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A kinetic theory is developed for the effects that arise when a free-molecular polyatomic gas flows between 
two surfaces in an external field. The influence of the field on the transport processes is due to the 
nonequilibrium polarization of the gas molecules when they are nonspherically scattered from the surface of a 
solid, and to the destruction of this polarization in the field. The change of the gas flow velocity in a channel 
in a magnetic field, and the onset of a transverse heat flux between the surfaces (whose temperatures are equal) 
is examined in detail. In contrast to the previously investigated thermomagnetic phenomena, the considered 
effects in a gas stream can occur when the molecules are scattered from the surface not only inelastically but 
also elastically. At the same time, these effects occur only if the interaction with the surface is such that the 
states of the molecule before and after the collision are correlated. 

PACS numbers: 47.45.Dt, 47.60. + i, 47.10. + g 

1. INTRODUCTION molecules deflected from the surface can occur only in 

The influence of a magnetic field on heat flow in a 
strongly rarefied (I>> L, where I i s  the molecule mean 
free path and L i s  the characteristic dimension) poly- 
atomic gas (the thermomagnetic effect) has already been 
observed and investigated earlier.'*' Other possible 
effects in an inhomogeneously heating gas in a magnetic 
field were also analyzed, such a s  the appearance of 
transverse heat and mass fluxes in a gas contained be- 
tween two surfaces having different temperatures, or 
of thermomagnetic forces acting on the walls.3 The 
physical causes common to the changes in 
the transport processes in a magnetic field a r e  the 
polarization of the molecules inelastically scattered 
from the solid surface and the precession of the mag- 
netic moment of the molecule about the field direction. 
A distinguishing feature of the foregoing effects is the 
oscillatory character of the dependence of the macro- 
scopic fluxes in the gas on the intensity of the constant 
external field a t  a fixed geometry of the problem. The 
concrete dependence of the macroscopic quantities on 
the intensity and orientation of the field i s  determined 
entirely by the law of nonspherical scattering of mole- 
cules by walls. Therefore the kinetic effects in a 
strongly rarefied gas in an external field serve a s  a 
unique source of information on the physical mechanism 
of the orientation-dependent interaction between mole- 
cules and the surface of a solid, and on the properties 
of the surface itself.Z14w5 

a nonequilibrium gas. The effects listed above a r e  due 
t o  the temperature inhomogeneity of the system. It can 
be assumed that the molecules reflected (elastically and 
inelastically) from the walls become polarized also in 
the case of gas flow. The presence of a predominant di- 
rection of the velocity of the molecules incident on the 
surface and the dependence of the probability of the scat- 
tering on the mutual orientation of the velocity v and of 
the angular momentum 16 of the molecule should make 
the distribution function dependent also on the orienta- 
tion of the vector M, i.e., should lead to polarization of 
the molecules. The molecule precession produced when 
the external field is turned-on changes this dependence 
(it destroys partially the polarization). As a result, the 
kinetic properties of the system a r e  altered in an ex- 
ternal field; in particular, the scalar transport coeffic- 
ients acquire a tensor character. 

In this paper we construct a theory of the phenomena 
connected with the influence of an external field on the 
transport processes in a stream of strongly rarefied 
polyatomic gas. We solve the problem of the flow of 
collisionless gas in a channel made up of two infinite 
surfaces in a magnetic field. We investigate the change 
of the channel resistance in the field and the onset of heat 
flow between the surfaces (which have equal tempera- 
tures). These effects a r e  the Knudsen analogs of the 
known viscomagnetic effect6 and of the effect of vis- 
comagnetic heat flow,' which take place if I S  L. They 

By virtue of the isotropy of the distribution of the a r e  however, by another physical mechanism, 
molecules of the equilibrium gas with respect to their namely polarization of the molecules by nonspherical 
orientations and directions of motion, polarization of scattering from the surface. 
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The considered phenomena have a polarization- 
precession mechanism and a r e  not sensitive to the 
concrete cause of the precession of the molecules. 
Therefore the expression obtained below for the non- 
paramagnetic molecules in a magnetic field can be 
easily generalized to  the case of paramagnetic mole- 
cules, a s  well a s  the case of dipole molecules in an 
electric field. 

We must emphasize two substantial differences be- 
tween the physical mechanism responsible for the onset 
of the considered effects in a gas s t ream,  and the 
mechanism of the previously investigated thermomag- 
netic effects. Fi rs t ,  the field should influence the trans- 
port processes in a gas stream not only in inelastic but 
also in elastic scattering of molecules by wall, when the 
total energy of the molecule remains unchanged by 
the collision. Consequently, an investigation of these 
effects makes it possible to study additionally also the 
elastic interaction of polyatomic molecules with a sur- 
face. This possibility is of fundamental importance, 
since elastic scattering should depend only on the struc- 
ture of the surface, while inelastic scattering should de- 
pend also on the spectrum of the surface phonons of 
the solid. 

The other distinguishing feature of the considered 
effects i s ,  a s  will be shown below, that they appear 
only if the scattering of the molecules by the surface is 
such that the states of the molecule before and after the 
collis.ion a r e  correlated. On the other hand, if the scat- 
tering law takes into account only the sticking of the 
molecule to the surface and its evaporation from it," 
then the field has no effect on the transport processes 
in a stream of a collisionless gas. It follows from this, 
inparticular, that at sufficiently low temperatures (under 
conditions of strong physical adsorption) the considered 
effects (in contrast t o  the thermomagnetic ones) can 
vanish. 

2. KINETIC THEORY OF FLOW OF COLLISIONLESS 
GAS IN A MAGNETIC FIELD 

We consider the influence of a magnetic field H on the 
flow of strongly rarefied gas (1>> L) in a channel between 
two infinite surfaces described by the equations z = O  and 
z = L. Let the gas move along the x axis under the in- 
fluence of a specified density gradient Vn and (or) a 
specified temperature gradient VT. The kinetic equation 
for the distribution function f of a gas with rotational 
degrees of freedom in a magnetic fieldg takes in this 
case the form 

where E = m d / 2  +@/21 is the energy of the linear 
molecule, y is the gyromagnetic ratio, and c, is the 
specified heat. Equation (1) can be solved jointly with 
the system of the boundary conditions on the wall, which 
relate the distribution functions of the incident (fin, ) 
and reflected (fief) molecules, and which a r e  written 
in the form2 

Iv'kl 
f,,r=tvfinc = j - w ( r l + r ) f i n c ( r l ) a r r .  

v*r<o lvkl 

Here r =(v, M ) , d r  =dvdM, k is the normal vector to 
the surface and W i s  the probability density of the scat- 
tering. 

We integrate Eq. (1) along the characteristics in the 
range 0 6 z  s L and, using relations of the type (2) in 
the resultant boundary terms, we can change over to 
an integral kinetic equation, which we express in the 
following operator form 

f (z) =@ (uZ)S+B+6@+f (0)+8(-vr)S-P-W-f ( L ) ,  (3 
ZVd' S+ ( z )  = .xp (- ?) , s - ( z )  =s+ (L-z)  . 

6=lvkl=lv. l ,  € # ( = ) = I  (a>O), @(a)=O (a<O). (4) 

The operators *+ and I@- a re  determined by the gen- 
e r a l  relation (2) and describe the scattering of the 
molecules respectively by the lower (z =0) and upper 
(z = L) surfaces. The operators P* in (3) describe the 
precession of the molecules in the field a s  they move 
along the trajectory and a r e  determined by the expres- 
s ions 

P+=B(z+-O), B-=B(z+L), 

where 0, and q, a r e  the spherical field-orientation 
angles. The first  and second terms in the right-hand 
side of (3) describes the distributions of the molecules 
moving up (v,> 0) and down (v,< O), respectively. The 
functions S* in (3) take into. account the macroscopic 
motion of the gas. In the case Vn = O  and V T  =0,  when 
S+=S- = 1, Eq. (3) reduces to the previously obtained"' 
integral kinetic equation for a gas a t  res t  in a magnetic 
field. 

The e r ro r  in'(3), which manifests itself in the 
divergence of S* (4)  a s  I; = Iv, 1 - 0,  is due to the fact 
that the intermolecular collisions in the gas a r e  not 
taken into account [the collision integral in (1) is se t  
equal to zero]. This result corresponds to the known 
divergence in the problem of planar Poiseuille flow a s  
(L/z)- 0 ,  when the gas velocity becomes infinite at a 
finite value of the pressure gradient. To obtain a finite 
value of the flow velocity, it must be recognized" that 
the molecules with sufficiently small  I; manage to col- 
lide with other molecules before they reach the walls. 
We therefore put, neglecting intermolecular collisions, 

((v) is  the average thermal velocity of the molecul_es), 
and integrate in (2), which defines the operators W*, 
not over the half -space d.k < 0, but in the region vl- k 
< - (v) L/Z. As will be indicated below, the assumption 
(6) has no effect whatever on the dependences of the 
macroscopic fluxes on the magnetic field. The validity 
of the last statement is quite obvious, however, from 
general considerations, inasmuch a s  in accordance with 
the precession mechanism a substantial contribution to 
the effect should be made only by molecules with I; -(v). 
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We construct the solution of Eq. (3) by an iteration 
method, defining the expression for f in the n-th ap- 
proximation a s  follows : 

In accordance with (7), each iteration step corresponds 
physically to a refinement of the distribution function by 
taking into account one collision of the molecule with 
the surface. As the initial function f (O) we choose the 
Maxwellian distribution f,,. In accord with (I) ,  the gas 
distribution function f is described here by the local 
Maxwellian distribution corresponding to  specified 
macroscopic gradients. 

We consider f irst  the distribution f + of molecules 
moving upward (v,> 0). After an arbitrary k-th itera- 
tion we have 

fm)+ = s+F+@+ [ S - P ^ - $ - ] ~ = ~  [s+?+@],,~. . . [s*lj*w*],,jM. (8) 
2-0 

The number of combinations s@$ in the right-hand 
side of (8) is equal to the number of the iteration k, and 
the first  position on the right is occupied by s+$$+ 
taken at z = L, if k is odd, or by s-P-@- with z = O  if k 
is even. Next, the operators 5 and @ in the first  com- 
bination S% on the right should be left out, since 
@fM = f, (the known conservation of the Maxwellian dis- 
tribution), and P is a unit operator in the subspace of 
functions that do not depend on the orientation of M. 

For the analysis that follows, we represent the 
scattering probability in the form of the sum 

where W, does not depend on the orientation of the 
angular momentum of the molecule, and the functions 
W,, W,, and W, describe the nonspherical interaction 
with the surface. The nonsphericity parameter & will 
be assumed small (the experimental value of c in in- 
elastic scattering, obtained from an investigation of the 
thermomagnetic e f f e ~ t , ~  is  given by c2 - 10-3-10-2). 

To determine the field dependence of the macroscopic 
currents in the gas (which a r e  not connected with the 
transport of M) it is necessary to calculate that part f, 
of the distribution function which depends on H and is 
isotropic in M When (9) is  taken into account, expres- 
sion (8) leads to a nonzero result for f t) only in the 
second and higher-order approximations in E and at 
L 2 3  

The summation is  carried outJer_epver all  the per- 
mutations of the combination W,SPW, in the written- 
out product containing k - 3 operators W, and one 
operator and J@, each [the explicit forms of the 
operators @,, W,, and @, follow from (2) when W is 
replaced respectively by Wo, W,, and w,]. Depending 
on the location of this combination in the product, the 
operator indices a re  either plus or minus. 

The expression (10) reflects the physical mechanism 

of the effect of the field on the transport processes, 
an explanation of which calls for allowance for at least 
two nonspherical collisions of the molecules with the 
walls. In the first  of them the molecules become 
polarized (the polarization is specified in (10) by the 
operator m,), while precession of the molecules in the 
field partially destroys this polarization (the action of 
P), and the second nonspherical collision (the operator 
@,) transforms the field-dependent distribution, which 
is anisotropic in M, into an isotropic distribution. The 
dependence of the latter on H describes the change of 
the considered transport processes in the field. 

We assume hereafter that the density and tempera- 
ture gradients a r e  small  (Vn<< n/l  , VT<< T/I) and con- 
fine ourselves to an approximation linear in Vn and VT. 
We must then leave out of (10) all  but one of the func- 
tions S. Taking into account the relations e0 f M = f M  and 
el f M = O ,  we obtain 

The second summation in (1 1) implies sifting through 
a l l  the po_ssible operators W, on the right of the com- 
bination w,R@,. This summation is the result of the 
fact that i t  is possible to retain in (10) any function S 
from among those on the right of the indicated operator 
combination. 

It is easy to obtain in similar fashion an expression 
for the distribution f t) of the molecules moving down 
(v,< 0); this expression differs from (11) in only the in- 
terchange of the plus and minus indices. 

We assume next that the surfaces a r e  macroscopically 
isotropic (e.g., polycrystalline), i.e., there i s  no physi- 
cally preferred direction in the plane of the surface. 
Then, a s  can be easily verified, the functions B, and 
B, calculated in accordance with the equations 

?VOW0.. . W J , ( v Z ,  MI, 6)v,=B,(v2, M', b)u, ;  i-z, v, z; 
(12) 

turn out to be independent of the tangential component 
of the velocity if the functions A, and 4 a r e  independent 
of it,  and the function D is arbitrary. 

Letting the number of iterations k in (11) go to in- 
finity, and using relation (12) a s  we!l a s  the explicit 
forms of the operators P, J@,, and W,, it is easy to 
obtain an expression for the field-dependent part of the 
macroscopic flux of the quantity A ( A = l ,  E, o r  mu, if 
the flux referred to is  that of the number of particles, 
of the heat, o r  of the normal momentum): 

Here 
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P- (v, M') , dii=4ndvMdM, F,= (v,, W )  , v,=v-2k (vk)  , 
M ' (14) 

= J j  Ylm' (,) Yjma ( f )  W (v' MI -+ v ,  M) do., do.. 

In the last square bracket of (13) it is necessary to take 
the plus sign when calculating (u,), (Ev,) (i = x, y ) and 
(v.vJ and the minus sign for the calculation of (EVA 
and (v,v,) (i = x ,  y). The explicit forms of the functions 
Bl and B, in (13) depends on A and on the probability 
W, of the spherically summetrical scattering. All that 
matters to us hereafter is that B, and B, do not depend 
on the tangential component of the molecule velocity. 

Expression (13) makes it possible to calculate the 
changes in the heat and mass fluxes of the gas in the 
field, and also the normal and tangential forces acting 
on the surfaces. As follows from (13), the character of 
the dependence of the macroscopic fluxes on H i s  deter- 
mined entirely by the nonspherical part of the scattering 
probability W' and does not depend on the explicit form 
of W,. The latter influences only the magnitude of the 
effects. 

We shall use below, by way of example, a model ex- 
pression for w', describing inelastic scattering of the 
molecules N, and CO by surfaces of (polycrystalline) 
gold or platinum. This expression, deduced from an in- 
vestigation of the thermomagnetic effect: is  obtained by 
retaining in the expansion 

A,= [Y1*' (v') XY1*(v )  ]'I[ Y1~' (M') ,XY'~(M)  ]'sY'*(k) 
(15) 

only the first  four terms: 

3. CHANGE OF THE CHANNEL RESISTANCE IN  THE 
FIELD 

Using the model of nonspherical scattering (15)-(16), 
calculation of the change of the gas flow velocity in the 
field by formula (14) leads to the following results at 
various orientations of H: 

Here 

The constants C, and C, (-1) can be calculated if we 
know the expansion parameters B, in (15) which cor- 
respond to the terms (16). 

The integration variable x in the integral (18) is a 
dimensionless normal component of the molecule 
velocity, therefore the lower limit of integration, in 
accord with (6), would have t o  be se t  equal to t ; , , (2~ /  
m)'lF. However, by virtue of the rapid oscillations 
of the integrand a t  small x, the lower limit can be set  
equal to zero with practically no effect on the value of J,. 
The foregoing confirms the validity of the statement 
made above that assumption (6) does not influence the 

field dependence of the macroscopic current. 

As follows from (171, the gas velocity in the channel 
is  determined by the parameter WT, which is  equal to 
the product of the molecule precession frequency in 
the field by the characteristic time of their travel 
between the walls. The dependence of ~ ( v , )  on WT is 
similar to the corresponding dependences of the thermo- 
magnetic effect1 and takes the form of damped oscilla- 
tions. The first  maximum is reached here at WT - 1, 
and A(v,) saturates as  WT - -. The magnitude of the 
effect at saturation is the same for the three different 
field orientations. 

In accord with (17), the rate of flow of the gas i n  the 
channel decreases when the magnetic field is turned on. 
Since the gradients Vn and VT a r e  fixed, this means 
that the channel resistance decreases in the field. As 
shown by the analysis of (131, this result is typical of 
al l  those terms of the expansion (15) with 1: + I ,  + 1; +I, 
+ 1, an even number, i.e., when the probability of scat- 
tering by the surface is  invariant to  reversal  of the 
vectors v', v, M', M, and k. 

The expansion terms with 1: + I ,  + 1; + I, + 4 odd, on the 
contrary, decrease the resistance of the channel in the 
field. We note that this general result can be obtained 
simply from physical considerations by using arguments 
previously advanced2*' to explain the sign of the ther- 
momagnetic effect. 

An important feature of the considered effect, com- 
pared with the thermomagnetic effects, is that the 
change of the channel resistance in a field can occur 
not only for inelastic but also for elastic reflection of 
the molecules from the surfaces. In the latter case the 
total energy of the molecule is  not changed by the 
collision, and the coefficients ,9, of the corresponding 
t e rms  of the expansion (15) contain 6(&- E) a s  a factor. 
The contributions of the elastic and inelastic collisions 
to the effect can be separated by investigating, for ex- 
ample, its temperature dependence. The possibility 
of obtaining information on elastic nonspherical scatter- 
ing does not depend on the phonon spectrum of the solid 
and is determined only by the structure of the surface. 

In accord with formula (17), in the case of inelastic 
scattering the relative change of the flow velocity in the 
field is  of the order of the square of the nonsphericity 
parameter and amounts to A(u,)/(u,) - c2 ln- ' ( l /~)  s 1%. 
We note that the nonsphericity of the elastic scattering 
may turn out to be stronger than for the elastic one. 
(Elastic scattering can apparently be treated a s  reflec- 
tion from an unperturbed "smooth" surface, while in- 
elastic scattering can be regarded a s  scattering by 
thermal surface fluctuations that can lead, by virtue of 
their stochastic character, to a weakening of the depen- 
dence on the molecule orientation.) The presented 
estimate of the magnitude of the effect is only the lower 
bound of the summary effect, which can reach large 
values in the presence of both elastic and inelastic scat- 
tering. 

As seen from (13)-(15), contributions to the effect a re  
made only by those terms of the expansion (15) in which 
the indices 1, and I, o r  1: and l a  a r e  not simultaneously 
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equalto zero. In other words, a change in the resistance 
of the channel in the field takes place if the non- 
spherical scattering from both walls is such that the 
states of the molecules before and after the collision 
a r e  correlated. 

4. TRANSVERSE HEAT FLUX 

Calculation of the heat flux E(v3 with the aid of rela- 
tions (13)-(16) yields 

(Eu,) l,,,,=O, (Ev,) I .,,=rp, sin cp,Z,(oz) ; 

According to (19), energy transport is produced by 
turning on a field that is not collinear to the flow of 
gas between surfaces of equal temperature. The trans- 
verse heat flow is odd in the field and is an oscillating 
function of WT , reaching the first  maximum at WT - 1 and 
tending to  zero a s  WT - a. The maximum heat flux in 
the flow of gas under the influence of, say,  a tempera- 
ture gradient is of the order of . !?L(~T/~) ' ' 'vT.  Just a s  
in the preceding case, this estimate is a lower bound, 
inasmuch a s  allowance for the elastic scattering by the 
surfaces can increase the effect. In the case of pure 
elastic scattering of the molecules from both surfaces, 
however, this effect will not occur. To produce a trans- 
verse heat flux it is  necessarv that nonspherical scatter- 
ing of the molecules from at least one of the walls be 
accompanied by energy exchange with the surface. 

In contrast to  the influence of the field on the gas flow, 
a transverse heat flux appears also if the scattering by 
one of the surface takes place without a correlation 
between the states of the molecule before and after the 
collision, i.e., it can be described with account taken 
of only the sticking and evaporation processes. There 
will be no effect, however, if this "correlationless" 
scattering is a characteristic of both surfaces (for ex- 
ample, under conditions of strong physical sorption). 

We note that expression (19) coincides (accurate to  
within a factor of suitable dimensionality) with the ex- 
pression for transverse thermomagnetic gas flow: 
a s  it should for crossover effects in accord with the 
Onsager principle. 

5. OTHER KINETIC EFFECTS IN  A MAGNETIC FIELD 

We have considered above two kinetic phenomena that 
a r e  of greatest interest from the point of view of the 
possibility of their experimental investigation. The 
complete list of the possible effect in a stream of a 
strongly rarefied gas, which a r e  different physical 
manifestations of nonequilibrium polarization of the 
molecules and i ts  destruction in the field, is much 
larger. A magnetic field not collinear with the gas 
flow lifts the degeneracy of the system with respect 
to  directions perpendicular to the flow. As a result, 
turning-on a field can give r i se  also to heat and mass 
fluxes in a direction perpendicular to the main gas 
flow (along the y axis), a s  well a s  to normal and tan- 
gential forces that act on the walls. The dependence 

TABLE I. 

of a l l  the macrofluxes in the gas on the magnitude and 
orientation of the field follows from the general 
relation (13). 

Without presenting here the detailed results of the 
calculations, we note only that the possible existence 
of various macrofluxes in a field in some particular di- 
rection and their general properties (e.g., whether they 
a r e  even or odd in the field) can be explained by starting 
from simple considerations of the spatial symmetry of 
the system.= To this end it is necessary to construct a 
phenomenological expression (of suitable tensor char- 
acter)  for the given macroscopic quantity out of the 
three characteristic vectors of the problem: the vector 
u =(v) / (v )  directed along the gas flow, the magnetic- 
field pseudovector H, and the vector K directed normal 
from the surface of one material to the surface of another 
material. Such analysis shows, in particular, that if 
the interaction of the molecules with the surfaces is  not 
invariant t o  space reflection, then the vector fluxes in 
the system can be odd in K, i.e., they can reverse sign 
when surfaces made of different materials exchange 
place. The results for vector macrofluxes that a r e  odd 
in u in a field a r e  listed in the table, where the asterisk 
marks effects that ar ise  when the scattering by the sur-  
face is invariant to  inversion, and the numbers designate 
the different field orientations a t  which the effect takes 
place, namely: l ) H / l a ,  ~ ) H ( ( K X I I ,  a n d 3 ) H ( ( &  

The kinetic theory constructed above can predict also 
the field dependence of the thermomolecular pressure 
difference (in the free-molecular limit). This effect 
consists of the onset of a pressure difference between 
two gas volumes connected by a sufficiently thin capillary 
and kept at different temperatures. It is easy to show 
that the dependence of the pressure difference on the 
field should coincide in form with the dependence of 
the gas-flow velocity described by expressions (13) and 
(17). 

We note in conclusion that since the motion of the 
gas-mixture components in the free molecular regime 
i s  independent, the theory developed above can yield 
also without difficulty expressions for the diffusion and 
thermal-diffusion coefficients in a field. 

The authors thank L. A. Maksimov for a discussion 
of the formulation of the problem and of the results. 
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A tensor nonlocal relation is derived between the mass (heat) flux and the gradient of the average density 
(temperature) for a turbulently flowing liquid. The laws governing the turbulent mass transport in a diffuse 
boundary layer near a flat solid boundary are investigated, including the section where the layer thickness is 
constant. Is is shown that at the start of the inlet section there is a region where the connection between the 
turbulent diffuse flow and gradient of the average density is essentially nonlocal. In the remaining part of the 
inlet section and in the region of the stabilized diffuse layer it is possible to obtain approximately a local 
relation between these quantities. The contribution made to the average diffusion flux on the surface by the 
hydrodynamic turbulent pulsations first decreases with increasing longitudinal coordinate, and then begins to 
increase. Longitudinal turbulent transport predominates up to the minimum point, and normal transport 
beyond this point. In the stabilized region, the turbulent diffusion coefficient takes on different functional 
fonns at different distances from the surface. 

PACS numbers: 47.25. - c, 47.25.Fj, 47.25.Jn. 47.10. + g 

1. INTRODUCTION 

In view of the wide prevalence of turbulent flows, the 
questions of heat and mass transport in turbulent 
streams attract much attention. From the theoretical 
point of view, the principal problem is the closing of 
the averaged transport equations: the density J,,, of 
the turbulent flux of matter o r  of heat must be connect- 
ed with the distribution of the average density of the 
matter o r  the average temperature T. As a rule, a lo- 
cal relation is assumed to exist between J,,,, and the 
gradient of the average density o r  temperaturei": 

Jturb--Dturbvz 0) 
(to be specific, we discuss below the mass-transport 
problem). 

The phenomenologically introduced turbulent-diffusion 
coefficient D,,, depends on the spatial coordinates, 
particularly on the distance to the solid surfaces. In 
some papers,9 several phenomenol~gical quantities a r e  
introduced in the form of a tensor D,,, that generalizes 
relation (1). To find the coefficient (or tensor) D,,,, i t  
is customary to use the Reynolds analogy between D,,, 
and the turbulent viscosity coefficient v,,,:"~ 

Dturb(r)-vturb(z). (2 

For  the last quantity, a power-law variation is usually 

postulated near the boundaries of solids: 

vturbabla I (3 ) 

where a value 3 or  4 is assumed for the exponent k. 

2. AVERAGED MASS-TRANSPORT EQUATIONS 

The purpose of the present paper is to derive a rela- 
tion between J,,, and VF on the basis of the initial 
(non-averaged) equation of convective diffusion in in- 
compressible liquidsi": 

Here v(r, t) is the instantaneous distribution of the ve- 
locities of the liquid, D is the molecular-diffusion co- 
efficient, and c(r, t) is the field of the impurity densi- 
ties. The latter is assumed to be too small to influence 
the hydrodynamic characteristics of the flow. 

We resolve the velocity of the liquid and the density 
into averaged and pulsating components 

~ ( r ,  t ) = ~ ( r ,  t)+vl(r,  t ) ,  ~ ( r ,  t)=F(r, t)+cl(r,  t) ,  
u(r, t),=<v(r, t ) > ,  F(r, t)=(c(r, t ) ) .  (5 ) 

Here and elsewhere, the brackets (. . .) denote averag- 
ing, while the prime denotes pulsating quantities. 
Averaging of (4) leads to the fundamental equation of 
convective diffusion in turbulent flow: 
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