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The propagation of infrared and optical electromagnetic waves in smoothly nonuniform cholesteric liquid 
crystals is considered. Attention is called to the possibility of linear interaction of the waves in such a medium 
as a result of the inhomogeneity of the cholesteric helix (i.e., of the nonuniform rotation of the optical axes of 
the medium). In the first part of the paper (55 2-5) is introduced an interaction parameter that determines the 
wave-conversion effectiveness, the conditions are indicated for the onset of the conversion, and solution3 are , 
analyzed of two standard problems that describe the linear interaction in propagation of light wave in an 
inhomogeneous liquid-crystal medium. With these problems as examples, new possibilities of controlling the 
intensity and the polarization of light in liquid crystals are discussed. In the second part ($8 6-10) is 
considered the connection between the critical field of a second-order phase transition in a liquid-crystal 
structure and the optical threshold of polarization cutoff of the light. These phenomena result from the 
reorientation of the director in an external electric or magnetic field. The optical thresholds for the planar 
twist structure, the Grandjean structure, and of the homotropic structure in a longitudinal field are 
theoretically determined, as well as for the cholesteric-nematic transition. The known experiments on 
polarization cutoff of light are explained. 

PACS numbers: 78.70. - g, 61.30.Gd, 64.70.E~ 

5 1. INTRODUCTION 

It is knowni** that in liquid crystals, despite partial 
or  complete absence of spatial ordering, orientational 
ordering is preserved: the long axes of the molecules 
a re  aligned predominantly in a direction characterized 
by a unit vector L-the director. In liquid crystals of 
the cholesteric type, which contain molecules that have 
no mirror  symmetry, the director L k )  describes a 
helical line with pitch g =  2r/h with a displacement along 
the z axis given by the wave vector h ("cholesteric he- 
lix"). The pitch of this helix can be controlled easily 
by placing the cholesteric crystal in an external electric 
and an external magnetic field o r  by varying the tem- 
perature, the pressure, and the chemical composition 
of the crystal. 

From the point of view of electromagnetic wave prop- 
agation, such a crystal is an anisotropic medium with 
optical-axis orientation that varies in space. A homo- 
geneous cholesteric with physical parameters that a re  
constant in space (including the pitch g of the helix) is 
equivalent to a periodically inhomogeneous anisotropic 
medium. In such a medium, for a wave of frequency w 
propagating in the direction of the helix axis z, there 
exist four linearly independent solutions; they corre- 
spond to two normal waves traveling in the +z direc- 
tions, and two normal waves in the opposite direc- 
tion. sb 

In a smoothly inhomogeneous cholesteric whose physi- 
cal parameters (helix pitch and other quantities that de- 
termine the refractive indices and the character of po- 
larization of the normal waves) vary in space over a 
scale A >> X (where X is the wavelength in the medium), 
the electromagnetic field equations have asymptotic so- 
lutions that determine the wave propagation in the geo- 
metrical-optics approximation. The field is represent- 
ed a s  a superposition of independent geometrical-optics 
waves propagating along the helix axis. The polariza- 
tion and the refractive indices of these waves a r e  

uniquely determined by the local properties of the cho- 
lesteric [including the pitch of the helix g(z) at the giv- 
en point] and do not depend on the concrete character of 
the inhomogeneity. We emphasize that the relation be- 
tween the pitch g of the helix and the inhomogeneity 
scale A can be arbitrary. The indicated geometrical- 
optical waves in a smoothly inhomogeneous cholesteric, 
which a r e  locally close to normal waves in a homoge- 
neous cholesteric crystal, will be called helical waves 
(indicating thereby that they differ from the usually 
considered ordinary and extraordinary waves with re- 
fractive indices n, and n, in a homogeneous and aniso- 
tropic medium). The independent propagation of the 
helical waves means that the only optical effect is the 
geometrical-optical beats between the waves. This ef- 
fect is indeed observed and can serve, e. g., to reveal 
phase transitions in liquid crystals by passing through 
the liquid-crystal layer light in the form of a super- 
position of normal waves. '*' 

However, the geometrical-optics approximation may 
not hold if the refractive indices nf and n, of the helical 
waves propagating in the same direction become close 
in value. If the helical waves pass through a region in 
which the properties of the cholesteric vary significant- 
ly over the scale of the spatial beats between the waves 

(kO = w/c and c is the speed of light in vacuum), then lin- 
ea r  interaction between the waves can set in. This ef- 
fect consists of a change in the ratio of the complex 
amplitudes of the helical waves passing through the in- 
dicated region. In particular, when a helical wave of 
one type is incident on the interaction region, two mu- 
tually coherent helical waves (with refractive indices 

and leave the region. It is clear that if a linear 
interaction is realized and leads to a mutual transfor- 
mation of the helical waves, the polarization of the light 
passing through the liquid crystal can be substantially 
altered. The effectiveness of this linear transformation 

877 Sov. Phys. JETP 52(5), Nov. 1980 0038-5646/80/110877-13$02.40 O 1981 American Institute of Physics 877 



depends on the inhomogeneity scale A and on the choles- 
terical-helix pitch g in the interaction region, so  that 
variation of these quantities leads to a change in the o p  
tical polarization properties of the liquid-crystal layer. 

The theory of linear interaction of light waves, which 
is developed in the present article, is of special inter- 
est  for the determination of the ratio of the polarization 
cutoff of light and of the phase transition in liquid-crys- 
tal structures. Phase transitions between different con- 
formations of nematics placed in a magnetic o r  electric 
field were first  observed in 1927 by Freedericsz and a 
group of c o - w o r k e r ~ ~ * ' ~  by optical methods. These 
transitions occur when the applied magnetic o r  electric 
field is changed and a r e  due to the reorientation of the 
long axes of the liquid-crystal molecules a s  a result of 
the anisotropy of the diamagnetic and dielectric sus- 
ceptibilities. The Freedericsz transitions a r e  there- 
fore of second order," and produce rather small chang- 
es in the optical properties of the liquid-crystal struc- 
ture if the electric or  magnetic field is only slightly 
stronger than the critical value. On the other hand, 
light cutoff calls for a substantial deformation of the 
structure; therefore the observed optical threshold, 
which is connected, e. g., with the cutoff of the polar- 
ized light, does not coincide with the critical point in 
the Freedericsz transitions. 

A similar situation, generally speaking, takes place 
also for phase transitions in cholesteric liquid crystals, 
and particularly for the cholesteric-nematic transi- 
tion. 12*13 The investigation of the differences between 
the phase and optical thresholds was initiated relatively 
recently; the corresponding experiments for the nematic 
twist structure, which is most widely used, were per- 
formed only in 1971. 14*15 The differences indicated have 
not yet been investigated theoretically, notwithstanding 
the importance of this problem, which is raised in par- 
ticular by the extensive use of measurements of thresh- 
old fields for the study of the physical properties of 
liquid crystals. 

The linear-conversion phenomenon is extensively dis- 
cussed in the theory of propagation of electromagnetic 
waves in a plasma (see, e. g., Refs. 16 and 17 and the 
bibliographies therein). At the same time, there is an 
obvious analogy between the two media, a plasma with 
a magnetic-field induction vector Bo that rotates in 
space, on the one hand, and a cholesteric liquid crys- 
tal, on the other. In both media we have rotation of the 
anisotropy axis, determined by the magnetic field Bo in 
the former medium and by the director L in the latter. 
This allows us to use, when considering linear interac- 
tion of light in liquid crystals, the research technique 
and the results obtained for the same effect in a plasma 
with a sheared magnetic field (see Ref. 5 and cf. Refs. 
4 and 18). This analogy has prompted us to study lin- 
e a r  conversion of waves in liquid crystals; to our know- 
ledge such a phenomenon was heretofore not investigat- 
ed theoretically a s  applied to liquid crystals. Of 
course, a plasma with a magnetic field differs substan- 
tially from a liquid crystal: the plasma with the mag- 
netic field has optical activity (magnetic gyrotropy), 
whereas a liquid crystal can be locally regarded a s  a 

uniaxial (with axis L) crystal that has no optical activi- 
ty. Therefore the onset of linear conversion of light in 
a smoothly inhomogeneous liquid crystal can be due on- 
ly to rotation of the optical axes of the medium, i. e., 
i t  can take place only in crystals of the cholesteric type 
(see § 3). In a plasma, on the other hand, in addition to 
rotation of the magnetic field Bo in space, the reasonfor 
the wave interaction is the spatial inhomogeneity of i t s  
gyrotropic properties (cf. in this connection results of 
Refs. 5 and 17). 

We consider below only uniaxial liquid crystals of the 
cholesteric type (in particular, twisted nematics), in 
which the magnetic and natural optical activities can be 
neglected. This choice allows us  to simplify the expo- 
sition considerably; i t  is easy, however, to adapt the 
results to a smoothly inhomogeneous biaxial optically 
active medium with optical axes that rotate in space 
(cf. Ref. 5). The absorption in the crystals is not tak- 
en into account. Therefore the strong electron-absorp- 
tion bands in the ultraviolet part of the spectrum call 
for a special analysis. l9 

32. HELICAL WAVES IN CRYSTALS OF 
CHOLESTERIC TYPE 

We consider a uniaxial cholesteric characterized by a 
constant helix pitch go in the z-axis direction. To de- 
scribe the normal waves exp(iwt) - zlr r )  propagating 
along the helix axis z in such a cholesteric, we intro- 
duce two coordinate systems, laboratory and local. 
The laboratory system xo yozo is Cartesian with a fixed 
orientation of the axes xo and yo; the local system xyz 
is likewise right-handed and orthonormal, but i t s  x and 
y axes follow the rotation of the cholesteric anisotropy 
axis L (the yz plane coincides with the plane of the vec- 
tors L and k, the x axis is perpendicular to the latter). 
The rotation of the xyz system relative to the xo yoz 
system is determined by the rotation of the plane of the 
director (the plane of the vectors L and k), i. e., by the 
z-dependence of the azimuthal angle $ between the axes 
y and yo. For  a uniaxial cholesteric with constant g, 
the derivative d$/dz also remains constant. 

It is known that the dielectric tensor E ~ ( o ,  r )  of a uni- 
axial anisotropic medium without absorption is given by 
( ~ e f .  1, 8 6.1) 

Here L,  and L, a r e  the components of a unit vector L 
directed along the anisotropy axis, 6U is the Kronecker 
symbol, and and E,, determine the squares of the re- 
fractive indices n! and nt of the ordinary and extraordi- 
nary waves with wave vector kl L. In a liquid crystal 
with a spatially varying orientation of the director L, 
the tensor E,,(o, r )  retains the form (2.1). If i t  is con- 
sidered in the local coordinate system xyz (z Ilk), then 
L, = 0 as a result of the foregoing choice of the axes x 
and y. It is also convenient to write down the electro- 
magnetic-field equations in terms of projections on the 
axes x, y, and z, which rotate together with the optical 
axes of the crystal. In a homogeneous cholesteric (with 
uniform director rotation dJl/dz = = const), these 
reduce to a system of linear differential equations with 
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constant coefficients. Their solutions define normal 
(helical) waves in the considered medium; for two heli- 
cal waves propagating in the +z direction, the refrac- 
tive indices and the polarization coefficients 

a re  given respectively byi8 

The index 1 and the upper signs in (2.2) pertain to a 
wave of one type, while the index 2 and the lower signs 
to the wave of the other type; the parameter is 

the derivative is t)' =dt)/df, where k' = wz/c is the di- 
mensionless coordinate; the quantity plays the role 
of the average refractive index: 

e"= (n.+n,)/Z= [e:+(el+~e cosz a)"] (l+Ae cos'a/e,)"/2. (2.4) 

In formulas (2.3) and (2.4) we have Ac = c,, - 4, and the 
refractive indices no and n, of the ordinary and extraor- 
dinary waves a r e  connected in the following manner 
with the local values of the dielectric tensor (2.1): 

Here a is the angle between the director L and the light 
propagation direction k. The refractive indices no and 
n, must be distinguished from the refractive indices 
and n2 of the helical waves (2.2). The helical waves 
a re  identical with the ordinary and extraordinary waves 
only in the limit of infinitely large helix pitch g--- 
[i. e., t)' - 0, see  formula (2.2)]. 

I t  follows from (2.2) that the helical waves of orthogo- 
nal polarizations: & =-kt". At G2 >> 1, the polariza- 
tion is close to linear, and a t  q2 << 1 it  is close to circu- 
lar  with an electric-field vector rotating in the opposite 
direction. 

The explicit expressions (2.2) for and kn2 a r e  
valid in the region 

where the dispersion branches of the helical waves a re  
close. These expressions a r e  quite adequate for the 
subsequent analysis, inasmuch a s  in a smoothly inho- 
mogeneous medium (A >> X = 27rdFko) the geometrical- 
optics violation accompanied by the effect of the linear 
interaction can take place only in the region where the 
dispersion branches come close together (see below). 
In addition, the inequality (2.6) allows us to neglect the 
reflected waves and to consider only the interaction of 
two co-moving helical waves ( ~ f . ~ ~ . ' ~ ) .  

In a smoothly inhomogeneous liquid crystal with val- 
ues of ell, cl, and JI' that vary along the z axis over a 
scale A satisfying the condition 

i t  is legitimate to use the asymptotic (geometrical-op- 
tics) approximation for high-frequency electromagnetic 
fields. This approximation describes a superposition 
of helical waves, and the electric field of these waves, 
which propagate in the same direction (+z), is given by 

where 

We emphasize that the geometrical optics of helical 
waves takes into account, in addition to the inhomoge- 
neity of the quantities c,, and cl, also the non-uniformity 
of the rotation of the director in a weakly inhomogene- 
ous cholesteric. The definition of the corresponding in- 
homogeneity scale A-$'/ko$" contains therefore the 
second derivative of I). If there is no rotation of the di- 
rector L (when JI' =0) the geometrical optics of the heli- 
cal waves reduces to the geometrical optics of ordinary 
and extraordinary waves in the usual uniaxial crystal. 

In regions where the inequality (2.7) is violated, the 
high-frequency field cannot be represented a s  a super- 
position of the helical waves (2.8) and (2.9), despite 
the smoothness of the inhomogeneity of the medium 
over the wavelength (but not over the period of the spa- 
tial beats of the geometrical-optics wave). In this case 
the functions f i ,2 in (2.8) cannot be expressed in the 
form (2.9). It can be shown, however, by regarding 
(2.8) a s  Maxwell's equations with E,  and E, replaced by 
the variables fi and fi, that the latter a r e  defined by the 
system of coupled equations 

(the primes denote differentiation with respect to the 
dimensionless variable 6 = koz). In the theory of radio 
wave propagation in the plasma, such a system is 
known a s  the Budden equations. 22 In the geometrical 
optics approximation (2.7), the solution of the system 
(2.10) reduces to the form (2.9). 

The system (2.10) is valid under the condition (2.6), 
which allows u s  to neglect the reflected waves. Ac- 
cording to (2.21, i t  is equivalent to simultaneous satis- 
faction of the following two inequalities: 

The f i rs t  of them means that the helix pitchi'g>> X. Us- 
ually g- 1-10 pm, i. e. ,  i t  is comparable with or  larger 
than the light wavelength X. In a pure cholesteric, g 
can be increased to values that ensure satisfaction of 
the strong inequality g>r X for the optical and infrared 
bands by changing the external conditions, while in a 
nematic with admixture of chiral molecules that induce 
helical ordering of all the molecules this can be done by 
varying i ts  chemical composition (Ref. 1, § 6.2, Ref. 
2, § 6.1, Ref. 23). The second inequality in (2.11) is 
equivalent to the requirement of low anisotropy of the 
liquid crystal I cU - cdU I << E [see (2.1) and (2.5)]. 
Usually this condition is satisfied, with I E,, - cb,, I 
-S 0.16. We note that the weakness of the anisotropy al- 
lows us to extend the region of applicability of the sys- 
tem (2.10) to include the case of three-dimensionally 
inhomogeneous liquid crystals of the cholesteric type. 
In this case the system (2.10) describes the interaction 
of helical waves in the case of light propagation along a 
"quasi-isotropic'' ray whose shape is determined by the 
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eikonal equation in an isotropic medium with a refrac- 
tive index (no + n,)/2. This "quasi-isotropic approxima- 
tion" is vitally used to investigate wave interaction in a 
magnetoactive plasma (see Refs. 24,5,17). 

As noted in the introduction, the effective linear 
transformation, which occurs when waves pass through 
the region in which the geometrical optics is violated 
(1. I), consists primarily of a change in the ratio of the 
amplitudes of the helical waves (i. e. , of the quantity 
f1/f2). To investigate this effect i t  is therefore expedi- 
ent to change from the system (2.10) directly to the 
equation for the function P = -ifi/f2: 

Recognizing that, according to (2. lo), 

(the law of energy conservation along the ray). In the 
Riccati equation (2.12), the independent variable 

characterizes the polarization coefficients of the helical 
waves: 

At q close to zero o r  n/2, the polarization is close to 
linear, while a t  qZn/4 i t  is close to circular. The en- 
t ire information on the interaction is contained in the 
function 

which is determined by the cholesteric-helix pitch 
g(Z) = 2n/kO#' and by the form of the function q(6) (2.31, 
which characterizes the change of the polarization of 
the helical waves along the ray [see (2.2)]. 

53. QUALITATIVE PICTURE OF LINEAR 
CONVERSION OF HELICAL WAVES 

The effectiveness of the interaction on passage of the 
radiation through the crystal can be characterized by 
the conversion coefficient Q (0 s Q s 1). I t  determines 
the relative intensity of the helical wave of one type a s  
i t  emerges from the crystal, i f  a wave of another type 
enters the crystal: 

in 
Q-I~P" ' I ' / I~ ,~~I;  ifr =o. (3. l a )  

The conversion coefficient Q is connected with P(q) a t  
the exit by the relation (for details see  Ref. 17) 

where P(qWt) is the result of the solution of Eq. (2.12) 
under the boundary condition P(q,,) = 0, i. e. , f:'= 0 
[here q,, and g,, a re  the values of the variable q (2.13) 
a t  the entrance and exit from the crystal, respectively]. 

The values of the coefficient Q depend essentially on 
the character of the function G(q) and on the interval of 
variation of q in the crystal. The situation here is fully 
analogous with the propagation of electromagnetic waves 

in a magnetoactive plasma. We shall therefore report 
below briefly the results of a qualitative analysis of the 
interaction, and refer the reader for more details to 
our earlier papers. '*" If I G(q) 1 >> 1 along the ray, then 
the geometrical-optics approximation is valid every- 
where and Q << 1 (the interaction is weak), and the heli- 
cal waves propagate in the liquid crystal practically in- 
dependently. On the other hand Q << 1 regardless of the 
form of the function G(q) if the interval of variation of 
g along the ray i s  small: lAq I < <  1. If the liquid crystal 
is a "transition layer," meaning a medium with mono- 
tonic variation of the parameter c-(2.3) that determines 
the character of the polarization K1,* (2.2) of the helical 
waves, then under the condition I G(q) I<< 1 we have 

The interaction is determined in this case only by the 
difference between the polarization coefficients Ki,2(ij) 
of the helical waves a t  the exit from the crystal. In the 
general case, an effective interaction (with Q" 1) is 
realized in the crystal under the condition that the func- 
tion IG(q) IS 1 over intervals lAq I- 1. The last  re- 
quirement means that there should exist in the liquid 
crystal a region in which 

[see (2.13)]. If the function G(q) (2.14) does not vary 
too strongly over the interval IAq I -  1( IAG Is lG I), then 
the degree of transformation of the helical waves can 
be conveniently characterized by the "interaction pa- 
rameter" 

which is the value of the function G(q) in the region 
where the polarization of the helical waves is essential- 
ly elliptic. When G >> 1, the interaction is weak (Q<< 1); 
at G- 1 the coefficient Q is comparable with unity; Q be- 
comes maximal for  values G << 1 [see (3.311. 

Under concrete conditions of inhomogeneous liquid 
crystals, there is no wave transformation if the orien- 
tation of the plane of the director L remains unchanged 
($I' = 0). In fact, in this case we have G~ =-, Aq = 0, 
and Q = 0 [see (2.31, (2.13), (3.3)]. The onset of linear 
interaction can be due in this case only to the natural or  
magnetic optical activity of the crystals, i. e. ,  to off- 
diagonal dielectric-tensor components in (2. I) ,  which 
a r e  usually very small. In this respect, liquid crystals 
differ substantially from a plasma in a magnetic field, 
in which effective wave interaction i s  possible not only 
on account of a change in the orientation of the magnetic 
field, but also a s  a result of strong gyrotropy of the 
medium (see Refs. 5 and 16). It follows from the fore- 
going that in inhomogeneous liquid crystals, independ- 
ently of the condition (2.71, the geometrical-optics ap- 
proximation can be used to describe any effect that is 
not connected with the helical structure (e. g., the S and 
B effects, concerning which see  Chap. 4 of Ref. 2). At 
the same time, for a consistent description of twisted 
nematics (and the T-effect in them), of cholesterics, 
and of smectics of type C with admixture of chiral mol- 
ecules, i t  is essential to take into account the linear in- 
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teraction of the helical waves. However, even for 
these objects, the wave conversion is small  if the twist 
of the helix is weak: 

The polarization of the helical waves is then close to 
linear [ G ~  >> 1, see (2.2) and (2.311 and varies slowly 
along the ray, thus ensuring smallness of the interval 
laq I < <  1. 

The linear interaction remains insignificant also in 
the case opposite to (3.6) (strongly twisted helix). In 
this case the helical waves will be circularly polarized 
(ij2 << 1) and again 1Aq 1 << 1. A strong transformation of 
helical waves can be realized in  liquid crystals, where 
a transition takes place from a strongly twisted (ij2<< 1) 
to a weakly twisted (q2>> 1) helix through a region in 
which ij2- 1 ["transition layer," see (3.4)]. In this re- 
gion, the polarization of the helical waves is elliptic, 
and the pitch of the cholesteric helix g=2n/k0q1 is com- 
parable with the period 2rr/ko lei - fi2 I of the spatial 
beats between the waves. 

If the pitch of the helix [more accurately, the quantity 
(2.3)] changes substantially in this transition, o r  in 

other words, if the scale A over which the polarization 
of the helical waves changes is less  than o r  of the or- 
der of 2r/ko I&, - %, I [the condition (1. I)], then the pa- 
rameter G becomes l e s s  than o r  of the order of unity 
[see (2.14) and (3.511. In accord with the statements 
made above, the lat ter  ensures transformation of heli- 
cal waves with efficiency Q - 1. 

$4. SELECTIVE PASSAGE OF LIGHT IN A CRYSTAL 
WITH AN INHOMOGENEOUS CHOLESTERIC HELIX 

We consider a liquid crystal in which the helix pitch 
varies along the direction of the light ray monotonically 
like 

(linear layer). The importance of this problem lies in 
the possibility of approximating smooth functions $'(t) 
on individual sections in an inhomogeneous cholesteric 
by means of the relation (4.1). In the case (4.1) the 
parameter is 

The function G(q) (2.14) takes the form [we assume that 
(Y is constant, see (2.5)] 

FIG. 1. Dependence of the conversion coefficient Q(G) (4.4) on 
the interaction parameter G; Q(G) r~ 1/2 - (r 6/32 at 
i;2<<~<<1, and Q(G)=2CZ at  I<<G<<~&",. 

and Eq. (2.12) has an analytic solution (see Ref. 25). 

Let the crystal layer be located a t  5 < 0, and then, 
according to (4. I ) ,  a transition takes place in the layer 
from a weakly twisted into a strongly twisted helix: 
gin2 >> 1, ijwt2 << 1. Using the asymptotic forms of the 
exact solution at Gij,; >> 1 and ~ i j k ~  << 1, where 

we obtain the following expression for the conversion 
coefficient in the layer: 

(4.4) 
w (G) = 

l'?%z (-iG/4615) 

2"'*1& r (-iG/813) 

(4.4) 
w (G) = 

l'?%z (-iG/4615) 

2"'*1& r (-iG/813) 

(I? is the gamma function). It is clear from (4.4) (see 
Fig. 1 )  that with increasing G the value of Q decreases 
monotonically from Q = 1/2 (at G = 0) to Q = 0 (as G - '0). ' ) In the region 1 << G <<em,-* the conversion coef- 
ficient is Q a  2Gm2. In accordance with the qualitative 
picture of § 3, the conversion of the helical waves be- 
comes substantial (Q- 1) if the interaction parameter 
~ 2 1 . ~ )  

If light containing one helical wave (linearly polarized 
in the plane of the director) is incident on such a cell, 
then the radiation leaving the cell contains helical waves 
that a r e  coherent with each other and have right- and 
left-hand circular polarization. The resultant polariza- 
tion of the light becomes elliptic with a ratio of the 
principal axes 

The light remains linearly polarized in the case of 
strong interaction (G << 1, Q 1/2), and is circularly 
polarized if G >> 1 and Q a 0. 

In the problem considered here, the parameter G 
(4.3) has a rather strong frequency dependence, G(w) 
a w4. The reason is that for estimates in liquid crys- 
tals one can put n, (w) - n,(w) a o (see Ref. 261, and 

This dependence leads to a strong decrease of the con- 
version coefficient Q, from Q,, to Q<< 1, with increas- 
ing frequency in a relatively narrow frequency interval 
near those values of the frequency oo at  which G(wo) = 1. 
Estimates show that aw/wo 2 0.1 for liquid crystals. 

The nonlinear interaction makes i t  possible, e. g., to 
realize a filter that transmits radiation only a t  low fre- 
quencies w < wo. To this end, a liquid-crystal cell with 
non-uniform helix of the type (4.1) must be placed be- 
tween two polarizers. If the f i rs t  polarizer transmits 
radiation with polarization corresponding to that of one 
of the helical waves at the entrance to the cell, and the 
second polarizer transmits only radiation correspond- 
ing to the second helical wave at the exit from the cell, 
then a t  high frequencies w > coo, where there is no ef- 
fective conversion of one wave into another, the radia- 
tion does not pass through the filter. At low frequen- 
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cies w < wo the filter is partially transparent-it trans- 
mits the radiation corresponding to polarization of the 
helical wave produced a s  a result of linear conversion. 
in the interaction region. 

55. PASSAGE OF LIGHT THROUGH A LIQUID 
CRYSTAL WITH UNTWISTED HELIX 

In liquid crystals, the form of the cholesteric helix 
changes substantially when an electric field E is applied 
(an external magnetic field acts similarly). If this 
field is uniform and is oriented perpendicular to the 
helix axis z, then i ts  influence manifests itself pri- 
marily on the helix pitch g. With increasing field inten- 
sity E, the rotation of the director L becomes non-uni- 
form; the q(z) dependence in the free cholesteric helix 
is then described by the formula 

9 (2) -Arc sin sn [:+I 
where the so-called coherence length 5 and the modulus 
of the elliptic cone x (0 6 x c 1) a re  determined by the 
parameters of the cholesteric and by the magnitude of 
applied field E (Ref. 1, § 6.2, Ref. 2, § 6.5). We as- 
sume for simplicity that the director L is everywhere 
orthogonal to the helix axis z. It is clear from (5.1) 
that a s  E approaches the critical value E, determined 
by the properties of the cholesteric (when x increases 
and approaches unity), the pitch of the helix increases, 
and the deformed helix itself looks like a sequence of 
rather abrupt rotations of the director through an angle 
Jlo =n, separated by layers of practically constant ori- 
entation of L (see also § 10, Fig. 4). The distance I be- 
tween the reversal regions, i. e. ,  the characteristic di- 
mension of the "domain" in which L l l  E,  depends loga- 
rithmically on the difference between E and the critical 
field E, (see Ref. 2, § 6.5): 

(if En - E << Em ). The abrupt rotation of the director 
through an angle n ("domain wall," see Fig. 2) is de- 
scribed by the relation 

which follows from (5.1) in the limit a s  E -- E, ( x -  1 
and 5 -go/r2). Indeed, representing (5.1) in the form 

we obtain as H- 1 

& 

FIG. 2. Spatial distribution of directorl(z) (5.3) in an untwist- 
ed cholesteric ("domain wall''). 

which is equivalent to (5.3) a t  qo = n. The characteris- 
tic scale of the region of rotation of 5 =go/r2 is smaller 
by a factor r2 than the unperturbed pitch of the helix go. 
Starting with the critical field E = E, (the cholesteric- 
nematic transition field), the formation of domain walls 
is not energywise favored and there is no helix [ I  -- -, 
see (5.211. 

The characteristic function G(q) (2.14) corresponding 
to (5.3) takes the form 

nko(n.-no) t 1' } -" 
G(t1)-*ko(n,-n.) & cos-' 2q sin-' 2q tgz% , 

where the plus sign corresponds to the f i rs t  half of the 
layer (-m < I; < O), and the minus sign to the second half 
(0 < C < m). The solution of the problem of passage of 
waves through a cholesteric with a helix of the type 
(5.3) is known: in this case Eq. (2.2) has an exact solu- 
tion5 at any qo, so  that we can determine the transfor- 
mation coefficient 

It is clear therefore that for a strongly deformed helix 
with one rotation through qo = r (and consequently also 
for a cell with an integer number of such rotations) 
there is no linear transformation even in the case of 
abrupt rotations over a small scale 5 .  This result is 
connected with the symmetry of the layer (5.3), on both 
sides of which the properties of the crystal a re  perfect- 
ly identical (rotation of the director through an angle r 
returns the crystal to i t s  previous position with the 
same orientation of the anisotropy axis; the last state- 
ment does not pertain to the case of ferroelectric smec- 
tics, see Ref. 27). The layer (5.3) consists in fact of 
two transition layers separated by a plane 5 = 0; the 
linear-interaction effects that arise in these layers a t  
G s 1 cancel each other. 

In a crystal whose structure can be approximated by 
the function (5.3) with qO+ nm (m is an integer), the 
conversion coefficient Q (5.4) becomes different from 
zero. A cell of this type, in which the director is ro- 
tated through an angle Jlo =n/2, can apparently be rea- 
lized by placing the cholesteric between two crossed 
polarizers in a specially chosen inhomogeneous electric 
field. According to (5.4), the effective conversion will 
take place if the thickness of the transition layer is 

eGt cr- Ink,(n.-%)/21-'. 
. . 

The propagation of the light in the cell obeys geometri- 
cal optics if 5 >> [,, . If the polarizers located at the 
ends of the cell transmit helical waves polarized linear- 
ly in the plane of the director L, then the light will pass 
through the cell in the case 5 >> 5,  (open cell). 

On the other hand if 5 << 5, , then the cell is closed: 
under conditions of strong interaction, the linearly po- 
larized light emerging from the f i rs t  polarizer propa- 
gates in the crystal without change of the plane of polar- 
ization (relative to the laboratory coordinate frame 
xo y,,z); i t  will therefore be blocked by the second polar- 
izer, whose plane is perpendicular to the plane of po- 
larization of the light, since qo=r/2. The described 
system can obviously be used a s  a light shutter. The 
change of the inhomogeneity scale 5 required for  this 
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purpose (by changing the external field E) can be effect- 
ed within relatively narrow limits, since ( is contained 
in (5.4) in the argument of a hyperbolic cosine. This 
circumstance decreases the inertia of such a device. 

8 6. OR1 ENTATIONAL PHASE TRANSITION AND 
POLARIZATION CUTOFF OF LIGHT I N  LIQUID 
CRYSTALS 

A change in the external electric o r  magnetic field, a s  
already mentioned in the introduction, can lead to sec- 
ond-order orientational phase transitions (revealed, 
e. g., by a change in the ~ a ~ a c i t a n c e ~ ~ * ~ ~ ) ,  and conse- 
quently to a change of the optical properties of a liquid- 
crystal structure, owing to the linear interaction of the 
light waves. As a result, the polarization properties of 
a liquid-crystal structure and, in particular, the optical 
threshold of the polarization cutoff of the light, turn out 
to be connected with the molecular properties of the 
liquid crystal and with the critical phase-transition 
point. A study of the optical threshold is therefore of 
substantial interest for the physics of the condensed- 
liquid-crystal state of matter. 

To observe the polarization light cutoff actually pro- 
duced by linear conversion of the waves, polarizers 
placed on both sides of the liquid-crystal layer pass on- 
ly one of the helical waves. Changing the external field 
beyond the critical point of the phase transition leads to 
a deformation of the twist structure, and hence to an 
increase of the drop AG and of the derivative G/d$  [see 
(3.4) and (3.511, i. e., to an enhancement of the linear 
interaction between the helical waves incident on the 
layer and emerging from the layer. A characteristic 
optical transition thus se ts  in after the phase transition. 
The optical transition can be quite abrupt, and we shall 
speak, to be specific, of a polarization light-cutoff 
threshold defined by the conditions IAG I- 1 and G -  1 at 
ij2 - 1 (see § 3). The width of the optical threshold can, 
e. g., be characterized by that change of field a t  which 
the values of A+ and G a r e  doubled. 

Most experiments on polarization cutoff of light were 
performed on planar twisted  structure^^*'^*'^*^^^^ of 
thickness d-0.01-1 mm, formed between two parallel 
glass plates; their inert surfaces a re  s o  finished that 
the long axes of the molecules (the director L) a re  ori- 
ented along the walls (see Ref. 32 concerning the meth- 
ods of the orientation). If such a twist structure is uni- 
form, then, on moving along the helix axis z ,  the polar- 
ization ellipse of the light corresponding to the helical 
wave of one type is rotated and follows strictly the azi- 
muthal rotation of the director L. Therefore the polar- 
ization ellipse of the light emerging from the twist 
structure is turned relative to the initial polarization 
ellipse through an angle hd + llo (h = 2n/go is the wave 
number of the "free" helix and qo is the angle of the 
forced twisting of the helix4'). This geometrical-optics 
regime has been well established3' and was in fact 
known already to Mauguin. 34 This regime can be upset 
only in an inhomogeneous helix, when external fields 
exceeding the critical deformation field a re  applied to 
the twist structure. This is confirmed by direct ob- 
servation~'*'~ and by numerical experiments. 28 

It is clear from the foregoing that to determine the 
optical threshold and i t s  connection with the critical 
field of the phase transition i t  is necessary to know how 
the liquid-crystal structure is deformed; according to 
the exposition in § 3, the structure must definitely be 
helical (twist structure) in order for an optical thresh- 
old to exist. 

According to the continual theory of nematics and 
cholesterics,' under specified boundary conditions (rigid 
coupling of the molecules with the walls) a helical struc- 
ture with minimum free  energy is established in the 
liquid crystal by the action of the external field. The 
volume density of the free energy is then written in the 
form 

K K, KI DE 
@= - ~ ( d i v ~ ) ~ + - ( L r o t L + h ) ' + - [  (LV)LI1--, (6.1) 

2 2 2 8n 

where E is the static external electric field, D = clOE 
+ A E ~ ( L - E ) L  is i ts  induction; Ace = q,o - clo; cllo and clo 
a r e  the static dielectric constants measured along and 
across  L,  respectively. ' The elastic constants Ki, K2, 
and K3 in (6.1) pertain respectively to the transverse 
flexure, torsion, and longitudinal flexure. 

It is easy to prove that in a liquid-crystal structure 
a phase transition is possible only from a state in which 
the director L is everywhere directed along or  across 
the external field E.'v3' Otherwise the reorientation of 
the director L with changing electric field proceeds 
smoothly (without jumps of the derivatives), and the 
critical field of the phase transition can be defined only 
arbitrarily by connecting i t  with the steepest section of 
the plot of the conformation against the field. (The van- 
ishing of the phase transition is not connected with the 
non-rigid adhesion of the molecules to the walls,36 but 
is due to the appearance of the torque 

that acts on the electric dipoles (Ref. 1, § 3.2). Since 
the optical threshold exists only in helical structures, 
the only configuration of the cholesteric type in which 
i t  is possible to observe both polarization cutoff of the 
l ~ g h t  and a phase transition is a twist structure in a 
field directed along the helix axis (see § O  7,8). 

There is another variant, wherein there is no helical 
structure in the initial state and the condition L .E = O  
o r  L x  E = 0 is satisfied. If the phase transition leads 
to formation of a structure of the cholesteric type, then 
i t  can cause also polarization cutoff of the light (see be- 
low). 

In a planar twist structure, the second-order phase 
transition is the result of the fact that the electric field 
effectively tilts the molecules towards the axis of the 
helix (at Ace> 0). The phase-transition critical field 
E,, at which the angle ff between the director L and the 
z axis of the helix begins to differ from n/2 can be ob- 
tained from the relation 

I t  is obtained by investigating the stability of a state 

883 Sov. Phys. JETP 52(5), Nov. 1980 Zheleznyakov et a/. 883 



with a given free energy (6.1) by the de Gemes method 
( ~ e f .  1, 0 3.2.3). The f i rs t  two terms in the right-hand 
side of (6.2) correspond to the nematic twist effect,31 
and the last  two terms a r e  due to the cholesteric prop- 
ert ies of the liquid crystal. 

For  a field E exceeding the critical deformation field6' 
E,, , the distribution of the director L(z) remains sym- 
metrical about the cell center a =d/2, and is described 
by a system of Euler's equations: 

d+# sin' a, - -h+ho 
dz 'sin" 

This system is satisfied by the angles a(a) and #(z), 
which minimize the f ree  energy (6.1). Here a 0  = a(d/2) 
is the minimum value that the angle 0 reaches a t  the 
center of the layer; the constant 

is connected with the azimuthal torsion of the twist 
structure. Equations (6.3) and (6.4) a r e  written in an 
approximation in which 

and without allowance for the dependence of the field E 
on the coordinate z. This approximation does not influ- 
ence the qualitative character of the results and makes 
i t  possible to simplify the exposition noticeably. There 
is no need to solve the system (6.3) and (6.4), since to 
determine the optical threshold i t  suffices to have in- 
formation on the derivatives da/dz and d$/dz, a s  well 
as the value of the drop A* in the region Gz - 1 (see 0 3). 
Calculating the integrals of (6.3) and (6.4) term by 
term over the thickness of the layer, and using the 
boundary conditions for a planar twist structure, we 
arrive a t  the following implicit equations for the layer 
parameters a 0  and ho: 

hod sinz aon(cosZ ao,  cos ao/a)  =$oli'(cos ao/a), (6.6) 

where 

F and II a r e  complete elliptic integrals of the f i rs t  and 
third kind, respectively. 

According to (3.4), the threshold effect of the polar- 
ization cutoff of the light is strong if a t  the point of the 
phase transition (6.21, when d$/da a h  + &/d, the follow- 
ing condition is valid 

(we assume for the sake of argument that A&> 0 and the 
helix is right-handed, i. e. , d#/dz > 0). The inequality 
(6.7) is satisfied in practically all  the experiments 
(see, e. g., Refs. 7 and 281, inasmuch a s  twist-struc- 
tures with weak torsion a re  customarily used for the 
light cutoff. In this case the polarization cutoff of the 
light can take place only if the planar structure is suffi- 

ciently strongly deformed, when 6 s ~ ~ - ~ ' ~  a t  the center 
of the layer [the condition 0 -  1, see  (2.3) and (3.4)]. 
Using this circumstance, we obtain from (6.6) 

ao-4cos - exp -- -- (t) [ 2 (  A =  4nK l h 1  

Knowing now the character of the deformation, we can 
write down explicit expressions for 71 and for the inter- 
action parameter G; these expressions determine the 
effectiveness of the conversion of the helical waves: 

G--212(h sina a+h, sinz a,)z/cos a sin a(sinz a- sin' am)'" 

In the last  formula i t  is necessary to substitute the val- 
ue of sina determined from (6.9) under the condition +- 1. Depending on the relation between the pitch of 
the cholesteric helix and the thickness of the layer, this 
leads to different values of the interaction parameter G, 
and consequently to different light-cutoff regimes. 

87. EFFECT OF CUTOFF OF THE MAUGUIN REGIME 

In the nematic twist structure we have 

and the helixes produced by twisting of the liquid crys- 
tal when the boundary plates a re  rotated through an an- 
gle $o 5 n/2. The inequality (6.7) is then satisfied: the 
thickness d of the planar structure is usually not l e s s  
than 10 pm. Addition of a small amount of cholesteric 
to lift the degeneracy with respect to the sign of the 
twist-the sign of the angle $-and to produce a homog- 
eneous structure in the entire thickness of the layer5' 
does not violate the inequalities (6.7) and (7.1). More- 
over, according to (6.4) and (6.8), the value of * (2.3) 
a t  the walls of the layer 

increases rapidly with increasing field E. At the same 
time, a t  the center of the layer the quantity 

(7.2) 
decreases exponentially. The reason for the latter is 
that practically the entire azimuthal rotation of the di- 
rector through the angle qo takes place at the central 
region of the layer, where the angle a is small and the 
molecules a r e  arranged almost along the z axis [see 
(6.4) a t  h = 0 and Fig. 3; this circumstance was not tak- 
en into account in the interpretation of the twist effect 
in Refs. 7 and in D 4.4 of Ref. 21. Taking the condition 
(3.4) into consideration, we see  that the effective linear 
transformation of the helical waves (the cutoff of the 
Mauguin regime15*Jd) begins a t  ij* 5 1/2. In this case 
the interaction parameter (6.10) is 

and decreases with increasing field 

884 Sov. Phys. JETP 52(5), Nov. 1980 Zheleznyakov et a/. 884 



FIG. 3. Nematic twist structure in a longitudinal with a twist 
angle llo = r/2 and characteristic form of the distribution of 
the quantity < a sin4ff (2.3) along the layer (the numbers I and 
I1 designate the regions of linear transformation of the helical 
waves). 

[Here Em is taken from (6.2) in the approximation 
(6.5). 1 

Thus, the optical threshold corresponding to the twist 
effect i s  obtained from the condition ij,, = 1/2, and is 
equal to 

If Jlo = n/2, then 4* = 8nijo; in expression (6.7) for Go we 
must then put Jr= s l l d ~ ,  since the conversion of the 
light waves takes place in the region of small  angles a! 
[see (2.411. It can be shown that if the strong inequality 
(7.1) is not satisfied, then the optical threshold for a 
liquid-crystal layer whose thickness does not exceed 
half the pitch of the f ree  helix (h s n/d) is defined by a 
similar relation 

It is clear from (7.4) and (7.5) that the optical thresh- 
old exceeds noticeably the critical field of the phase 
transition fo r  thick liquid-crystal layers of nematics 
with large optical anisotropy A s ,  which have a large Go 
(6.7). In practice, however, i t  is a complicated matter 
to obtain planar structures with Go> 100; the optical 
threshold Eo therefore differs usually from the critical 
field E,, of the phase transition by approximately a fac- 
tor of two. For example, for a nematic twist structure 
with Jlo = a h ,  d=13 pm, A E / Z ~ ~ = O .  17, and X=2nc/w 
= 0.59 y m, van ~ o o r n * ~  obtained for the optical thresh- 
old a value 1.6 times larger than the critical deforma- 
tion field. A like value follows from (7.4). The re- 
sults of other experimental studies, in which the ratio 
Eo/Ec, was determined (see, e. g., the detailed mea- 
surements of Ref. 7), agree with formula (7.4) with 
-10% accuracy. This formula predicts a logarithmic 
dependence of the ratio Eo/E,, on the thickness of the 
nematic twist structure. In the case of a cholesteric 
twist structure (hd- a), the dependence of the optical 
threshold on the layer thickness is substantially differ- 

ent [see formulas (7.3) and (7.511; a similar dependence 
was observed in  experiments on polarization cutoff of 
light. 30 We note also that according to (7.4) and (7.5) 
the optical threshold increases with increasing frequen- 
cy of the light, since Qo a: wAE(w); this was observed in 
experiment. Thus, formulas (7.4) and (7.5) a r e  in 
good agreement with the previously obtained experimen- 
tal results, 7,14,15,2891 

The value of the twist angle ?+ho has little effect on the 
optical threshold, since the planar structure consists of 
two symmetrical halves (z < d/2 and z > d/2), in each of 
which the conversion of the light waves takes place inde- 
pendently, and the azimuthal rotation of the director, 
a s  noted above, is realized a t  the center of the layer 
(z = d/2). Nonetheless, the result of the combined con- 
version is strongly affected by the twist angle because 
of the geometrical-optics interference of the waves. 
Calculating the "Faraday" integral 

[see (2.2)] between the regions of the interaction 4- 1 
a t  z < d/2 and 4-  1 at  z > d/2, we find that the maximum 
conversion coefficient in the layer is 

(By definition the conversion coefficient Q is the ratio of 
the intensity of the helical wave of one type, emerging 
from the layer, to the intensity of the wave of the other 
type incident on the layer. ) It is therefore convenient 
to use in the experiments Jlo = a/2, in which case Q ,  
=l. 

We obtain the width of the optical threshold AEo by 
stipulating that the quantity g,,,,,, = t ( z  =d/2) change by e 
times: 

It is precisely to this accuracy that formulas (7.4) and 
(7.5) a r e  valid. The fact that the relative width of the 
threshold is essentially independent of the twist-struc- 
ture parameters is due to the exponential character of 
the deformation [see (7.2)]. If the coupling of the mol- 
ecules to the walls is not rigid, then the width of the 
threshold can be less, since the plot of Aij against the 
applied field E is in this case steeper (see Ref. 36). 

$8. GRANDJEAN TEXTURE IN  A LONGITUDINAL 
FIELD 

In a cholesteric twist structure (Grandjean texture), 
containing several  pitches of the f ree  helix (h >> r / d ) ,  
the value of the twist angle Jlo does not affect the value 
of the threshold fields. According to (6.2), the critical 
deformation field is 

At E > E,, , the director in the central part of the layer 
is inclined to the helix axis z and, starting with certain 
values of the field E, the quantity 71 (6.9) becomes 
small compared with unity. This, however, is insuffi- 
cient for polarization cutoff of the light. In addition to 
the condition (3.4) l A71 I - 1, which is satisfied a t  Go > 1 
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[see (6.7)], for cutoff of the light it is necessary that 
the helix be sufficiently inhomogeneous, i. e. , that the 
ra te  dq/dJ, of the change of 71 when the director is ro- 
tated be large. The last  requirement determines the 
interaction parameter (3.5), which in this case is writ- 
ten in the form7' [see (6. lo)] 

The optical threshold Eo is obtained from the condi- 
tion G = 1 

Obviously, the optical threshold is not sharply pro- 
nounced, inasmuch a s  to decrease the interaction pa- 
rameter (8.2) by one-half i t  is necessary to change the 
field E by a value of the order of the critical field E,. 
Since w does not enter in the formula (8.2) for the in- 
teraction parameter, it is clear that the polarization 
cutoff of the light se ts  in immediately in the entire opti- 
cal band. However, since the Grandjean texture, just 
a s  the nematic twist structure, consists of two sym- 
metrical parts, the position of the regions of interac- 
tion in which depends on the frequency [G = G o  sin2ff 1, 
where Go WAE(W)], the result of the combined conver- 
sion also depends on the frequency of the light a s  a re- 
sult of the geometrical-optics interference. 

$9. RECIPROCAL TWIST EFFECT 

Simultaneous existence of a second-order phase tran- 
sition and polarization cutoff of light is possible not on- 
ly in a planar structure but also in a homotropic choles- 
teric structure, whose boundary walls a r e  so  treated32 
that the director L is perpendicular to them and, conse- 
quently, i t  is directed along the z axis ( a  = 0) a t  z = 0 
and z =d. For a cholesteric with A&,> 0 and h >  nK3/ 
dK,, i t  can be shown with the aid of relations (2.3) and 
(3.5) that the critical deformation field coincides ap- 
proximately with the optical- threshold field. However, 
owing to the texture transition that reorients the helix 
axes perpendicular to the field, the case A q  > 0 is of 
no practical interest (Ref. 2, 00 6.5,6.6). We a r e  in- 
terested therefore in the present section only in a homo- 
tropic structure with a cholesteric having a negative 
static dielectric anisotropy 0). Using the de Gen- 
nes method ( ~ e f .  1, Si 3.2.3) and expression (6.1) for 
the f ree  energy, we obtain the relation 

(9.1) 

which is satisfied by the critical field for the onset of 
the cholesteric helix. The second-order phase transi- 
tion that leads to formation of the helix in longitudinal 
fields E > E,, , and called the inverse twist effect, is due 
to reorientation, along the field, of the molecular di- 
pole moments, which for a medium with negative a z o  
a r e  more o r  l e s s  perpendicular to the long axis of the 
molecules.  h he imaginary value of E,, (9.1) means 
that the helix exists even in the absence of a field. ] 

By virtue of the homotropic boundary conditions, the 
helix is always f ree  and consequently uniform: 

[see (6.4)]. The inhomogeneity of the helix is connected 
with the change of the angle a between the director L 
and the axis of the helix z ,  which is described by the 
equation 

[in the approximation (6.5)]. In contrast to (6.3), here 
a0 =cu(d/2) is the maximum value of the angle ff a t  the 
center of the layer. According to (9.31, f f o  is uniquely 
connected with the applied field E: 

(F i s  a complete elliptic integral of the f i rs t  kind). 

For  abrupt polarization cutoff of the light, the follow- 
ing conditions must be satisfied: 

The first  inequality means that the f ree  cholesteric he- 
lix spans many periods of the spatial beats between the 
helical waves. Otherwise there can be no restructuring 
of the polarization of the light in the considered smooth- 
ly inhomogeneous liquid-crystal structurei7: if a c i r -  
cularly polarized light wave is incident on the layer 
(this is precisely how helical waves a r e  polarized a t  the 
walls of a homotropic structure), then the wave will 
leave the layer with practically no change of the polar- 
iza tion. 

The second inequality in (9.5), which limits the thick- 
ness of the structure to a half-pitch of the helix, makes 
i t  possible to obtain in the center of the layer the value 
of 

even a t  angles aO<< 1, when according to (9.4) 

On the other hand if 71, >> 1 even a t  E = 0, the interac- 
tion parameter in the homotropic structure 

is always much less  than unity. The latter means that 
the linear interaction of the helical waves is strong at 
al l  values of the field E. Therefore, just a s  in the case 
of very weak interaction, the polarization cutoff of the 
light cannot be realized by a change of the field E. (We 
recall that the threshold effect of the polarization cutoff 
of the light constitutes a change from geometric-optics 
propagation of helical waves in the liquid-crystal layer 
to a propagation such that effective conversion of one 
helical wave into another takes place. ) 

I t  follows from the indicated conditions, a t  f i rs t  
glance, that the optical threshold corresponds to the 
field E at which 'j, 5 1, i. e. , sin2cuo=qo-i, s ee  (9.6) 
and (6.7). Actually, in this case the drop l A t  1 (3.4) 
becomes of the order of unity, because ff = O  a t  the 
walls of a homotropic structure, and consequently = 0. 
At the same time, the interaction parameter (3.5) G 5 1, 
inasmuch a s  a t  ~ i n ~ a , ~ ~ ~ "  << 1 we have, according to 
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(9. 7) and (9.8), 

A more careful examination however, shows that the 
above reasoning is valid only at hd- 1. The point is that 
a homotropic structure contains two symmetrical inter- 
action sections (G- 1 at  z < d/2 and G- 1 at z > d/2), and 
the light cutoff that occurs in the f i rs t  section can be 
cancelled by the conversion of the helical waves on the 
second section. In the general case the cancellation 
becomes impossible and polarization cutoff of the light 
appears if the helical waves acquire in the interval be- 
tween the interaction sections a phase difference of the 
order of r/2. Using formulas (2.2) and Eq. (9.3), we 
see that the real  optical threshold corresponds to the 
fieldEo atwhichP,= n/hd, i.e., sin2ao- n/&hd. From 
this and from (9.7) we obtain the connection between the 
optical threshold and the critical field of the phase tran- 
sitions (9.1): 

Obviously, even a t  hd/n < 2'"2 the relative difference 
between the fields Eo and E, reaches an extremely 
small value of the order of nhohd<< 1 [see (9.5)]. It is 
easy to show that the same quantity determines also the 
limiting width of the optical threshold. We note also 
that the polarization cutoff of the light se ts  in f i rs t  for 
blue light and only later for red light, inasmuch as r/ 
Gohd l / o ~ ~ ( w ) .  

We note that in a nematic homotropic structure i t  is 
also possible to have a phase transition a s  well a s  the 
above-described effect of polarization cutoff of the light 
(the inverse twist effect), if "mixed" boundary condi- 
tions a r e  produced on both walls of the liquid-crystal 
structure. 37*38 

8 10. CHOLESTERIC-NEMATIC TRANSITION 

In contrast to the structural phase transitions consid- 
ered above, the cholesteric-nematic phase transition 
takes place in a transverse field E (at A&,> 0). For a 
f ree  helix, the critical field of the transition is well 
known: 

(see, e.g., Ref. 1, $6.2.2 and Ref. 2, 586.5, 6.6). 
For a non-free cholesteric helix produced i n  a layer 
with planar boundary conditions, the process of the 
field untwisting takes piace j ~ m ~ w i s e , ~ ~  inasmuch a s  the 
number of domain walls decreases in discrete fashion 
with increasing field E. As  shown in § 5, there is no 
conversion of helical waves when light passes through 
one or  several domain walls (5.3). Therefore, if the 
directions of the easy-orientation axes a t  the boundary 
walls a re  parallel (see Fig. 2), then polarization cutoff 
of the light is impossible. However, threshold polar- 
ization cutoff of the light will take place if the directions 
of the easy orientation axes of the walls a r e  orthogonal 
(crossed planar structure, see  Fig. 4). In this case, in 
fields close to or  larger than critical, the director ro- 
tates quite sharply through an angle n/2 in accordance 
with the law (5.3) a t  one of the boundary walls whose 
easy-orientation axis is orthogonal to the field (half of 

FIG. 4. Strongly untwisted cholesteric helix in a transverse 
field E (the directions of the easy-orientation axis on the walls 
are orthogonal). 

domain wall). Such a rotation is typical of any liquid 
crystal, both nematic and cholesteric, and does not de- 
pend on the pitch of the free helix go = 2n/h (Ref. 1, 
6 3.2.2). An exact solution of Eqs. (2.8) and (2.10), 
describing the propagation of light from the region when 
L II E into the region where L 1 E, for high-frequency 
electric-field components orthogonal to the z axis, can 
be written in the form 

' in 
I 

c, E@= exp[- % J ( K t + % )  dz ] (- exp [?(z-zi,,) 1 
' in  

iq. 
+2iqz) exp [- T. ( z - z i  J ] 1. 

Here the constants Cl and C2 a r e  determined by the 
boundary conditions 

EL and E,, a r e  the field components orthogonal and paral- 
lel  to the director L, respectively; E p  and E: a r e  their 
values in the region z =z,,, in which the director L is 
parallel to the external field E [more accurately, the 
vectors L and E make a small angle $(zl,)]. From this 
i t  is easy to find the coefficient of transformation of one 
helical wave into another: 

[ ( 1 + q 2 ) ' ~ - q = 1 ~  abet 
Q =  

2(1+4q,') ( l + q f  ) "  ' q'-q'E - 2 c ( f i u + f i L )  ' 

Inasmuch a s  the maximum transformation coefficient 
(as q, -0) is equal to l/2, the optical threshold is ob- 
tained from the condition Q =  1/4, i. e., 9,s 4'2/8: 

This value of the threshold field can be obtained direct- 
ly from the qualitatively theory of linear interaction, by 
equating the interaction parameter (3.5) to unity, inas- 
much a s  G E 44 Fq, according to (5.3). The exact solu- 
tion proves the correctness of the qualitative approach 
to the investigation of phenomena connected with linear 
conversion of light. 

Comparing the values of the fields E,, and Eo, we see 
that in the case Go 2 1 when the pitch of the free choles- 
teric helix go exceeds the .period 4 n c d T / w ~ ~  of the spa- 
tial beats between the light waves, the optical threshold 
greatly exceeds the critical field of the cholesteric-ne- 
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matic transition: E, = E,, 8d%jo/n. 

On the other hand if the free-helix pitch is small 
enough Go<< 1), then the conversion of the helical waves 
and the polarization cutoff of the light se t  in immediate- 
ly after the formation of the "domain" wall of the helix, 
characterized by the inequality 1 >> (sgo/n2 [see (5.2), 
(5.3), and Fig. 41. In this case the polarization cutoff 
of the light is abrupt and takes place practically simul- 
taneously with the cholesteric-nematic transition. The 
optical threshold Eo differs from the critical transition 
field E, by a small amount: 

The difference E,, - Eo was obtained from the condition 
(3.4) AG = 71, - 1, where 5, is the maximum value of 
71 (2.3) reached in the interval between the domain 
walls. The width of the optical threshold is of the order 
of E,, - Eo. 

5 11. CONCLUSION 

From the content of the present article i t  follows that 
the propagation of the light waves in smoothly inhomoge- 
neous liquid crystals of the cholesteric type is accom- 
panied by linear-interaction effects. These effects lead 
to transformation of one type of helical waves into an- 
other, and such a transformation is connected in princi- 
ple with the helical structure of the crystals. The phe- 
nomenon of linear interaction in liquid-crystal optics 
uncovers a possibility of producing, on a new basis, de- 
vices that control the polarization o r  the intensity of 
transmitted radiation. These devices will have other 
frequency characteristics then those known at  present. 
The change of the degree of inhomogeneity of the choles- 
teric helix, sufficient for the appearance of linear 
transformation of light, calls for smaller control vol- 
tages than that restructuring of the liquid crystal on 
which the action of present-day liquid-crystal devices 
is based. The last  circumstance gives grounds fo r  hop- 
ing also to increase the operating speed. This is par- 
ticularly important, since high inertia is the main 
shortcoming of the existing liquid-crystal devices. 

On the other hand, our theoretical analysis of thresh- 
old effects of polarization cutoff of light points to new 
possibilities of polarization optical methods of studying 
liquid-crystal structures and their phase transitions un- 
der the influence of an external field. In this respect, 
particular interest attaches to the structures considered 
above, in which an optical threshold is present along- 
side the critical phase-transition point. 

As is clear from the foregoing, an abrupt threshold 
for polarization cutoff of the light is typical of essen- 
tially inhomogeneous spiral  liquid-crystal layers, in 
which the pitch of the "free" cholesteric helix is larger 
than the scale of the inhomogeneity o r  the thickness of 
the layer. The difference between the optical threshold 
and the critical phase-transition point can differ in this 
case. It is usually large for the twist effect and for the 
cholesteric-nematic transition in a weakly twisted he- 
lix. At the same time, polarization cutoff of the light 
takes place practically simultaneously with the phase 

transition in the case of the reciprocal twist effect and 
in the case of field untwisting of a cholesteric helix with 
a sufficiently small pitch. The exact formulas obtained 
in this article for the optical thresholds make i t  possible 
to connect the structural properties of the liquid crys- 
tals with their optical properties and to use the results 
of measurements of the threshold of the phase transi- 
tion and of the polarization cutoff of the light to deter- 
mine the parameters of the liquid crystals. 

 he results of a numerical calculation of the propagation of 
polarized light for concrete models of an inhomogeneous 
strongly twisted helix with pitch gSA are given in Refs. 20. 
Even in a smoothly inhomogenous plasma with A >>A, owing 
to the Bragg reflection, interaction of opposing waves takes 
place, whereas the conversion of the co-moving helical 
waves is weak. 
It can be shown that complete conversion of one type of 
wave into another (Q = 1) is possible if the helix is strongly 
twisted at the start and end of the liquid-crystal cell, and the 
sign of rotation changes at the point t; = 0 .  In this case I A? 1 
= r/2 and the transformation effectiveness Q - 1 as  G - 0. 

3, In addition to a linear layer (4.11, it is possible also to have 
a variant wherein the pitch of the helix varies linearly, *(S) 
= g't; (O<b <a, gC= const), so that +I-&-t("hyperbo1ic layer"). 
In this case the interaction parameter (2.5) is the quantity 
G = 8./2 r/g' and the conversion coefficient varies like 
G =  [1+ exp (r ~ / 2 f i ) ] - ' .  

*) The angle is determined by the azimuthal orientation of 
the boundary plates and is equal to the differences between 
the total twist angle of the twist structure and the twist 
angle of the free helix over the same length In par& 
icular, for a nematic h = 0, and the angle $,, is equal to the 
total twist angle. We assume for the sake of argument that 
0 < -S n/2; it is actually impossible to reach a value $o >/2 
because of the relaxation of the twisting by structure defects 
and because of formation of disclinations. 

5, We are considering the free energy for the electric field at a 
fixed voltage on the outer conductors and for a given volume 
and number of particles of the liquid crystal. Frequently, to 
prevent charge transport and electrohydrodynamic instabil- 
ity, an alternating electric field of low frequency is used 
(variation of this frequency makes it possible also to regul- 
ate the dielectric anisotropy A%). If the external field is 
magnetic, then the last term in (6.1) must be replaced by 
W 2 / 2 ,  where 4y is the static magnetic anisotropy and H 
is the intensity of this field. For a magnetic field, all the 
formulas that follow are valid subject to this substitution. 

6, Here and below it is assumed that in the considered range of 
electric fields E there are no electrohydrodynamic instabili- 
ties. The corresponding conditions are usually realized in 
numerous experiments with twist cells, 'I "* 15. 28'-31in which 
the polarization cutoff of light is observed at voltages lower 
than the threshold of indicated instabilities. On the other 
hand, if the electrohydrodynamic instability sets in before 
the structural phase transition, then the polarization optical 
properties of the texture can be substantially different. We 
note that no such instabilities occur at all in a magnetic field. 

')We have used here the inequality go *exp(hd), which is 
actually always satisfied by virtue of the condition h>>n/d. 
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Complete population inversion in a multilevel quantum 
system on adiabatic application of an external resonance 
field 
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When an external resonance field is applied suffciently slowly, a multilevel quantum system can be 
transferred from the initial ground state to any other higher level and the probability of this process is close to 
unity. However, this excitation mechanism is impossible in the case of a two-level system. The interval of 
external field frequencies in which a system can be excited does not increase when the field intensity is 
increased and, in principle, can be made as small as we please, which ensures a high excitation selectivity. 
This inversion mechanism acts at quite realistic values of the external field intensity and of the rate of its rise. 

PACS numbers: 42.55.Bi 

1. INTRODUCTION 

Most of the  investigations of the  resonance action of 
radiation on quantum s y s t e m s  have been c a r r i e d  out 
using a two-level model fo r  which it is quite easy  to ob- 
ta in a clear analytic solution valid in t h e  resonance ap-  
proximation or in the approximation of a rotat ing 
wave. I* Recently, even books have been devoted en- 
t i re ly to  the subject of the  two-level model ( see ,  f o r  
example, Ref. 3). However, one c a n  justifiably u s e  

the  two-level model only as long as it descr ibes  cor- 
rec t ly  a l l  the qualitative fea tures  of real s y s t e m s  and 
the  model has t o  b e  ref ined in quantitative features  of 
real s y s t e m s  and  the  model has t o  b e  refined in quan- 
t i ta t ive calculations. We shall show that multilevel sys -  
t e m s  can  exhibit a cer ta in  qualitatively different effect 
which does not occur  in  two-level sys tems .  T h i s  effect 
is as follows: when a n  ex te rna l  resonance field i s  ap-  
plied sufficiently slowly, a sys tem initially in the  ground 
quantum state can  h e  t r a n s f e r r e d  to a higher level with 
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