason is that scattering of 
electrons by boundary inhomogeneities, a t  low-angle in- 
cidence (3.4), has a local character. Then the degree of 
diffuseness (1 - pa,), is proportional to  rp,, but vt) is 
unrelated to the grazing angle cp, and to the frequencies 
id and v. It i s  proportional to the field H and i s  deter- 
mined by the relation between the de Broglie wavelength 
and the mean parameters of the rough boundary. The de- 
pendence of vt) on the polarization in cases  (4.3) and 
(4.4) is of geometrical nature and i s  due to the aniso- 
tropy of the surface scattering in a magnetic field. 

With increase of H, there occurs on increase of (q,) 
a transition from the case of small-angle incidence (4.4) 
to  the case of steep incidence (4.5), during which the 
dependence of the coefficient of diffuseness on p, 
changes: instead of a direct proportionality, (1 - p M i ) ,  
begins to decrease in inverse proportion to p;. This 
explains the complexity of the value (4.5) of vk) in a 
strong field (vanishing for o>> v), and also the different 
dependence on H and the sensitivity to the skin depth 
6,. From the nature of the asymptotic behaviors (4.4) 
and (4.5) i t  is quite obvious that the frequency of surface 
scattering "2) must have a maximum a t  magnetic fields 
for which lq,12=2n&/PpL. 

Collisions of electrons affect the absorption of elec- 
tromagnetic waves in metals when there is no mechan- 
ism of collisionless attenuation. This is the case under 
the conditions of the normal skin effect a t  low frequen- 
cies (w << v) and in the infrared frequency range (v, v w,/ 
c < w < w,). In the latter case, the impedance of the met- 
a l  is almost imaginary, and the electromagnetic absorp- 

tion is caused by both volume and by surface scattering 
of  electron^.^^*'^ Under the conditions of the anomalous 
skin effect, the collision mechanism of absorption a s  a 
rule plays no role in comparison with the collisionless 
mechanism, A special situation a r i ses  in a magnetic 
field, when the vector H is perpendicular to the direc- 
tion of propagation of the wave and collisionless atten- 
uation is absent in consequence of the cyclotron revolu- 
tion of the electrons. Then the electromagnetic absorp- 
tion is caused entirely by electronic collisions, both in 
the volume and with the surface. I t  is this situation that 
has been analyzed in the present paper. 

In conclusion, we point out that in electromagnetic 
absorption in a metal, a contribution is made not only 
by grazing electrons but also by volume electrons, which 
do not collide with the specimen boundary. But far  from 
cyclotron resonance, the absorption from volume elec- 
trons, by virtue of the condition (1.31, is found to be 
negligibly small in comparison with the volume absorp- 
tion of grazing electrons. 
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