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A tensor nonlocal relation is derived between the mass (heat) flux and the gradient of the average density 
(temperature) for a turbulently flowing liquid. The laws governing the turbulent mass transport in a diffuse 
boundary layer near a flat solid boundary are investigated, including the section where the layer thickness is 
constant. Is is shown that at the start of the inlet section there is a region where the connection between the 
turbulent diffuse flow and gradient of the average density is essentially nonlocal. In the remaining part of the 
inlet section and in the region of the stabilized diffuse layer it is possible to obtain approximately a local 
relation between these quantities. The contribution made to the average diffusion flux on the surface by the 
hydrodynamic turbulent pulsations first decreases with increasing longitudinal coordinate, and then begins to 
increase. Longitudinal turbulent transport predominates up to the minimum point, and normal transport 
beyond this point. In the stabilized region, the turbulent diffusion coefficient takes on different functional 
fonns at different distances from the surface. 

PACS numbers: 47.25. - c, 47.25.Fj, 47.25.Jn. 47.10. + g 

1. INTRODUCTION 

In view of the wide prevalence of turbulent flows, the 
questions of heat and mass transport in turbulent 
streams attract much attention. From the theoretical 
point of view, the principal problem is the closing of 
the averaged transport equations: the density J,,, of 
the turbulent flux of matter o r  of heat must be connect- 
ed with the distribution of the average density of the 
matter o r  the average temperature T. As a rule, a lo- 
cal relation is assumed to exist between J,,,, and the 
gradient of the average density o r  temperaturei": 

Jturb--Dturbvz 0) 
(to be specific, we discuss below the mass-transport 
problem). 

The phenomenologically introduced turbulent-diffusion 
coefficient D,,, depends on the spatial coordinates, 
particularly on the distance to the solid surfaces. In 
some papers,9 several phenomenol~gical quantities a r e  
introduced in the form of a tensor D,,, that generalizes 
relation (1). To find the coefficient (or tensor) D,,,, i t  
is customary to use the Reynolds analogy between D,,, 
and the turbulent viscosity coefficient v,,,:"~ 

Dturb(r)-vturb(z). (2 

For  the last quantity, a power-law variation is usually 

postulated near the boundaries of solids: 

vturbabla I (3 ) 

where a value 3 or  4 is assumed for the exponent k. 

2. AVERAGED MASS-TRANSPORT EQUATIONS 

The purpose of the present paper is to derive a rela- 
tion between J,,, and VF on the basis of the initial 
(non-averaged) equation of convective diffusion in in- 
compressible liquidsi": 

Here v(r, t) is the instantaneous distribution of the ve- 
locities of the liquid, D is the molecular-diffusion co- 
efficient, and c(r, t) is the field of the impurity densi- 
ties. The latter is assumed to be too small to influence 
the hydrodynamic characteristics of the flow. 

We resolve the velocity of the liquid and the density 
into averaged and pulsating components 

~ ( r ,  t ) = ~ ( r ,  t)+vl(r,  t ) ,  ~ ( r ,  t)=F(r, t)+cl(r,  t) ,  
u(r, t),=<v(r, t ) > ,  F(r, t)=(c(r, t ) ) .  (5 ) 

Here and elsewhere, the brackets (. . .) denote averag- 
ing, while the prime denotes pulsating quantities. 
Averaging of (4) leads to the fundamental equation of 
convective diffusion in turbulent flow: 
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Equation (6) is not closed, since the paired correla- 
tor of the pulsations of the density and of the velocity 

(the density of the turbulent diffusion flow) is not ex- 
pressed in terms of the profile of the average density 
F(r, t). 

3. CONNECTION BETWEEN THE TURBULENT FLUX 
OF MATTER AND THE GRADIENT OF THE AVERAGE 
DENSITY 

Using the equation for the density pulsations 

we obtain an equation for the mixed paired correlator of 
the pulsations of the density and velocity a t  different 
space- time points: 

L ( c f ( r ,  t ) v ; ( r r ,  t l ) ) = - V j C ( r t ,  t'; r, t) ,VCC(r,  t )  
- v , < c r ( r ,  t )  vj '(rl ,  tf)v,'(r, t ) ) .  (9 

Here and below we use the velocity-pulsation correla- 
tors 

v,~.  . ,n(rl ,  t , ;  . . . ; *", t m )  =<v,,'(r,, t , )  . . . v i / ( r n ,  L )  ). (10) 

The boundary conditions for Eq. (9) follow from the 
weakening of the correlations as It - tt I -- or  I r - rt I - m, and also from the conditions for the density. If, 
e. g., the density is given on the boundary B, then 

Equation (9) is not closed, since i t  contains a third- 
order correlator. However, in the investigation of 
mass transport near a solid surface, this term can be 
neglected in first-order approximation. The primary 
reason is that inside the viscous sublayer the correla- 
tors V, and consequently also the mixed correlators, 
decrease in power-law fashion [see formulas (25)- (28) 
below]. In addition, even on the outer boundary of the 
viscous sublayer the higher correlators a re  small rela- 
tive to the parameter 

which amounts to 0.03-0.05. 

If we neglect the third-order correlator in (9), we ob- 
tain for the turbulent mass flux the formula 

where the "density of the coefficient of turbulent diffu- 
sion" is equal to 

~ ! : : ~ ( r , ,  t , ;  r ~ ,  t0)=G(r t ,  t i;  TO, t o )  Vi,zo(r,,  t , ;  rot t o ) .  (14) 
A 

Here G is the Green's function of the operator L (8) 
with boundary conditions of the type (11). 

To take into account the contribution made to J,,, by 
the third-order correlators, i t  is necessary to solve an 
equation similar to (9) for mixed third-order correla- 
tors. As a result 

A - - A ( ~ ) + A ~ ' + .  . . , (15) 

where A''' is defined by (14) and 

I t  follows from (15) that the connection between the 
turbulent diffusion flux J,,, and the gradient of the 
average density VF is in the general case nonlocal both 
with respect to the spatial and with respect to the tem- 
poral variables: J,,,(r, t) is determined not only by the 
value of VF at  the same space-time point (r, t), but also 
by the form of VF at  preceding instants of time tt in a 
certain region surrounding the point r. The size of the 
(t, r )  region where the effect of the form of VF on J,,, 
is substantial is connected with the characteristic 
scales of the hydrodynamic correlators Vh... and of 
the Green's function G. Therefore, in the general 
case, the hypothesis that a local connection exists be- 
tween J,,, and VF, i. e., 

does not hold. 

Relation (17) is approximately valid only in those re- 
gions where vF(r, t) varies with respect to all the vari- 
ables more slowly than the density of the coefficient of 
turbulent diffusion AU(r, t;rt, t'). In this case 

D.,(*, t )  = 5 At j (r ,  t ;  * I ,  t , ) d f f  dt' 

The quantities A,, and DU have tensor properties, s o  
that in the general case the scalar relation (1) cannot 
be used even if (17) is satisfied. 

Expression (15) is a ser ies  in terms of hydrodynamic 
correlators of increasing order Vli... It will be used 
below to study the heat and mass transport in a viscous 
sublayer near a solid surface. It will be shown that the 
ser ies  (15) converges rapidly: in the most important 
region-within the confines of the diffuse boundary lay- 
er-the second term of the ser ies  is smaller than the 
f i rs t  by more than one order of magnitude. 

In the customarily used semi-empirical o r  pheno- 
menological theories of mass and heat transport i t  is 
assumed that the turbulent diffusion coefficient in (1) o r  
(17) is determined solely by hydrodynamic characteris- 
tics, and does not depend on the coefficient of molecular 
diffusion D. The cause for this point of view is that the 
turbulent transport is effected by velocity pulsations v' 
of the liquid. However, besides the fact that the ensu- 
ing density pulsations c' a r e  carried mechanically by 
the liquid, fluctuating molecular diffusion fluxes DVc' 
a r e  also produced, and in the general case they alter 
the field cf(r ,  t), and consequently influence the turbu- 
lent transport. In accord with this point of view, the 
density of the coefficient of turbulent diffusion A ,, in 
the exact formula (13), a s  well a s  the tensor of the tur- 
bulent diffusion in the approximate formula (171, de- 
pends not only on the hydrodynamic characteristics of 
the flow, mainly the average velocity of the liquid u(r, t) 
and the velocity-pulsation correlators Vli... , , but also 
on the coefficient of molecular diffusion D. fn the 
treatment of mass transport near a solid surface i t  will 
be shown below that the turbulent-diffusion coefficient 
depends substantially on D. 

Relation (13) enables u s  to close Eq. (6) for the aver- 
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age density F(r, t): 

ar /a t+us i=DAa+v ,  j J A,,(r, t ;  r f ,  t t )  V, i (r1 ,  t , ) d r f  d t f .  (19) 
-- 

In regions where the approximate local relation (17) is 
valid, Eq. (19) becomes differential: 

where the tensor coefficient of turbulent diffusion DU is 
determined by (18). 

4. MASS TRANSPORT NEAR A SOLID BOUNDARY 
AT LARGE PRANDTL NUMBERS 

In many cases, the thermal o r  diffusion molecular 
Prandtl numbers for liquids a r e  quite large: P r  >> 1. 
In this case the main resistance to heat o r  mass trans- 
port is concentrated in the interior of the viscous sub- 
layer. In this region, the hydrodynamic characteris- 
tics decrease monotonically with decreasing distance y 
to the plane solid surface. We investigate below the 
rules of mass transport for a one-dimensional station- 
ary  process, when the average quantities u =u( y)i and 
F=l'(y) depend only on y, while the paired correlators 
and other two-point characteristics depend on y, y' and 
X-x', Z-z',  t-t', etc. 

In the considered case, the Green's function G satis- 
fies the equation 

a a a2 a2  
[ B + u ( ~ ) z - ~  G ( y ,  y ' , z -z ' , z -z ' , t - t ' )  

= 6 (r-r') 6 ( t - t ' ) ,  (13') 

with the conditions G - -  0 a s  y -- 0, y - -, lx I--m, lz I 
+ 03, and It I -  -. At small  values of the molecular- 
diffusion coefficient D, the function G has far  from the 
boundary a symmetrical narrow maximum at  x =xt 
+u(y)(t- t'), y =yl, z =zl ,  with a width (~t )" ' .  For  
the characteristic times T,,,, , within which the hydro- 
dynamic correlators change a s  functions of t - t', this 
width (DT,,,, )"' is much lessi0*" than the characteris- 
tic scales of variation of these quantities in 
x - x'(L,,,, &))and z - z'(L,,,, '"). Therefore in all  the 
products of G and V in (14) and (16) we can make in the 
arguments of the correlators the replacements x, -xt 
- u(~ ' ) ( t '  - t,) and z, - z', so  that al l  the integrals with 
respect to x and z ,  in (13), (15), and (16) can be calcu- 
lated. 

At not too small distances from the boundary (y 
>> (DT,,,)"~) we can analogously calculate the integrals 
with respect to y,, taking the correlators and vF(y) 
outside the integral sign a t  y , = y'. Then the following 
relation is approximately valid 

2'-2, y', 2'-z, Oldt' d t  . I..-. 
The correlators of the velocity pulsations in (20) a r e  

determined by (10). 

Expression (20) for the turbulent flux shows that even 
in the given region, where the connection between J,,, 
and vF(y) does not depend on the coefficient of molecu- 
l a r  diffusion D and has a "local" character, the value of 
J,,, is determined not only by v;, but also by the high- 
er-order derivatives d"F/dyn. However, estimates of 
the second term in  (20) on the basis of the experimental 
data for T,,,, , L%!r, ~g! , ,  and the correlators V show 
that within the entire viscous sublayer i t  is many times 
smaller than the f i rs t  term. If we confine ourselves to 
this term only, then a t  y >> (DT,,,,)"~ we obtain relation 
(I), where the turbulent-diffusion coefficient is 

Thus, the behavior of D,,,, is determined by the form of 
the paired correlator of the normal components of the 
pulsation velocity v i  in different space-time points. 

Further simplification can be obtained in the interior 
of the viscous sublayer, where the change of the corre- 
lator Vyy on account of the argument u(y)t is small 
compared with the influence of the argument t [owing to 
the decrease of the average velocity u(y)]. Therefore, 
in this region 

- 
Dturb(v) = (vu1 ( r ,  t ) v y l  ( r ,  0) ) dt, (22) 

0 

in agreement with earl ier   result^,'^-'^ and also with 
qualitative estimates. 

We investigate now the connection between J,u,(y) 
and &/dy inside the region y 2 (DT,,,, 1" '. At large 
Prandtl numbers, this region l ies in the interior of the 
viscous sublayer. Estimates similar to those consid- 
ered above make i t  possible to calculate the integrals 
with respect to the variables x i  and z ,  in (13) and (16). 
The contribution of the higher correlators V turns out 
to be negligibly small. As a result - - 

~ E ( Y ' )  
JtU,b(y) = - J J G ( Y ,  Y ' ;  t )  V,,(O, Y ,  0, t ;  0 ,  Y', 0,O)---dy' dt. (23) 

0 0 
dY 

This formula is valid both for y s (DT,,,,)" * and in a 
certain region y >> (DT,,,,)" '; in particular, i t  can be 
used to obtain again relation (22). 

Using (22) to estimate D,,,(y) at y- (DT,,,,)"~, we 
can show that in the entire region y 2 (DT,,,,)~' ' the co- 
efficient D >> DD,,(y),  i. e. , the molecular transport 
predominates. We can therefore replace dF(yt)/dy' in 
(23) by dZ(y)/dy: 

For small  y (y << (DTco,,)"2) the Green's function 
takes the form 

Thus, near a solid surface the turbulent-diffusion co- 
efficient in (24) depends substantially on D. 
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Inside the viscous s. blayer we can use for qualitative 
estimates an expansion of the correlator V, in powers 
of y and y': 

5 ( A )  A=du (0) ldy, (27) 

where L, is the thickness of the viscous sublayer, n 3 2, 
m 2 2 ,  a n d N a 4 .  

Using similar expansions for the velocity-pulsation 
correlators V, we can show that inside the viscous sub- 
layer 

~ ~ ~ t , ( ~ ) a ~ ~ [ i + a ~ ~ + a ~  ( - . . . i f .  y W(DTcon)"'. (28) 
Lb 

I t  follows from (28) that owing to the damping of the 
turbulent pulsations inside the viscous sublayer, the 
series (15) converges rapidly a t  y << Lb. Therefore at 
P r  >> 1 we can definitely confine ourselves to the f i rs t  
term of this expansion [see formulas (21)- (24)]. We 
note that a t  small y the ratio of the terms of this ser ies  
no longer depends on y, this being due to the nonlocal- 
ity of the connection of D,,, and Vyy in (24). Estimates 
of the numerical values of the coefficients in (28) and 
(29) show that a1 << 1 and bi << 1 [mainly because of the 
smallness of the normal component of the pulsations of 
the velocity v', compared with u(y) a t  y s L,]. There- 
fore the conclusion that we can confine ourselves to the 
contribution [formulas (21)-(24)] of only the f i rs t  term 
of the series (15) remains valid also a t  P r"  1, when the 
thickness 6, of the diffusion boundary layer is close to 
Lb. 

The use of expansions (25) and (26) yields simple ex- 
pressions for the coefficient of turbulent diffusion at 
various distances from the surface: 

Y 
D,~(Y)= p (%) if y ~ ( D T . ~ ~ ) ~ ~ ~ ,  

- (31) 
@=l V,,(t)dt. 

0 

With increasing distance from the solid boundary, the 
region of validity of formula (31) is restricted by the 
condition that the expansion (26) be valid, a s  well a s  
by the condition ~$1, >> u(y)Tco,, [according to (2l)]. 

The distribution of the average density E(y) is speci- 
fied by the equation (32) which follows from (6): 

I@=-D? + J ~ , , ~ ~ ( ~ ) ,  (32) 

y we have 

i t  follows that 

where D,,,(y) is determined by (22) and (24). The main 
contribution to 6, (the thickness of the diffusion layer) is 
made by the region where D,,,( y) - D. 

Using for estimates formulas (30) and (31), i t  can be 
showni0*" that 

Therefore, for qualitative estimates of 6, we shall use 
formula (31). As a result 

This relation agrees with the one used in semi-empiri- 
cal theories of turbulent heat and mass transport. '" 
The obtained formulas make i t  possible to find the pa- 
rameter p, which is determined in accordance with (31) 
and (26) by the form of the correlator (vi(r, t)ub(r, 0)) 
on the boundary of the viscous sublayer: - 

fi = j ( u s 1 ( r ,  t )vyl(r ,  0)) ly-Lrdt=TC0,r~~2(Lr)eUyl. 
3 

The experimental datai3 yield for cy, a value of the or- 
der of 0.03-0.05. There is much less  known experi- 
mental information on T,,,,; i t  appears that a t  the pres- 
ent time it  is possible to establish on the basis of direct 
hydrodynamic measurements only that this quantity va- 
r i e s  over rather a wide range: 

This does not permit a t  present the calculation of the 
coefficient y in the formula 

du(0) -IJN 

1 " ( 2 5 6 : ~ ~ ~ ~ ~  -) dy . (33) 

On the other hand, using the experimental data for the 
6,(Pr) dependence, we can determine N. We note that 
on the basis of the theory developed above, the exponent 
N is not less  than four. The experimental results'" 
yield for this quantity a value in the range from 3 to 4. 
This shows that N apparently is equal to i t s  minimum 
possible value, N=4. On the basis of these same ex- 
perimental data we can estimate Tco,, : 

In conclusion, we discuss now the applicability of the 
Reynold's analogy between the momentum, heat, and 
matter transport by turbulent pulsations, a s  well a s  the 
premises of the "mixing path" theory based on the an- 
alogy with the molecular-kinetic theory of gases. Ac- 
cording to these approaches, the turbulent Prandtl num- 

where Jo is the total diffusion flux. Inasmuch a s  a t  all 
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is constant in the interior of the entire viscous sublayer 
and is close to unity in order of magnitude. The rela- 
tions obtained above for D,,, allow us to express Pr,,, 
in terms of purely hydrodynamic characteristics and of 
the molecular-diffusion coefficient. In the most impor- 
tant region (DT,,,, )" << y < L, we have 

Using for eitimates the power-law approximation (26) 
and (vf,v',,)= v ~ ( ~ / L , ) ~ "  we obtain for Pr,,, 

- 
Fogmula (34) and the experimental data for T,,,, , V,, 

and Vyy make i t  possible to estimate Pr,,, on the outer 
boundary of the viscous sublayer: 

It follows from (34) that within the viscous sublayer 
[(DT,,,,)"~ << y < L,] the turbulent Prandtl number Pr,,,, 
is inversely proportional to y, so  that v,,,, can exceed 
D,,, in this region by dozens of times. In particular, 
in the region of the diffusion boundary layer, v,,, can 
be larger by an order of magnitude than D,,,. 

Furthermore, on going through the region y - (DT,,,, .)" ', the functional form of the turbulent-diffu- 
sion coefficient changes, and this coefficient becomes 
strongly dependent on the molecular-diffusion coeffi- 
cient. At the same time, the functional form of v,,, 
is the same in the entire viscous sublayer. Thus, the 
premises of the molecular-kinetic theory, and particu- 
larly the Reynolds analog, cannot be used to describe 
the processes of turbulent heat and mass transport 
through a viscous sublayer. 

5. TURBULENT MASS TRANSPORT I N  THE INLET 
SECTION 

In this section we consider the development of a dif- 
fusion boundary layer along a surface in a turbulent 
shear flow u=u(y) i  of an incompressible liquid. In the 
oncoming stream (at x <  0) we have c(x, y) =ct, and a t  
x >  0 the surface density c(x, 0) is equal to c,. Just  a s  
in the preceding section, we can confine ourselves in 
the general expressions (13)- (16) for the turbulent 
mass flow J,,,,(x, y) to the first  term of the series: 

- 
A..,(z, y, y') = S J ~ T  d i  v.,, ( ~ ~ 3 ,  I, y, y) G ( - T ,  -2, -Z,  y, g) ; (16') -- 

( 3, , ' U ,  ( ) v (  I ) ;  ~ = t ' - t ,  l=X'-5, 4-2'-2, 

where the Green's function G is defined in (13'). 

Outside the "diffusion tip," i. e. , at  x >> L, = (D/A)" 

[see (27)], a diffusion boundary layer is produced, with 
a thickness 6,(x) that increases a t  L, << x << xi,; at x 
>>xi,, the stabilized layer considered above is pro- 
duced. The quantity xi, is defined below. The entry 
section can be subdivided into two characteristic re- 
gions. 

At x>>x,, owing to the abrupt change of F(x, y), the 
connection between J,,, and VE is essentially nonlocal 
a t  all values of y, so  that i t  is impossible to go over to 
the local relation (17) even approximately. The length 
x* is equal to (DA~T,:)"~, where T, is the character- 
istic correlation time of the longitudinal components of 
the velocity pulsations u:(r, t) inside the viscous sub- 
layer. 

At x>>x,, in the region of greatest importance for 
mass transport y - b,(x),  we can go over approximately 
to the local relations 

where the components of the turbulent-diffusion tensor 
a r e  equal to 

I' 

D i j ( y )  - J < w i n  (r, t )  v,'(r, t ' )  > dt. -- 
We proceed now to finding the distributions of the 

average density F(x, y) and of the density of the diffusion 
flux through the surface J(x) = -Da'F(x, O)/ay. At x << xi,, 
owing to the small thickness of the diffusion boundary 
layer, these characteristics correspond in the zeroth 
approximation to the cO(x, y )  and 2 (x)  distributions for  
laminar flow with the same average-velocity profile 
u(y). We shall therefore analyze the deviation ~ ' ( x )  
= J(x) - &Y), whose measurement can yield information 
on the characteristics of the hydrodynamic turbulent 
pulsations. 

In the nonlocal region (L, << x<< x*)" 

<u,' (r ,  t )  vj' (r ,  t )  ) 
e,,' = 

u2 ( Y )  

The largest is the f i rs t  term, which is connected with 
the longitudinal turbulent transport under the influence 
of the longitudinal density gradient. We note that this 
region the ratio (35) does not decrease when x decreas- 
es, despite the weakening of the velocity pulsations; 
this is due to the nonlocality of the connection of (15') 
and (16'). 

In the local region of the inlet section (7, << x << xi,) 

Here is the correlation time of the velocity-pulsa- 
tion components ui(r, t )  and u$(r, t') in the viscous sub- 
layer. At x, <<x<<x,,,, where 

the first  term, the xx transport, predominates just a s  
in the nonlocal region x sx,. The relative magnitude 
of $(x) decreases with increasing x. At x >> x,,,, nor- 
mal turbulent transport due to the normal concentration 
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gradient predominates (yy transport). In this region, 
J"(x) increases with increasing x. Thus, ~ ' ( x )  passes 
through a minimum a t  x-x,,, without the inlet section. 

At x - xi,, relations (22) and (24) a r e  valid, so  that 

The use of the expansion (26) enables us  to estimate 
the length of the inlet section: 

6. CONCLUSIONS 

We have proposed in this paper a method that made i t  
possible to find the relation (13) between a turbulent 
diffusion (thermal) flux J,,, and the gradient of the 
average density (temperature) VF. The connection be- 
tween these quantities turned out to be nonlocal both in 
space and in time. The kernel of this tensor integral 
relation A (the density of the turbulent-diffusion ten- 
sor) is determined both by purely hydrodynamic char- 
acteristics: 

u(r, t ) = ( v ( r ,  t ) ) ,  V,=(ui'(r,  t)v;(r1, t ' ) )  etc., 

and by the coefficient of molecular diffusion D. A 
closed integro-differential equation was obtained for 
C(r, t ) .  

The obtained general relations were used to investi- 
gate the mass transport near a flat solid boundary. It 
is shown that in the initial section of the diffusion 
boundary layer x < x, the connection between J,,,, and 
Vi? is essentially nonlocal. In this region, the contri- 
bution to the diffusion flux onto the surface from the 
turbulent hydrodynamic pulsations increases with de- 
creasing x: 

I' (x) a x-'~. 

At x >> x,, including in the section where the diffusion- 
layer thickness 6,(x) is stabilized, and in the case of 
transport through a boundary layer of constant thick- 
ness, the local relation between J,,, and VE can be ap- 
proximately introduced, but the turbulent-diffusion ten- 
s o r  Du(Y) has different functional forms a t  different 
distances from the surface [see, e. g., (21), (22), (24), 
(30), and (31)]. At x << x,,,, the decisive role is played 
by the longitudinal (xx) transport [formulas (35) and 
(36)], while a t  x>>x,,, the normal (yy) transport pre- 
dominates. The spatial correlation of the longitudinal 
pulsations ui(r, t)  the temporal correlation of u:(r, t )  
and the temporal correlation of ui(r, t) predominate a t  
x<<x,, x*<<x<< x,,,, and x >> x,,,, respectively. 

With increasing x, the correction f ( x )  to the flux 
density through the surface, due to turbulent pulsa- 
tions, begins to decrease: J'(x) =x"" a t  L,<<x<<x* 
and J"(x) = X" at x, << x<<x,,,. J i b )  goes through a 
minimum at  x =x,,,, after which i t  increases linearly 
(at x,,, <<x<<xi,,). In the region x>>x,,, where the dif- 
fusion boundary-layer thickness 6, becomes stabilized, 
the approximate expansions of D,,, in powers of y take 
different froms a t  small y and in the region of the dif- 
fusion layer y - 6,; in particular, the exponents differ. 
At y - 6,, the exponent in the expansion in powers of y 
is not l e s s  than four. 

On the basis of experimental data on mass transport, 
we determine the behavior of the pulsation correlator 
V,, within the viscous sublayer; estimates were ob- 
tained also for the correlation time T,,, of the normal 
pulsations ut(r, t) in this region. It is shown that the 
Reynolds analogy is not suitable for  the description of 
turbulent convective diffusion through a viscous sublay- 
er.  
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