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Near the critical field H,, there exist regions of magnetic fields in which a single defect leads to formation of 
metastable states, and by the same token to single-particle pinning. As H approaches H,,, an alternation of 
regions of single-particle and collective pinning takes place and leads to an oscillatory dependence of the 
critical current on the magnetic field. 

PACS numbers: 74.60.Ge, 74.60.Jg 

INTRODUCTION 

It is well known that flow of volume current through 
an ideal type-I1 superconductor gives r ise  to motion 
of the vortex lattice, accompanied by energy dissipa- 
tion. In this sense, an ideal type I1 superconductor 
does not differ from a normal metal. The crystal- 
lattice defects, however, lead to a dependence of the 
free energy on the position of the vortex lattice rela- 
tive to the defects. As a result, a superfluid current 
of finite density, not accompanied by energy dissipa- 
tion, can flow through the superconductor. 

Depending on the parameters that characterize the 
defects and the superconducting properties of the ma- 
terial, two different types of metastable states can set  
in and lead to the onset of collective o r  single-particle 
pinning. In collective pinning, the vortex lattice is 
weakly deformed and can be described with the aid of 
the elastic model. On going over to single-particle 
pinning, however, this model goes outside the region of 
i t s  validity, a strong relative displacement of the vor- 
tices takes place and leads to formation of metastable 
states. From the elastic model i t  is possible to de- 
termine the parameter range in which realization of 
single-particle pinning is possible. The final answer 
can be obtained, however, only by considering the re- 
gion of short distances (on the order of the lattice 
period), in which the elastic model is not valid.' 

spherical defect will be made later on. We confine our- 
selves also to temperatures close to critical. The last 
limitation is not principal, and the generalization to the 
case of arbitrary temperatures is trivial. 

The expression for the free energy near the transition 
temperature can be represented in the form 

where v=mpo/2ra is the state density on the Fenn i  
surface, D = u2,,/3 is the diffusion coefficient, 5 is the 
Riemann zeta function, a- = a / a r  - 2ieA, A is the vector 
potential, and Ho is the external magnetic field. We 
use a system of units in which f i = c =  1. 

We consider a pore with a small radius R: 

When condition (2) is satisfied, the eigenvalues of only 
two eigenfunctions of the operator a? a r e  shifted by a 
value proportional to a'. For  a solution in the form 

where p=r(eH)'/' is the dimensionless length in a plane 
perpendicular to the magnetic field, cp is the azimuthal 
angle in this plane, and the magnetic field H ~ J  at which 
a nucleus of the form type appears increases and be- 
comes equal to 

We consider below the region of fields close to H,, H.~"=H.~ (1+4a2), eHez=4T~/nD.  
and show that in the case of strongly elongated defects For  a nucleus of the type 
metastable states a r e  produced on a single defect, 
and the case of single-particle pinning is realized by e - P ~ ~ ~  

the same token. If the individual pinning force is large 
the corresponding critical field HCa0 is decreased: 

enough, then the pinning center is capable of capturing 
a single vortex, and the result is plastic flow of the H $ ' = H . ~ ( I - ~ ~ ~ ) .  (6) 
vortex lattice. As a result of this process, the effec- The corrections to the remaining eigenvalues of the 
tive force of pinning of the vortex lattice on one defect operator are small. 
saturates, and the dependence of the critical current 
density on the proximity of the magnetic field to the When account is taken of Eqs. (4) and (6),  the expres- 
critical field H,, becomes quadratic. sion (1) for  the free energy near the critical field H,, 

can be represented in the form 
1. VORTEX LATTICE IN THE PRESENCE OF A 1 enD 
SMALL-RADIUS CYLINDRICAL PORE ( )  A 1 -  - - (Hcz-Ho)lA~z F=v d r  - I 3 ( l h z T z  ( 2 4T 

We confine ourselves below to a defect in the form of a 
small-radius cylindrical pore with axis directed along 

(7) 

the magnetic field. The generalization to the case of a The order parameter A is the sum over all the eigen- 
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functions of the operator a.,; A, and A, are  proportional 
to the eigenfunctions ( 3 )  and ( 5 ) ,  while n2= 6 3 6 ( 3 ) /  
2s3eZp2u3rtr2. 

We choose a special gauge for the vector potential 
A,: M(mi)M'(mz)M(m')  ( I - )  ( I D )  1 - D ) = O  ( 1 5 )  

r ( m , + l ) r ( m z + l ) r ( m 3 + l )  

where r ( m )  is the gamma function. The sum in ( 1 5 )  is 
over all the indices that a r e  not equal to unity. We have 
replaced the coefficients Cm by new variables Dm, the 
relation between them being 

In this gauge, the order parameter A  can be represented 
in the form 

The correction to the free energy in the first  approx- 
imation in I C / C l  1' i s  of the form 

where 
We proceed now to the solution of the system ( 1 5 ) .  

2. CALCULATION OF THE COEFFICIENTS Dm 

We define mo as  the value of m at which the expres- 
sion in the curly brackets of ( 1 5 )  vanishes. Using ex- 
pression ( 1 4 )  for the coefficient I C1l2,  we obtain 

h-,x--- 

In ( 9 ) ,  A, i s  the unperturbed solution corresponding 
to an ideal triangular vortex lattice. The parameters 
cr and P specify the position of the vortex lattice rela- 
tive to the pore. The equations for the coefficients 
C ,  are obtained from the condition that the free energy 
(7) be an extremum. 

In our approximation, m, >> 1 .  

We determine first  the behavior of the coefficient 
M ( m )  at m >> 1 .  It is convenient for this purpose to 
represent the order parameter A, in the form 

We proceed now to consider the case of fields close 
enough to H,, to satisfy the condition 

When this condition i s  satisfied, the coefficient C l  is 
large: I C1 I >> I C I .  The pore captures one vortex, and 
two regimes are  possible: smooth flow of the remaining 
vortices around the pore with the captured vortex, and 
a regime in which a metastable state takes place in the 
flow. It will be shown below that both cases can be 
realized when the quantity 1  - Ho/H,., is varied. 

where the constant Coo is connected with C by the rela- 
tion 

The correction to the free energy and the equations 
for the coefficients C ,  contain the quantities 

M(m)= j d z d y  Ao(z- iy)"exp[-ky - ( z Z + y a ) / 2 ] .  ( 1 2 )  
At large values of the parameter m ,  the quantity 

M ( m ,  a, j3) has sharp maxima that lie on straight lines 
in the (a, j3) plane. The position of each such l i e  i s  
given by the angle cp , .  These maxima arise when the 
vortex lines a re  tangent to a circle of radius m1I2. 

In the principal approximation in terms of the parame- 
ter  1 C/Cl )2 ,  the correction to the free energy per unit 
length does not depend on the position of the vortex lat- 
tice relative to the pore, and i s  equal to 

Substituting the expression ( 1 9 )  for the parameter A, 
in formula ( 1 2 ) ,  we obtain 

M(m)=exp 

P =  C ~ ( a , p , m , c p o ) ,  
W 

where 

In the same approximation, the phase of the coefficient 
C ,  is arbitrary, and the modulus is given by the ex- 
pression 

To calculate the next order, it is necessary to find 
the coefficients C ,  at m  # 1 .  In the principal approxi- 
mation in 1 C / C l  12, this system of equations takes the 
form 
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In formula (21), the sum over cp, is taken over all the 
external angles in formula (21), the sum over cp, i s  the 
sum over all the extremal angles 

In the solution chosen to us, the principal extrema are  
located at the angles 

It will be shown below that the contribution of the "la- 
teral" extrema to the critical current i s  small, and 
they will be disregarded. 

From (21) and (23) we obtain for cp,=O 

where K a r e  integers, y takes on the two values 0 and 
1, and tb i s  the Airy function5: 

Bz is given by 

The quantities j3, and 19, are  related by 

I Pa I --3"9a. (28) 

We obtain similarly for cp, = n/2 
az P (a, $, m, T )  = nCm.2x-3"4m'fs$, exp ) 

where 

Substituting the expression (21) for the coefficient 
M(m) in (1 5), we reduce the system of equations for 
Dm to the form 

This leads to two relations: 

where 

From the form of the system (31) we can draw two 
conclusions: at m < m, the quantity 1 -Dm tends ex- 
ponentially to zero; at  m >m, the quantity 1-Dm breaks 
up into two terms, one a smooth function that varies 
over distances of the order of m,'IZ, and the other 
decreasing exponentially with increasing m. These 
arguments allow us to separate two stages in the solu- 
tion of the system (31). We obtain first, at m >m,, 
the smooth part of 1 -Dm, following which we obtain the 
exponentially decreasing term. 

The smooth term satisfies the equation 

It follows from (25) and (29) that a t  fixed values of the 
parameters (Y and j3 that characterize the position of 
the vortex lattice relative to the pore, the quantity P 
a s  a function of m has steep maxima of width m'IS, 
separated by distances on the order of m'I2. When the 
parameters a and j3 a re  varied, these maxima areshif- 
ted and at definite values of the parameters pass 
through m = m,. It is near these points that the meta- 
stable states that lead to the single-particle pinning that 
a r e  formed. 

The absence of the fast factor exp(-imp,) leads to 
breakup of the system (33) into independent equations, 
in each of which @ must be replaced by P(cp). 

As already mentioned above, metastable states a re  
produced if one of the maxima of the function lies 
near the point m,. The equation systems obtained in 
this case for different values of cp, turn out to be simi- 
lar. We consider therefore in detail, for the sake of 
argument, the case cp, = 0. For cp, = n/2 we present only 
the final results. We put 

where KO is an integer. Using the slow variation of 
1 -Dm in the region where the function P(m, 0) changes, 
we can integrate with respect to m the system of equa- 
tions (33), in which P i s  replaced by P(m, 0). The sys- 
tem (33) then changes over into a system for the quan- 
tities 1 -Dm at the extremal points of the function 
P(m, 0) .  

At y =  0, the extrema a r e  located at the points 

m ( N )  am,+ (8n/3") "mo"N, N=O, 1,2. . . . (35) 

We designate the quantity 1 -Dm at these points by 

The extrema a t  y = 1 a r e  located at the points 

At these points we put for 1 -Dm 

The system of equations for the quantities R ( N )  and 
Y(N)  is unwieldy, and we present only the one equation 
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that is of greatest importance for what follows: 

where 

We note that to calculate the free energy we shall need 
R(0) as  a function of the parameter z .  

The system of equations for R(N) and Y(N) was cal- 
culated with a computer. The table lists the values of 
R(0, z )  as functions of the parameter z .  At the point 

the function yl(zo) = 0 .  In the vicinity of this point 

R(0 ,  z )  =R ( z )  =-0:575(z-z,)"'. (47) 

We linearize the system of equations for the functions 
R(N) and Y(N) near the point z,. It turns out that the 
matrix of the linear increments B of this system has one 
eigenvalue A, that vanishes at the point z,: 

Therefore small perturbations of the system (31),  (33) 
at this point lead to substantial changes. Only the co- 
efficient R(0)  changes greatly in this case. We put 

Substituting in the right-hand side of (38) the values of 
R(N # 0 )  and Y(N) taken at the point z  = z,, we obtain a 
third-degree form of G(x):  

G ( z )  =0.154z5+0.029 (z-20) . (44) 

In the zeroth approximation, the value of R(0, z ) = x  is 
determined from the equation 

G ( 2 )  =O. (45) 

In the next approximation in m,, Eq. (45) acquires a new 
term which we now proceed to calculate. 

Let K be the integer closest to m,: 

From (33) we obtain 

1-D,,,=z/(l--2"~-"), m Z K ,  Im-moJ am,". (47) 

If m, tends to an integer, then 1 - D, increases, and 
the nonlinear term must therefore be retained in its 
calculation. From (33) we obtain 

Substituting expression (47) for 1 -Dm in (33), and cal- 
culating the sum over m ,  we obtain, taking (43) and (44) 
into account, 

where 

The function S(m,) is an odd periodic function with 
period 1. Its numerical values a re  given in the table. 

If the quantity R, - a is  close to a half-integer 

then, accurate to the permutation R = Y ,  the system 
(33) goes over into the system (38).  

It follows from (34) and (51) that the period of the 
vortex lattice spans 12 lines connected with the angles 
cp,= nn/3, n  = O,1, . . . , 5 ,  near 'which metastable states 
can be formed. A metastable state i s  formed if 

In the opposite case, no metastable states a re  formed. 
Inasmuch a s  the sign of the expression in (52) is period- 
ically reversed when the magnetic field is varied, an 
interesting pattern of alternation of the single-particle 
and collective pinnings is produced. Since the critical 
current increases sharply on going to the single-particle 
pinning, an oscillatory dependence of the critical cur- 
rent on the magnetic field should be observed in experi- 
ment. 

If m, is not too close to an integer, then 1 - D,  - x  
and its value is  

1-DK=z1(1-2"*-X). (53) 

Substituting this value of 1 - D ,  in (49) ,  we get 

G ( x )  +Az-0, (54) 

where 

1 A - E E { s ( ~ ~ ) + ~ ~ - K - - + - -  . 
m," i 1  2 1-2°C' 

As already noted, for strong magnetic fields, where 
A < 0 ,  there exists a range of parameters z  - z ,  in which 
(49) has three physical solutions. The function 

TABLE l'. 
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has in this case a characteristic S -shape. The branch 
between the turning points is absolutely unstable. The 
two other solutions a r e  stable to small perturbations. 
From (54) and (55) we obtain the jump of 6x on going 
over to the point of absolute instability from one branch 
to the other 

We note also that a t  A <O a t  the point z = zo the one 
singular solution (41) splits into three: 

A similar picture appears f o r  the directions rp0=n/6 
+ nn/3 with n = O,1, . . . , 5. We present the analogs of 
(44) and (49) for rp0=a/2. 

G ( z )  =0.267z5+0.002 (z-z,) , 
(59) 

D ( ~ + ~ [ ( I - D . ) + X S ( ~ ~ ) + X  

where KO is an integer. 

For  rpo= n/2 formula (48) takes the form 

Just a s  before, i f  mo is not too close to an integer, the 
quantity 1 - D ,  is determined by formula (53) and in 
this case the jump at  the point of absolute instability 
is 

where A is determined a s  before by (55). 

The period of the vortex lattice spans six lines con- 
nected with the angles q o  = a/6 + nn/3, near which 
metastable states a re  produced. 

We turn now to the calculation of the free energy. 
From (17), (21), (25), and (29) we obtain 

where 

In formula (64), z = z(qo) and is determined by formulas 
(34) and (60) for the angles q o = O  and n/2. For  other 
angles from the same families, the values of z(rpo) a re  
obtained by simple rotation of the coordinates (a, f l ) .  
F(rpo) is given by 

In the vicinity of the point z = zo we have 

and was determined by us above 

927 Sov. Phys. JETP 52(5), Nov. 1980 

@ (-1.1 =0.878, ( d l  ~ z ( - a o + t )  -1.232. (67) 
0 

From (57), (62), and (64) we obtain the jump 6F'" of 
the free energy on going from one branch to another: 

Formula (62) i s  valid if mo is not too close to an integer. 
Otherwise, the jump is determined from formulas (48) 
(61), and (64). 

The density of the critical current can be determined 
from energy considerationse: the density of the average 
force is equal to the dissipated energy density divided 
by the displacement. In our case the average force is 
weakly anisotropic, inasmuch a s  the number of meta- 
stable states produced when the lattice is displaced 
depends on the direction of motion relative to the unit- 
cell vectors. 

Taking into account the number of metastable states 
corresponding to the angles rpo, we obtain for the criti- 
cal current density j, the expression 

j,B=4n(l) (eH)"(3"/2n)'"{6F1" ( 0 )  [ Icos cp  1 + Icos (rp+n/3) I 
+Ices (cp-n/3) 1 ]+0,56F1')(n/2) [ 1cos (n/6-cp) I + 

+I cos (n/6%) I + I cos (nI.2-cp) I I )  (70) 
where n is the volume density of the defects, ( 2 )  is the 
average length of the defect, and 6F1 is the free-energy 
jump determined by formulas (64), (65), and (69). In 
the solution (19) chosen by us, the unit-cell vector lies 
along the x axis. Therefore the angle rp in (70) is the 
angle between the direction of motion of the vortex lat- 
tice and the x axis. For  a real  sample it is necessary 
to average (70) with a weight function that determines 
the distribution of the pore radii. 

We note that in the plastic-flow region formula (70) 
for the critical current is universal in form. All that 
depends on the pore radius a is a numerical coefficient 
in (70). For  a sufficiently wide distribution of the pore 
radii (for a distribution width larger than the average 
radius), the critical current i s  given by 

and does not depend on the average pore radius. 

An expression similar to (7) is obtained for the 
free energy not only in the case of cylindrical pores of 
small radius, but also for any filamentary small-radius 
defect that leads to a shift of He, (for example, a dis- 
location). Then the coefficient 4 2  in (7) is replaced by 
the magnetic-field shift 6H,,/H,, due to this effect. By 
making the corresponding substitution we arrive again 
a t  formula (70) for the critical current. 

The number of experimental investigations of the de- 
pendence of the critical pinning current on the magnetic 
field and on the temperature i s  by now quite large. 
Near He,, this dependence is well described by the 
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scaling law7 

In neutron-bombarded V,Si samples we have m = 2,  
and the value of the parameter n lies between 2 . 3  and 
2 . 8 . 8  In NiTi alloys, m = 2 and the parameter n 
ranges from 2  to 2.33 ,  depending on the Ti density. 

The force of interaction of the vortex lattice with an 
individual defect is usually proportional to 1 A 1' (Refs. 
1, 6, 10) and i s  by the same token linearly dependent 
on the proximity of the magnetic field to the critical 
value H,,. Therefore, a t  least near H,, such strong 
pinning centers will capture the vortex filaments, and 
this leads, according to  the result of this work, to 
plastic flow and to effective weakening of the securing 
of the vortex lattice. 

The considered model presents the physical picture 
of the saturation of the forces of interaction between a 
vortex lattice and pinning centers, and of the ensuing 
scaling law for the quantity j ,  B. In real  samples, the 
pinning a r e  not lines but have small dimen- 
sions in all  directions. For a detailed comparison 
with the experimental data i t  is therefore necessary 
to generalize the considered model to include the case 
of point defects. 

In a magnetic field close to H,,, a single vortex is 
captured by a defect. Then, in the case considered by 
us, a large region from which the vortices a r e  expelled 
is produced around the defect. The size of this region 
is R =m,"2/(e~)112. In the principal approximation, 
the free energy is independent of the lattice position 
relative to the defect. The terms of next order, how- 
ever, have a nonmonotonic dependence on the proximity 
of H to H,,,and at certain latti&positions re iz ive  to thep 

defect these terms lead to formation of metastable 
states. Even near H,, the metastable states a re  pro- 
duced a t  not all  values of the field. In the principal 
approximation, metastable states a re  produced if 
0 <mo - K  <+ but not if -i<mo - K  <O. Since m, i s  the 
number of vortices expelled by the captured vortex, 
this condition means that the formation of a metastable 
state depends on whether free space exists in the ex- 
pulsion region or, on the contrary, if there is not 
enough space. Therefore the dependence of the criti- 
cal current on the magnetic field is nonmonotonic and is 
determined essentially by the distribution of the defects 
in size. 

We note also that the formation of metastable states 
is connected with the behavior of the vortex lattice near 
the boundary of the region occupied by the single cap- 
ture vortex. 

In conclusion, the author thanks A. I. Larkin for val- 
uable remarks and for a discussion of the work. 
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