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An analysis is made of the influence of the Coulomb interaction on the spectrum of monoenergetic donor 
centers located on the surface of a semiconductor. It is shown that the main contribution to the dispersion of 
the potential is made by a small-scale potential with a characteristic size of the order of the average distance 
between charges. The energy distribution of the donor centers is calculated as a function of their degree of 
occupancy. At low concentrations of charged centers there is a gap between the empty and filled states and 
this gap disappears on increase in the charge concentration. The presence of this gap in the density of states is 
a consequence of ordering of charged donors, i.e., of the Wigner crystallization. Elementary excitations are 
considered under the Wigner crystallization conditions. The dependences of the concentration of charged 
donors, of the bending of the semiconductor bands, and of the capacitance on the external voltage are 
determined for a metal-insulatorsemiconductor structure. The band bending is found to be a continuous 
function of the voltage and the capacitance diverges as the concentration of charged centers tends to zero. 

PACS numbers: 73.40.Qv, 73.20.Hb 

1. INTRODUCTION Thus, allowance for the Coulomb interaction on the 
occupancy of the surface states in the case of changes 

A characteristic property of a semiconductor-insu- in the bending of the semiconductor bands requires 
lator (SI) interface is the presence of surface centers. 

self -consistency. 
The Coulomb interactions between charged centers 
creates an inhomogeneous fluctuation potential in the 
plane of the interface and this results in a smearing of 
the energy of the surface centers. This fluctuation po- 
tential is responsible for  such characteristics of the 
observed quantities a s  the frequency dependence of the 
capacitance and resistance of metal-insulator-semi- 
conductor (MIS)  structure^',^ and the dependence of the 
longitudinal conductance along the SI interface on the 
external field. 3 * 4  

I t  has been suggested on several  occasion^'^^*^ that 
such charge inhomogeneities a r e  of the large-scale 
type. However, the two-dimensional nature of the 
charge distribution on an SI interface has the effect 
that the main contribution to fluctuations depending on 
the semiconductor bands is made by small-scale fluc- 

The potential a t  an SI interface is inhomogeneous by 
i ts  very nature because of the discrete distribution of 
the charge on the surface and also because of the fluc- 
tuations of this distribution on the interface. Such an 
inhomogeneous (fluctuation) potential depends strongly 
on the nature of the screening of the charge. This 
screening is due to a redistribution of the charge in the 
metal and semiconductor, and between the surface 
states. In the case when the surface states are  partly 
filled, the most important effect is the screening of 
the fluctuation potential because of a redistribution of 
the charge between the surface states, since in the 
limiting cases of completely empty donor states o r  
completely filled gaps we have the built-in charge 
situation discussed in Refs. 1 and 5-8. 

tuations of the charge. 7 * 8  Gergel' and Suris8 analyzed We shall calculate the self-consistent fluctuation po- 
this aspect in detail and found a relationship between tential a s  a function of the degree of occupancy of the 
dispersion of the charge and dispersion of the potential, surface states and also find the influence of the fluctua- 
considered a s  a function of the density of free elec- tion potential on the density of states of the surface 
trons in the surface region of the semiconductor. centers, on their occupancy considered a s  a function 

It is-assumed in Refs. 1 and 5-8 that the fluctuating 
charge is frozen-in (built in) and i t  i s  screened solely 
by free carr iers  in the metal and also in the semicon- 
ductor near the SI interface. This can be assumed 
only i f  these states a r e  separated by a large gap from 
the Fermi level. We shall consider the situation when 
the energies of the surface states a re  in the band gap 
of the semiconductor. Consequently, their charge 
state is governed by the position of the Fermi level and 
varies with the bending of the semiconductor bands. 
On the other hand, the existence of a charge on the Si 
interface results in smearing of the energies of the 
surface states and this in turn affects their charge. 

of the external voltage applied to an MIS structure, 
and on the capacitance of such a structure. 

2. POTENTIAL AT A SEMICONDUCTOR-INSULATOR 
INTERFACE 

We shall consider an MIS structure with a p-type 
semiconductor doped with shallow acceptors (concen- 
tration N,) and donor surface states distributed a t  ran- 
dom over the SI interface. We shall assume that the 
surface donor level is monoenergetic with an energy 
E,, concentration a, and wave function radius a. We 
shall confine our analysis to the light doping case when 
od << 1. 
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Under a sufficiently strong depletion voltage on an 
MIS structure (corresponding to a strong band bending 
on the semicondcutor surface) the donors a re  under the 
Fermi level and a r e  consequently neutral. The energy 
band scheme of an MIS structure i s  shown in Fig. 1. 
In this case the density of the donor states i s  a delta-like 
peak. Reduction in the band bending of the semicon- 
ductor results in the onset of the donor ionization and 
creates an inhomogeneous potential in the plane of the 
SI interface. The presence of this inhomogeneous po- 
tential smears the energies of the donor centers. The 
nature of smearing and, consequently, the density of 
the surface states a re  governed by the charged donor 
concentration a,, and the value of o+ itself depends on 
the number of states located above the Fermi level. 

The local value of the potential energy on the surface 
of a semiconductor at an arbitrary point r can be repre- 
sented by a sum of the energies created by the donor 
charge (concentration o,) on the SI interface, the charge 
on the metal (surface concentration o,), and space 
charge of the semiconductor. 

The appearance of the charge on the surface redis- 
tributes the charges in the metal and semiconductor. 
The screening by the bulk of the semiconductor is 
nonlinear. In the ME3 structure under consideration 
the semiconductor has a Schottky depletion layer of 
thickness L and a charge density p= -qN,. The 
screening in the semiconductor is due to a change in 
the thickness of this layer by AL. We can show that 
in the case of small thicknesses of the insulator d 

the change in the thickness of the Schottky layer due to 
the screening of the charge fluctuations is considerably 
less than the thickness itself1) (AL <<L). In this case 
we can assume there i s  a metal electrode at the boun- 
dary of the Schottky layer located at a depth L from the 
semiconductor surface. The screening in the semi- 
conductor i s  then linear and the potential can be re-  
garded as  a sum of the potentials due to the charges on 
the surface and of their image forces in the metal and 
semiconductor. 

The potential at an arbitrary point r on the semicon- 
ductor surface can be written in the form 

v ( r ) = ~ + Z v ( r - r , ) ,  (1) 
1 

where B is a potential created by the homogeneous 
part of the charge located in the metal and in the semi- 
conductor, and v(r - r,) is the potential of a charged 
donor located on the surface a t  a point r, when allow- 

FIG. 1. Energy band scheme of an ME3 structure subjected to 
an external voltage. 

ance i s  made for its image forces in the metal and 
semiconductor. 

We shall find expressions for v(r - r,) and the con- 
stant B. Point charges on the SI interface will be ex- 
panded into Fourier harmonics in the plane of this in- 
terface: o,= q/(2n)'. The potential created by a charge 
harmonic o,, subject to allowance for the boundary 
conditions, i s  

where &, and E, are  the permittivities of the insulator 
and semiconductor, respectively. Inverse Fourier 
transformation gives the potential created by the point 
charge: 

Jo(k l r - r f l )dk  
v ( r - r , )  = - - z q 2 J  

ei  cth kd+eS cth kL' 

where J,,(x) is a Bessel function of zeroth order. 

It follows from the definition of the average potential 

1 
Y ( r )  = lim - 5 V ( r )  dr, 

nRZ 

which will be denoted by V,, and also from Eqs. (1) and 
(3), that 

where Bl i s  found from the expression 

Jo(klr-r , l )dk 
B, = - lim- "3 r dr c T d q , j  

zR2 0 i-, 0 0 
e l  cth k d f ~ ,  c t l~  kL ' 

Here, cp, is the angle between the vectors r and r,, and 
the summation i s  carried out over all the charged cen- 
ters in a circle of radius R. Calculations showed that 
Eq. (4) gives 

The constant Bl is the average potential at  the SI in- 
terface created solely by the charged donors whose 
concentration is o+. In fact, i t  i s  the zeroth harmonic 
of the potential which can be found from Eq. (2) by al- 
lowing k to approach zero and assuming that a,, = o,. 

If zero potential i s  taken in the bulkof the semiconduc- 
tor, the value of Vs is given by the familiar expression 

We have thus determined completely the quantity B in 
Eqs. (1). 

3. SMALLSCALE POTENTIAL AND FERMl LEVEL 

The energy of an electron at a donor located at a 
point r i s  given by 

It has been pointed out earlier7n8 that the main cm-  
tribution to the dispersion of the fluctuation potential 
is made by small-scale fluctuations of size smaller 
than the average distance between the charge amount- 
ing to (no+)-"2. As the first approximation in the 
expression (1) for the potential at some point we shall 
include exactly the potential of the nearest charged cen- 
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t e r  located a t  a distance r from the point in question, 
and we shall average the potentials of all  the remaining 
charges over their positions on the surface. Later (Sec, 
6) we shall discuss the limits of validity of this approxi- 
mation. In the averaging process we have to allow for 
the correlation in the distribution of the charged donors. 
Since a s  a result of the above averaging the energy of a 
donor center is a regular and monotonic function of the 
distance r ,  i. e . ,  E(r) ,  we can introduce the concept 
of the Fermi radius r,, defined by 

where p is the position of the Fermi level in the bulk 
of the semiconductor. It follows from this definition 
that all the donors located a t  distances smaller than r, 
from the charged donor a re  neutral. 

Thus, in the calculation of the potential a t  a point lo- 
cated a t  a distance r from the nearest charged donor 
the averaging over all  the remaining charges should 
be made in the region outside a circle of radius r, 
centered a t  the point of position of the nearest charged 
donor. Consequently, the potential a t  a distance r 
from the nearest charged donor is 

where v(r) is given by Eq. (3) and V,(r, r,) is 
4nq10+d/el for nf lo+( f  

ve (r ,  rr) = { 4q20+rFE (r/rF) /e' for nbo+ 1 ' 
(10) 

Here, E(r/r,) is a complete elliptic integral of the 
second kind and &* = (t, + &,)/2. 

We shall consider the case when the thickness of the 
insulator is much less than the thickness of the 
Schottky layer (d << L). Then, the expression (3) for 
v(r) can be represented approximately in the form 

The energy position of a vacant donor E + can be found 
by averaging the potential of all the remaining charges 
over their positions bearing in mind that the charged 
donors can occur only outside a circle of radius r, 
centered a t  the point of location of the vacant donor. 
This gives 

and hence we find that vacant donors have the same 
energy and a re  located a t  A above the Fermi level, 
where 

We can thus see that there is a gap between the vacant 
and filled levels in the spectrum of the surface states 
and the density of the vacant donors i s  delta-like. The 
gap obtained is in fact associated with allowance for the 
correlation in the distribution of the charged centers. 

We shall now find the relationship between the charged 
donor concentration a+  and the Fermi radius r,. We 
shall assume that the donors in the plane of the SI inter- 
face obey the Poisson distribution, i-e., that the pro- 
bability of finding m donors in a circle of radius r is 
given by 

(n?o)" 
P,,,(r)=- exp (-nPo) . 

m! 

We shall divide the surface into circle of radii r,. The 
probability that a given circle r, contains m donors is 
given by Eq. (14). By definition of r,, out of the m 
donors in a circle of radius r,, only one is charged and 
the other m - 1 a r e  neutral. Then, the average neutral 
donor concentration a,, equal to a -a+, can be found 
from 

and hence we obtain 

In fact, Eq. (15) shows that in a circle of radius r, 
there can be only one charge donor on condition that 
this circle contains a t  least one donor. 

We shall find the dependence of the surface-state 
occupancy on the depending of the semiconductor bands. 
The system (8), (15) defines implicitly the self-con- 
sistent dependence o+(V,). We shall rewrite Eq. (8) 
subject to Eqs. (7) and (9) in the following form 

where E, represents the separation of the unperturbed 
donor level from the Fermi level: 

VJe shall solve the system (15), (16) by expressing r, 
in terms of a,. This is easily done in the case of low 
and high concentrations of the charged donors. It fol- 
lows from Eq. (15) that 

(no+)-'"(I- ' / ,  e x p ( - d o + ) )  for o + a o  
rr = { 

(no)  -" [2  ( i -o+/o)  1 %  for o-o+ao 
(18) 

Substituting r, (a+) from Eq. (18) into Eq. (16), we ob- 
tain the explicit relationship between E, and a,: 

4nq20+d 1 el 
E p  = --- ( 1 ----(no+)" d ) for ndzo+a I, o + a o ;  

E l  2 E 

for n d ' o , ~ ,  o+<o; (19) 

- 'b 

E = - ( n o ) '  2 ( 1 -  for ndzo+>l, o-0.43. 
C 

The general form of the function o+(E,), described by 
Eqs. (15) and (l6), i s  shown in Fig. 2 (curve 1). For 
comparison, this figure includes the dependence 
a+(E,) for a monoenergetic level without allowance for 

FIG. 2. Dependences of 6 ,  on the Fermi level position in 
the case of a monoenergetic donor center on the surface: 
1) calculated allowing for the Coulomb interaction between 
the centers; 2) calculated ignoring the Coulomb interaction. 
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the Coulomb interaction (line 2 ) .  We can see  from Fig. 
2  that the dependence a+(E,) is multivalued in respect 
of E,  and, consequently, in respect of V,. We shall 
now demonstrate the consequences of this dependence. 

4. SMALLSCALE DENSITY OF STATES 

We shall calculate the density of states N,(E) for a 
fixed bending of the semiconductor bands V, and a cor- 
responding fixed value of E,. We shall find the density 
of states below the Fermi level. We shall do this by 
calculating the concentration of neutral donors N ( r )  
which a re  located a t  distances smaller than r (r ~ r , )  
from the nearest charged donor. 

We shall divide the SI interface into circles of radii 
r , .  By definition of r,,  each of these circles contains 
one charged donor if the circle does contain a t  least one 
donor. We shall consider circles containing m donors. 
The probability of finding such circles is given by Eq. 
(14)  and is P,(r,). Each of these circles can be di- 
vided into circles of radius r smaller than r,.  The 
probability that out of m donors located in a circle of 
radius r, there a r e  n  donors (n Qm) in a circle of 
radius r is 

The probability that among these n donors there is a 
charged one is equal to the ratio n / m .  The product of 
these probabilities governs the probability that n  - 1  
donors a re  located a t  distances smaller than r from the 
charged donor: 

In order to determine the concentration of neutral 
donors, we have to sum the probability (21)  with a 
weighting factor n - 1  over n  and m, and multiply the 
result by the density of small circles l / n r 2 .  This gives 

Summation over n  and m and application of Eq. ( 1 5 )  
shows that 

N (r )  = (o-o+) ~lr , ' .  (23)  

The density of neutral states is given by 

Using Eqs. ( 7 ) ,  ( l l ) ,  and (23) ,  we find from Eq. (24)  
that in the case of low concentrations of charged donors 
(nd2u+ << 1) this density is 

In the case of high concentrations of charged donors 
(nd 'a+ >> 1)  the density of the states below the Fermi 
level is 

N ,  (E)  = --- 

I t  follows that the approximation of the potential of 
the nearest charged centers predicts a monotonic fall 
of the density of neutral donor states below the Fermi 
level, whereas vacant donors have the same energy and 
a r e  separated from the neutral donors by a gap A. 

The energy distribution of the vacant states is due to 
fluctuations of the distances between the charged cen- 
ters.  This has to be allowed for when the fluctuation 
potential is considered in the approximation of two 
charged centers. The potential of charged centers can 
be determined by drawing a circle of radius R  around 
a pair of the nearest charged donors located syrnmetri- 
cally. The radius of this circle is found from the 
requirement of electrical neutrality of the system: 
R = ( 2 / n ~ + ) " ~ .  The potential due to the charge inside 
the circle is allowed for  exactly and the potentials of 
a l l  the other charges outside the circle R a r e  averaged 
over their positions. 

We shall consider the case nd2a+>> 1. According to  
Eq. ( l l ) ,  this inequality allows us to write down the 
energy of the charged donors E + ( r )  separated by a dis- 
tance r and we can do this in a unified form which ap- 
plies to low and high concentrations a ,  ( a ,  <<a and a  - a+ 
<< a )  : 

Here, E ( r / 2 R )  is a complete elliptic integral of the 
second kind. The third term in Eq. ( 2 7 )  gives the po- 
tential a t  a distance r / 2  from the center of a negatively 
charged disk of radius R  with a homogeneous charge 
density -90,. The last  terni in Eq. ( 2 7 )  represents the 
Coulomb interaction between two charged donors sepa- 
rated by a distance r .  

The expression (27)  has a maximum a t  a point 
r, ( r , < R ) .  Thus, E+(r,)  is the maximum energy of 
charged donors in the two-center approximation (Fig 
31. 

We shall find r, and E,(r,,) by introducing a variable 
x = (r /2R)' ,  when the equation describing the maximum 
of d E  + ( r ) / d r  = 0 reduces to 

A numerical solution of this equation gives x = x, 
= sin236.68 O. Consequently, we obtain 

In the two-center approximation the value of V, differs 

FIG. 3. Potential of charged donors plotted as  a function of the 
distance between donors in the two-center approximation. 
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slightly from the value V, ( r  = 0, rF) obtained earlier in 
the one center approximation [see Eq. ( l o ) ]  and it  is 

It follows from the nature of the potential (27) that 
from the energy point of view of the two charged cen- 
ters  are  most likely to be separated by a distance ro 
and have the energy E , (yo).  A vacant donor may have 
an energy E  smaller than E+(ro)  if in a ring bounded 
by circles of radii r,  and r,(r, < r , )  there is not even one 
donor. Here, r, and r, a r e  given by the equation 
E , ( r ) = E  (Fig. 3 ) .  Thus, the concentration of charged 
donors with energies in the interval from E  to E + dE is 
given by the-product of the probability of the appearance 
of a donor at a distance from Y ,  to r, + d r ,  and from 
Y ,  to Y ,  + dr , ,  multiplied by the probability of the ab- 
sence of a donor in a ring of radii r, and r , .  

Consequently, the following expression is obtained for 
the density of states of charged donors 

which can be conveniently transformed to 
( 3 1 )  

The explicit dependences of r, and r, on E can be ob- 
tained by expanding E + ( r )  near i t s  maximum value 
reached a t  the point yo: 

Calculations give the following density of states of 
charged donors 

where 

We can see from Eq. ( 3 4 )  that in the case of small 
o+(o+ <<a)  the dispersion of the potential of vacant donors 
is small compared with the gap between the vacant and 
filled donors. Hence, charged donors a r e  located a t  
practically the same distances close to ro and the gap 
between the vacant and occupied donors is filled to a 
degree which is exponentially small (Fig. 4 a ) .  

In the range of high values of o , ( o -  o+ <<o)  the smear- 
ing of the density of states of vacant donors increases 

FIG. 4. Surface state density: a) low concentration of 
charged donors (a+ccu); b) high concentration of charged 
centers (a- U+C u). 

in accordance with Eq. ( 3 4 )  and YF then becomes much 
smaller than ro [see Eq. ( 1 8 ) ] .  Then, the expression 
for E + ( r )  when r << ro can be represented approximately 
in the form 

Using Eqs. ( 3 2 )  and ( 3 5 ) ,  we find that in the range of 
high o ,  the expression fo r  the density of charged states 
near the Fermi level is 

Thus, in the range of high o+ the characteristic energy 
of the density smearing is,  according to Eq. (36 ) ,  
1 v(r,) 1, i.e., i t  is of the order of the gap s o  that the 
gap between the vacant and filled states disappears (Fig. 
4 b ) .  

5. LARGESCALE FLUCTUATIONS OF THE 
POTENTIAL 

In the preceding section we have allowed for the ex- 
istence of a small-scale inhomogeneous potential as-  
sociated with the discrete nature of the charges and 
with the fluctuations of the distance between the nearest 
charges. We shall now find a large-scale fluctuation 
potential which is due to fluctuations of the charge den- 
sity AD+ over distances much greater than the average 
separation between charged centers. 

Fluctuations of the large-scale potential 7 with a 
certain scaling length R depend on fluctuations of the 
charge concentration on the surface Ao, and these 
fluctuations a r e  a function of deviation of the total donor 
concentrations from the average value Ao and, more- 
over, of the potential 3 itself. Therefore, the problem 
of the large-scale fluctuation potential should be solved 
in a self-consistent manner. 

The relationship between the large-scale fluctuation 
potential and Aa can be found by solving the Poisson 
equation in the fluctuation range together with the equa- 
tions of states ( 1 5 )  and ( 1 6 )  obtained by considering 
small-scale fluctuations and describing the relationship 
between AD,, Ao,  and ?. 

The solution of the Poisson equation for 7 inside a 
fluctuation obtained on the assumption of a homogeneous 
distribution of the surface charge in the fluctuation re- 
gion is 

-4nq2Ao+d/e, for R*d 
-4q2Ao+RE ( ~ / R ) / E '  for R 9 d  ' 

( 3 7 )  

Since E ( r / R )  is a smooth function varying from n/2 to 1  
a s r / R  varies from0 to 1, we shall solve simultaneously 
Eqs. (15), ( 1 6 ) ,  and ( 3 7 )  ignoring the coordinate depen- 
dence of the potential in the fluctuation region and we 
shall assume that the potential of this region i s  equal 
to the potential a t  the center af the fluctuation. 

The equation defining the local Fermi radius in a 
large-scale fluctuation with a deviation of the potential 
from the average P is 

91 9 Sov. Phys. JETP 52(5), Nov. 1980 E. V.  hens ski rand Yu. Ya. Tkach 919 



The system of equations (15), (357, and (38) defines the 
dependences of Ao, and f on ha. These dependences 
can be obtained explicitly in the two limiting cases: 
o+ <<o and a -  o+ <<a. 

If the concentration of charged donors is low (nd20, 
<< I) ,  we obtain the following relationships from the 
above equations: 

The Poisson distribution of donors for large fluctua- 
tion radii (nR20 >> 1) reduces to the Gaussian distribu- 
tion for Ao, which can be used to calculate readily the 
dispersion of the large-scale potential y + (P) l f2 :  

It follows from this expression that in the case of low 
concentrations of charged donors the dispersion of the 
large-scale fluctuation potential is exponentially small. 
It follows that in the case of small values of o+ the 
small-scale density is practically unsmeared by the 
large-scale fluctuation potential. In particular, the 
gap between the vacant and filled states is still retained. 

If the donor concentration is high, o - o, << o, similar 
calculations show that 

2nq2 
Aa+=Ao, V = - -  qa RAo, 7=2- (no)". 

E .  e' 

It is clear from these expressions that in the case of 
high a+ the dispersion due to the large-scale potential 
is much less than the dispersion of the small-scale po- 
tential which, according to Eq. (36), i s  I v(r,) l .  

We can thus say that for any relationship between a +  
ando, we can ignore the large scale fluctuation potential 
compared with the small-scale potential. 

6. WIGNER CRYSTALLIZATION AND ELEMENTARY 
EXCITATIONS 

We shall consider the problem of the Wigner crystal- 
lization of charged donors at the SI interface. We have 
shown that in the case of low concentrations of charged 
donors (o, <<a) the magnitudes of the small- and large- 
scale fluctuation potentials acting on vacant donors a r e  
exponentially small compared with the Coulomb inter- 
action between the nearest charged centers [see Eqs. 
(34) and (40)]. This means that the distance between 
charged donors hardly fluctuates in the range of low 
values of o,. This is to be expected on physical 
grounds because the number of possible locations of 
a charged donor increases on reduction inu+ . Then, the 
Coulomb repulsion ensures that charged donors a re  
located a t  places favored by the energy considerations, 
forming a crystal structure a t  the SI interface (Wigner 
crystal). 

In the case of a periodic distribution of charged do- 
nors we can readily calculate the gap between the va- 
cant and filled states; this can be done on a computer 
specifying the type of the lattice of charged donors. 
In particular, for a triangular grating allowing for the 

interaction with 1.6X lo5 nearest charged donors, we 
find that the gap A is 

This gap agrees with the value obtained by us earlier 
[see Eq. (13)]. It follows that the approximation of the 
nearest  charged center describes well the potential. 
The corrections to the potential appear because of fluc- 
tuations in the positions of charged donors. Returning 
to the results of a calculation of the density of states 
of vacant donors (34) and of the dispersion of the large- 
scale potential (40), we find that the small parameter 
occurring in the corrections to the potential which al- 
lows for  the interaction only with the nearest charged 
center is exp(-u/o+). This parameter is much smaller 
than unity in the range of low concentrations o+. How- 
ever, even in the case of high concentrations a,, the 
approximation of the nearest  charged center is valid 
in the case of high energies (near the Fermi level). At 
these energies the distance between donors should be 
of the order of r,. Then, the deviation from the poten- 
tial obtained in the approximation of the nearest 
charged center occurs if there is an additional charged 
donor a t  a distance of the order of r,. The ratio of the 
probabilities of finding three o r  two donors in a circle 
of radius r, represents that correction to the density 
near the Fermi level which appears a s  a result of al- 
lowance for  the presence of two charged donors. This 
ratio is nrF20= 1 - o+/u. 

A somewhat more "stringentv parameter (1 - u+/u)'/~ 
appears in the range of high concentrations o, if we 
compare the small-scale potential a t  the Fermi level 
v(r,) and the dispersion of the large-scale potential 
(41). Thus, throughout the range of variation of o+ we 
can derive a small parameter p which can be used in 
the calculation of the potential in the approximation of 
the nearest charged center: 

It should be pointed out that the energy gap between 
the vacant and filled states is essentially a Coulomb 
gap. The "rigidityv of this gap in the range of small 
values of o+ is due to the fact that we have considered 
monoenergetic donor centers. The appearance of a 
rigid gap in this situation was pointed out by Barano- 
vskii et al. l2 In the range of high values of a +  the ab- 
sence of correlation in the donor distribution destroys 
the gap. The density-of-states gap can be observed 
only by tunnel spectroscopy methods. l3 The gap between 
the vacant and filled centers gives r ise  to an additional 
voltage drop when electrons tunnel away from the surface 
and back to the surface. 

We shall now consider the problem of elementary 
excitations under the Wigner crystallization conditions 
(o, <<a). According to the classification in Ref. 12, we 
have to distinguish dipole and charged excitations as- 
sociated with an electron transition from a filled state to 
a vacant center (pair excitations). By definition, an ex- 
citation with a jump of length r < r o  is of the dipole type, 
whereas an excitation with r >ro is charged. Here, r, 
denotes a characteristic length equal to q2&A (A is the 
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width of the Coulomb gap). According to Eq. (13), in 
the case of the system considered here the length in 
question is identical with the Fermi radius, i. e. ,  with 
the Wigner cell size, thus transitions within a cell a r e  
of the dipole type, whereas transitions between cells a r e  
charged. 

We shall now calculate the energy of elementary ex- 
citations. We shall assume that there is a Wigner 
lattice and the lattice si te coordinates a r e  r,. The 
random distribution of donors on the surface causes 
real  positions of the charged donors to fluctuate weakly 
relative to the lattice sites. A deviation of the posi- 
tion of a charged donor from the lattice si te within the 
n-th cell will be denoted by r,,. The energy position 
of such a charged donor is given by 

where V,(r,,, r,) is given by Eq. (10). The energy of a 
neutral donor located in the m-th cell a t  a point r,, is 

where r,, is the position of a charged donor in this cell. 
The work w needed to transfer an electron from a filled 
site at r,, to an empty site at r,, is 

where r, = r, - r,. Hence, we can see  that the ener- 
gies of dipole and charged excitations a re  given by ex- 
pressions which have different structures. In the case 
of dipole excitations the values of m and n are  equal and 
the last two terms in Eq. (46) balance out. Consequently 
the energy of a dipole excitation i s  given by 

w - v c ( r i ~ ,  r,) -Vc(rz,,, r,),  (47) 

The maximum energy of dipole excitations w, is iden- 
tical with the minimum energy of charged excitations 
and 

om=A+v (r,) ==Vl (r-0, r,) -Vc (rC, r,).  

It follows from Eq. (47) that the presence of a gap in the 
density of states does not give rise to a gap in the energy 
of elementary excitations, since in the limit r,, - r,, 
we have w - 0. 

In the case of transitions between cells an increase 
in the distance between the cells causes the minimum 
excitation energy to approach A. Thus, the Coulomb 
gap appears only for transitions of large distances. 
In fact, i t  follows from Eq. (46) that transitions of en- 
ergy lower than A occur in a bounded part  of space, 
which i s  in agreement with the principle of compactness 
discussed in Ref. 12. 

We shall find the density of states of excitations a(@).  
According to Ref. 12, we can do this by calculating the 
probability that in an interval dr,, there is a charged 
donor, whereas in the interval dr,, there i s  an empty 
donor, and the energy required for this transition i s  w. 
This probability is 

2nr,.o exp (-nr,.'o) dr,, .2nr,.odr,* .6 (VV (r,,, r,) -V. (r,., r,) -o) . 
Multiplying this probability by the number of cells 
(u,) and integrating with respect to r,, and r,,, we ob- 

tain the required density of states of excitations: 

I t  should be noted that this density of states of exci- 
tations is identical with the density of states a t  the Fer- 
mi level given by Eq. (26). I t  is clear from Eq. (48) 
that the density of excitations remains constant in the 
range of small values of w .  It i s  then easily demon- 
strated that the low-temperature specific heat i s  pro- 
portional to temperature. We shall now make some 
comments on the low-temperature hopping conduction 
under the Wigner crystallization conditions, Naturally 
such long-range conduction may occur because of ex- 
citations. However, this process is unlikely because 
the minimum activation energy is of the order of A and 
the overlap of the wave functions is exponentially small. 
I t  is more probable that charge is transferred because 
of electron transitions from the nearest filled to a va- 
cant donor, and such dipole excitations create a poten- 
tial gradient in neighboring cells which facilitates ac- 
tivation-free transitions of electrons in these cells. 
We can thus say that the low-temperature hopping con- 
duction i s  due to dipole excitations undergoing a relay 
type of transport: a transition within one cell facili- 
tates electron transitions in neighboring cells, i. e . ,  
motion of the crystal a s  a whole is expected. 

The average activation energy w for this mechanism 
can be determined by assuming that transitions occur 
on the average over distances 

The applications of an electric field reduces the activa- 
tion energy of conduction: 

It follows from this relationship that in electric fields 
F 3 A U + / ~ U ~ / ~  we can expect activation-free hopping 
conduction. " 
7. DEPENDENCE OF THE CAPACITANCE OF AN MIS 
STRUCTURE ON THE EXTERNAL VOLTAGE 

We shall consider the effects resulting from the de- 
pendence o+(E,) (Fig. 2). We shall do this by calculat- 
ing the change in the total capacitance C of an MIS 
structure on the external voltage V,. The low-fre- 
quency capacitance of an MIS structure measured 
using a small alternating signal is given by 

We shall find this dependence by writing down the sys- 
tem of equations describing the distribution of the ex- 
ternal voltage between the insulator and the semicon- 

FIG. 5. Effective density of surface states. 
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FIG. 6. Dependences a+ (V, ), Va (V, ), and C(Vg ) for the case 
monoenergetic donor centers on the surface and subject to 
allowance for the Coulomb interaction between such centers 
(curve 1) and without allowance for the interaction (curve 2). 

ductor, and the continuity of electrostatic induction at 
the interface: 

Vg=Fid-V.lq, (50) 
4nqo,,,=eiFi=e,Fs-4nqa+, (51) 

where F i  and F,, are  the average electric fields in the 
insulator and semiconductor measured a t  the SI inter- 
face. The electric field on the semiconductor surface 
with a depletion Schottky layer can be expressed in 
terms of the surface potential 

Equations (50)-(52) supplemented by the dependence 
o,(Vs) from Eqs. (15) and (16) give the dependence of 
the capacitance of an MIS structure on the external 
voltage. Differentiating Eq. (51) with respect to V,, 
we find that subject to Eq. (52) the capacitance is given 
by 

Equation (50) together with Eqs. (51) and (52) can be 
transformed to 

Differentiating the above expressions with respect to 
V, and o,, we find 

The right-hand sides of these relationships include a 
quantity do J ~ E ,  which, like C(Vg), is an observable 
quantity representing the effective density of states a t  
the SI interface N,*, (Ref. 14): 

N..'=da+/dV.=-da+/d&. (57) 

Using Eqs. (8) and (17) or  the approximate expression 
(21), we can obtain NZ(E,). This dependence is shown 

qualitatively in Fig. 5. The dependence is multivalued 
in respect of E,, i. e . ,  with respect to  Va, but is single 
valued with respect to V,. 

Substituting N,*,(E,) in Eq. (53) subject to allowance 
for Eqs. (55) and (56), we obtain the capacitance of an 
MIS structure which is conveniently expressed in terms 
of 0,: 

for n#o+el,  o+aa; 

C-C, (1 + 8e' (no,)'" Ef  d ) for nd20+ B I. a+ < a; (58) 

, [2n(~t--a+)~]'" for ndao+ B I, 0-0, a a. 

The qualitative form of the dependences o+(V,), Va(V,), 
and C(V,), obtained above is shown in Fig. 6. At low 
values of o +  the capacitance of an MIS structure becomes 
greater than C, and, in the limit a+- 0, we have C - * 
(Fig. 6c). 

The main features of the above model approach most 
closely the experimental results of Harstein and Fow- 
ler,15 who investigated an MIS structure based on sili- 
con and with sodium ions (monoenergetic donor centers) 
on the semiconductor surface. They observed a non- 
monotonic dependence of the conductivity along the su r -  
face of a semiconductor a s  a function of V,, which can 
be matched to our nonrnonotonic dependence Va(V,). 

The authors a re  deeply grateful to V. B. ~andomirskir  
fo r  his continuous interest, and also to R. A. Suris and 
V.A. Gergel' for their critical comments. 

')We have derived this inequality using'the fact that the 
main contribution to the dispersion of the fluctuation 
potential is made by small-scale fluctuations so that an 
estimated value of AL is the change in the Schottky layer 
thickness on appearance of a unit point charge on the semi- 
conductor surface. 
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