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An effective method is developed for calculating the higher orders of perturbation theory for the states of a 
discrete spectrum; it is based on a transition from the Schrijdinger equation to a Riccati equation for the 
logarithmic derivative of the wave function. For potentials of polynomial type (in particular, in the case of an 
anharmonic oscillator with nonlinearity gr2", N = 2, 3, 4, ...) the calculation of the higher orders of 
perturbation theory reduces to simple recursion relations, by means of which the coefficients in the 
perturbation series for the energy levels can be found exactly for k 10 and numerically up to k ~ 2 0 0  (k is 
the order of the perturbation theory). The Riccati equation is used to construct a rapidly converging 
perturbation theory in which allowance is made for the behavior of the potential at singular points. 

PACS numbers: 03.6S.Db 

51. INTRODUCTION convenient for computer calculations and. in ~ar t i cu la r .  

The calculation of higher orders of perturbation 
theory i s  of interest for field theory and quantum me- 
chanics. Significant progress has been achieved in 
this direction in recent years. In quantum field theory, 
this has been associated with the application of the 
method of steepest descent (in the neighborhood of clas- 
sical solutions) to the calculation of functional integrals 
for the Green's functions. Many studies have been 
devoted to the development of perturbation-theory 
methods in quantum mechanics, especially for the an- 
harmonic oscillator (see, for example, Refs. 4 and 5 
and the review in Ref. 6). This problem i s  interesting 
because i t  has many physical applications (in the theory 
of molecules, solid-state physics, etc.) and also in 
account of the analogy with scalar field theory with the 
interaction gcpZN. 

In Refs. 7 and 8, we proposed (for the example of a 
gr4 oscillator) a variant of perturbation theory based 
on a transition from the Schrijdinger equation to the 
Riccati equation. A feature of the method is that to 
calculate the corrections to the energy level and wave 
function in any order of the perturbation theory i t  is 
not necessary to know the complete spectrum of the 
unperturbed Hamiltonian. '' We considered applications 
to concrete problems in our papers Refs. 7 8, 14, and 
15. An approach to the construction of a perturbation 
theory close to ours developed in Refs. 7 and 8 was also 
proposed by Aharonov and Au. l6 It was recently 

that this method admits a natural generaliza- 
tion to the multidimensional case. 

In the present paper, we consider our study of this 
group of questions. In P2, we consider an oscillator 
with anharmonicity gr* in D-dimensional space, i. e . ,  
a system with the Hamiltonian 

Perfecting the method of our previous paper Ref. 7, 
we reduce the calculation of the higher orders of per- 
turbation theory in powers of the coupling constant g to 
the solution of a system of recursion relations with in- 
tegral numbers. This system [see  (2.8) below] is very 

makes i t  possible tb express the f i rs t  ( k i  10)-~erturba-' 
tion orders in an exact form, and for large k, up to 
several hundred, to find the coefficients of the pertur- 
bation series numerically. We investigate in detail the 
dependence of the coefficients of the perturbation ser ies  
on the dimension D of space. 

The asymptotic behavior of the coefficients E, of the 
perturbation ser ies  a s  k - ~0 is determined1* by the 
probability of tunneling of a particle in the potential 
r Z  + gv 2N when the sign of the coupling constant is re- 
versed (g<O). The calculation of the higher orders of 
the perturbation theory makes i t  possible to determine 
the rate a t  which E, approaches the asymptotic E:, and 
estimate the magnitude of the power corrections in the 
expansion (3.6). It is shown that the power corrections 
increase rapidly with increasing dimension D. 

In 84, to calculate the energy levels, we use the spe- 
cial form of perturbation theory proposed earlier in 
Ref. 7. It is based on the separation of the most sin- 
gular terms in the logarithmic derivative of the wave 
function a s  r - 0 and r - -. The perturbation theory 
i s  constructed, not in powers of gk,  but in terms of 
more complicated functions of the coupling constant g, 
which a r e  determined with allowance for the behavor 
of the potential V ( r )  at  the singular points ( r=  0, a). In 
contrast to ordinary perturbation theory, which, a s  a 
rule, i s  divergent,*' this variant of perturbation theory 
ensures rapid convergence of the successive approxi- 
mations. In 84, this is demonstrated for examples, 
and a general proof of convergence is outlined briefly 
in Appendix B. 

52. PERTURBATION THEORY ON THE BASIS OF 
THE R ICCATI EQUATION 

The calculation of the higher orders of perturbation 
theory is simplified by going over from the radial 
Schrijdinger equation 

to a Riccati equation for the logarithmic derivative of 
the wave function: 
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We shall restrict  ourselves here, for simplicity, to 
the case of the ground state, whose wave function has 
no nodes3'; we denote i t s  energy by E,=E,(g, D). To the 
Hamiltonian (1.1) there corresponds E, = (0, D) = D. 
Setting &( g, D) = E ,( g, D)/E,(O, D), we expand & and 5 in 
ser ies  in powers of g: 

Substituting these expansions in (2.21, we find that 
tO(r)= r - (D - 1)/2r, and for k 1 the functions 5,(r) 
a re  polynomials: 

This can be seen by calculating 5, explicitly: 

and then using induct i~n.~)  

Substituting (2.4) in Eq. (2.6) of our previous paper 
Ref. 7, we arrive a t  recursion relations for the coef- 
ficients of the polynomial 5,(r): 

Here 1 c m S M ,  and the leading coefficients (m =M,  
M  - 1, . . . ) can be found explicitly: 

( k l -  - ( - i ) k + 1 2 - " " + I ' k - l ' C  
(2.6) 

a$!,- ( - 1 ) k + 1 2 - ( . v + a ' * [  ( 2 k - l ) C k D +  ( N - 1 ) 2 2 L - 1 ] ,  . . . 
where C, a r e  Catalan numbers known in combinatorial 
analysis5): 

C k = ( 2 k - 2 )  ! / k ! ( k - 1 )  for k > i .  

Redefining the coefficients 

( - ~ ) L + I ~ I N + I I ) I - ) I - I ~ ~  (2.7) 

we go over from (2.5) to the simpler recursion rela- 
tions 

the leading coefficient being ALk' = C,. 

It follows that A;,) for all values of k and m a re  posi- 
tive integers. Because of this property, the exact 
values of A(*) (and, thus, the coefficients ck for the 
energy levels) can be found in accordance with Eqs. 
(2.8) by means of numerical calculations on a compu- 
ter. Note that these equations do not contain (explicitly) 
the degree of anharmonicity 2N. Only the total num- 
ber of recursion relations in a given perturbation order 
depends on N. 

Equations (2.5) o r  (2.8) give a procedure for succes- 
sive "descent with respect to m" in a given perturbation 
order. Using them to descend to m =0, we find the 
correction to the energy: 

er= ( - i ) k + l a ?  = 2 1 - ( ~ + 1 1 k ~ ( ~ '  0 9 (2.9) 

which completes the calculation of the k-th order of the 
perturbation theory. Since 

this means that the correction -gk to the wave func- 
tion is also determined. However, the perturbation 
ser ies  for the wave function has a more complicated 
construction than for ((r). 

Using Eqs. (2.8), we calculated some of the f i rs t  or-  
ders  of the perturbation theory exactly, i. e . ,  in the 
form of rational fractions, for  oscillators with anhar- 
monicity gr4 and gv6 (see the tables in our papers Ref. 
8). Note that in the case D = 1, N = 2 (one-dimensional 
g x 4  oscillator) these results agree with the calculations 
of Bender and Wu4 made by a different method. Using 
the relations (2.8) and (2.9), we can readily make 
similar calculations for other degrees of anharmonicity 
2N and different dimensions D of space. The method of 
calculating the higher orders of perturbation theory 
proposed above is more convenient than the method of 
Bender and W U , ~  and i t  enables one, by means of the 
recursion relations (2.8), to calculate the coefficients 
of the perturbation ser ies  for the energy of the ground 
state up to very high orders k. 

53. DEPENDENCE OF THE COEFFICIENTS Ek ON D 

We now consider how the structure of the perturba- 
tion ser ies  for an anharmonic oscillator changes with 
the dimension D. The parameter D occurs explicitly 
in Eqs. (2. 5) and (2.8). Calculations in the lowest or-  
ders  give 

The folloWing factorization holds: 

where P,(D) is a polynomial in D of degree (N - l)(k - 1). 
For  k = 1 and 2 this can be seen from Eqs. (3.1). For  
arbitrary k, the factorization (3.2) can be proved by 
induction i f  i t  is noted that A:) is a polynomial in D of 
degree M - m = Nk - (k + m) and the equations with 
m =  172 ,  . . . N - 1 in (2.8) a re  considered. 

It follows from these equations that all the coefficients 
of the polynomial P,(D) a r e  rational numbers whose 
denominators a re  powers of 2: 

(N-1)Oh-I )  

PA ( D )  =2-'~ ~ m ,  

m-0 

where v, and p:) a r e  positive integers. For  the case 
N = 2, detailed tables, which determine &,(D) for all  
k c 14 and arbitrary dimension D, a r e  contained in the 
previous paper Ref. 19. 

As k - a, the coefficients of the perturbation-theory 
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FIG. 1. The ratio &,/&, for a gr4 oscillator as  a function of 
the order k of perturbation theory. The numbers next to the 
curve give the dimension D of space. 

ser ies  increase factorially. Their asymptotic behavior 
(which we denote by 4) is determined by the barr ier  
penetrability in the potential r2 + g r  2N for g<O and can 
be found by the WKB method (see Refs. 2, 4, and 7): 

ek-C,(ka)  !akkQ, a - N - l ,  b= (D-2 ) /2 ,  (3.4) 

On the other hand, Eqs. (2.8) enable one to find tk 
numerically on a computer with a high accuracy for k 
right up to several hundred. We made such calculations 
for N = 2  and 3. The rate at which &, approaches the 
asymptotic Ek for these cases  is shown in Figs. 1 and 2. 
These calculations show that the asymptotic expansion 
of ck has the form 

and they enable one to determine the magnitude of the 
power corrections to the principal term in the asymp- 
totic Ek. It can be seen from comparison of Figs. 1 and 
2 that for N =  3 the coefficients ck tend to the asymptotic 
behavior more rapidly, and the maximal deviation of 
ck/Ek from unity is much less  than for N = 2. Accord- 
ingly the power corrections in the expansion (3.6) a r e  less  
important in the case of the gr6 oscillator than for the 
quadratic (gv4) oscillator. On the other hand, when 
the dimension D is increased, E, does not tend to the 
asymptotic behavior s o  rapidly, and the power correc- 

0 . Z ~  211 40 611 h 

FIG. 2. The same as in Fig. 1 for a g# oscillator. 

D 

FIG. 3. The coefficient c, in the expansion (3.6) for a g~~~ 
oscillator a s  a function of D .  

tions in (3. 6) increase rapidly (see Fig. 3). 

The determination of the power corrections [i.e., 
the coefficients c,, c,, . . . in the expansion (3.6)] en- 
ables one by means of   or el's summation method to 
establish the energy E(g)  of the level in a fairly wide 
range of values of the coupling constant g. 

54. RAPIDLY CONVERGING PERTURBATION 
THEORY 

Since the coefficients E, for  the anharmonic oscillator 
increase factorially with increasing order k of the per- 
turbation theory, the radius of convergence of the 
ser ies  (2.3) i s  zero and the ser ies  i s  only asymptotic. 
Because of this, the calculation of the energy &(g) with 
allowance for the higher orders of perturbation theory 
requires the use of methods of generalized summation 
of divergent ser ies  (see, for example, Refs. 20 and 
21). 

The variant of perturbation theory discussed below is 
free of these shortcomings and leads to a rapidly con- 
verging series. This method was proposed in Ref. 7, 
in which the examples v(r) = r and v(r) = ru exp(bPY) 
were considered for D = 1. Below, we consider the 
case of arbitrary dimension D and an anharrnonicity 
of power form: o(r )  = f l N .  The generalization to an 
arbitrary potential v(r) is obvious. 

The perturbation theory is constructed on the basis 
of the Riccati equation (2.2), the choice of the zeroth 
approximation yo for the logarithmic derivative t taking 
into a c c o ~ n t ~ . ~  the behavior of the wave function a t  the 
singular points ( r  = 0, -1. The asymptotic behavior of 
the exact solutions of the Schrijdinger equation a s  r - 0 ,  
can be readily found, and we have7' 

yo@, g )= lP+gu(r2 )  1'"-(D-1)/2r, (4.1) 

Thus, the "small parameterw of the perturbation 
theory is associated with the difference 5 - y o  and i t  is 
not obvious in advance that i t  is literally small (in the 
previous Ref. 7, this variant of perturbation theory 
was called "perturbation theory in the departure from 
the asymptotic behavior"). Moreover, in contrast to 
the ser ies  (2.3), the expansion of [(r,g) is in terms of 
more complicated functions of the coupling constant 
g than the powers gk. The standard perturbation theory 
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in powers of g corresponds to the choice 

of the zeroth potential (see 82). The difference between 
to and yo is that the ansatz (4.1) completely includes 
the singularity of the exact Hamiltonian as r - 0, and 
therefore the potential Vl of the perturbation is now 
less  singular than the unperturbed potential Vo. 

Indeed, suppose V = p + gu( p), p = 9; then 

[see  Eq. (4.5) below]. As g- 0, the perturbation Vl 
becomes small: 

In addition, Vl/Vo - 0 a s  r - m (and this ratio is 
smaller, the larger  is the coupling constant g). Thus, 
for potentials of power-law growth u( p) = p" we have 

V (D/2+v -1 )g f  I v - " ,  r+O, 
~ 7 =  { 
V ,  (D+v-l)g-'hr-"+", r+m.  

This also explains why the use of this variant of per- 
turbation theory makes i t  possible to go beyond the 
framework of weak coupling, i. e . ,  to reach values 
g - 1 and even (as will be shown below) g- (see also 
Ref. 22). 

Substituting (4.1) and (4.2) in Eq. (2.2), we arr ive  
a t  the system of equations for k 2 1: 

where 

v - f  + g v ( f )  =V,+V,,  

and for kB 2 

The unperturbedpotential V, is completely determined 
by the choice of the zeroth approximation yo(?', g). The 
explicit expression for Vo follows from (2.2) if we re- 
place there by yo and the energy E by Eo=D. Since 
yo is chosen such that yo - .$ a s  r - 0 and r - m, i t  can 
be seen that y,(r, g )  - 0 for k 2 1 a t  both ends of the in- 
terval (0, m). These boundary conditions uniquely de- 
termine yk(r, g) and E l @ ) .  

The solution of Eq. (4.4) that decreases a t  infinity 
has the form 

From the condition y,(O) = 0, we find the correction of 
k-th order to the energy level: - 

Note that E,(g) a r e  nontrivial functions of the coupling 
constant g ,  namely, they have a cut in the complex 
plane of g for g<O, which agrees with the behavior of 
the exact solution. 

The analysis made in Ref. 7 (for N =  2,D = 1 and 3) 
shows that even the lowest approximations for the en- 
ergy of the ground state, 

L 

$"'= ~ , ( g ) ,  (4.9) 
1- I 

agree well with the numerical solution of the Schrij- 
dinger e q ~ a t i o n , ' ~  and the accuracy of ~ ' ~ ' ( g )  is bet- 
ter ,  the smaller is g (see Fig. 2 in Ref. 7). Suppose 

Elt1 ( g )  =D(l+e,g-ezgZ+ . . .) . 
Then E; is equal to the exact coefficient (3. I), and the 
following coefficients a r e  numerically close to the ex- 
act  coefficients. This explains the proximity of E")(g) 
to the exact solution in the region of small  g. One can 
show that Ek(g)  -gk for g- 0, s o  that the k-$ approxi- 
mation (4.9) exactly reproduces the f i rs t  k terms of the 
perturbation series.  

We consider in more detail the least favorable (from 
the point of view of numerical agreement with the exact 
solution) case of strong coupling, g- m, when 

For  v ( r ) = r Z N ,  Eqs. (4.6)-(4.8) give 

The degree of the coupling constant g is equal to the 
corresponding degree in the asymptotic behavior of the 
exact solution of the Schrijdinger equation: 

e (g ,  D) =C,g", g+-,  (4.11) 

s o  that the entire difference between the k-th approxi- 
mation and the exact eigenvalue ~ ( g ,  D) reduces here  
to the difference between the constants Ck and C,. 

It is readily seen that to calculate C, we must assume 

TABLE I. Ground-state energy of a gfl oscilla- 
tor in the limit of strong coupling. 

Note. The coefficients C, of the asymptotic 
behavior (4.10) are given here for the first 
three approximations. The error (the devia- 
tion of C, from C,) is  given in the brackets. 
The exact values C, of the coefficient are 
taken from Ref. 6. We have here used the 
fact that the lowest level of a two-dimensional 
oscillator with angular momentum 1 corre- 
sponds to the ground-state level for dimension 
D=21+2. 
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in Eqs (4.4)-(4.8) that ~ ( r )  = r2" and take the pertur- 
bation V, ( r )=(N+D- l ) rN- l .  T h e n y o = r . v - ( D - 1 ) / 2 ~ ,  
and the zeroth approximation for the normalized wave 
function has the form 

i. e . ,  i t  has the same asymptotic behavior a s  r - 0 and 
r -- a s  the exact solution of the Schrijdinger equation. 
The expressions for X, and V, a re  s o  simple that the 
f i rs t  two approximations (C, and C,) can be found analyt- 
ically for arbitrary N and D (see Appendix A). The re -  
sults of the calculations a r e  given in Table I and com- 
pared there with the exact values for the coefficient 
C, = C,(N, D). It can be seen from Table I that: 1) the 
approximations (4.9) converge rapidly to the exact 
solution; 2) the accuracy of the approximation dk) im- 
proves with increasing dimension D. 

For  the rapid convergence of the approximations 
E ('), a felicitous choice of the zeroth approximation 
y,(r,g) is important. This is analogous to the situation 
with regard to the choice of trial functions in the varia- 
tional method. l8 It i s  natural to attempt other ansatzes 
for yo in addition to (4.1). T ~ r b i n e ? ~  suggested that 
the zeroth approximation for the wave function should 
be taken in the form 

which corresponds to 

For  the gr4 oscillator, the accuracy of this approxi- 
mation is  somewhat worse than when yo is chosen in the 
form (4.1). However, the ansatz (4.13) has an advan- 
tage a t  large N. A further increase in the accuracy 
could be achievedx8 by varying the coefficient of r2  in 
the exponential in (4.13). It should however be noted 
that the volume of computational work then increases. 
Whereas the first  two approximations c ,  and &, can be 
calculated analytically in the case (4. I ) ,  numerical 
calculations a r e  already needed for the first  approxi- 
mation when the transition to the ansatz (4.13) i s  
made. 

$5. CONCLUSIONS 

The quantum D-dimensional oscillator with anharmon- 
icity gr2* is the simplest example of a system with 
nonquadratic Hamiltonian. We should like to point out 
that the transition from the Schrijdinger equation to the 
Riccati equation (i. e . ,  delinearization of the problem) 
is an effective device for calculating the higher orders 
of perturbation theory in a number of other problems of 
quantum mechanics a s  well. 

The Stark effect in the hydrogen atom was considered 
earl ier  in Ref. 14. Separating the variables in the 
parabolic coordinates 5. g, cp and making the substitu- 
tion 

one can obtain for s (5 .g~  and y(71.g) a system of Riccati 
equations. The energy E and the functions A- and 3 a re  
expanded in powers of the electric field S a s  in ( 2 . 3 ) .  
It can be shown that x,(i,) and y,(q) a r e  polynomials of 
degree k ,  and recursion relations of the type (2. 5) with 
N= D = 2 a re  obtained for the determination of their 
coefficients. In this manner, the hyperpolarizabilities 
a, were calculated1' up to the 160-th order of pertur- 
bation theory: 

(for the ground state). It was also shown how this 
method can be generalized to the case of excited states 
whose wave functions have nodes. 24 

The method of 52 also works effectively in the prob- 
lem of a screened Coulomb potential,') 

v ( r )  =-r-l j  (pr), (5.3) 

where f(x) - 1 a s  x- 0, and f(x)- 0 a s  x- -. Assum- 
ing that the screening function f(x) can be expanded in a 
Taylor ser ies  a t  the point x =  0, one can show that tk(r )  
for k 3 2 is a polynomial of degree k - 1, and recursion 
relations can be obtained for the coefficients. The per- 
turbation-theory ser ies  in powers of p makes i t  possible 
to calculate the level energy and, in particular, to de- 
termine the value of (L a t  which a bound state ar ises .  
These questions will be considered in more detail later. 

With regard to the variant of perturbation theory 
presented in 04, this method requires numerical cal- 
culations on a computer, and the calculation of higher 
orders by means of it is hardly possible. However, 
this i s  not required because of the rapid convergence 
of the successive approximations. The numerical 
effectiveness of the method follows from the data in 
Table I and the analogous results of Turbiner and one 
of the authors. 15;18 We have succeeded in proving the 
convergence of the method for sufficiently small g for 
perturbations gv(r) of general form by constructing a 
majorant for the se r i e s  (4.2) (this proof is given in 
Appendix B). The good agreement between the approx- 
imations E("(g) and the exact eigenvalues E(g) even in 
the limit g- suggests that this method may also con- 
verge a t  large values of (g(. It would be interesting to 
apply i t  to the calculation of the polarizations of atoms 
and molecules in the ground state. 

We note finally that in Refs. 17  and 18 the case of 
multidimensional potentials that do not possess spherical 
symmetry was considered. On the transition from the 
wave function 4(r) to 5(r) = -V$/#, which i s  analogous to 
the logarithmic derivative (2.1), a system of recursion 
relations of the same type a s  (4.4) ar ises ,  but these a r e  
now differential equations. In contrast to the one-di- 
mensional case, their solution does not reduce to quadra- 
ture. The development of effective numerical methods 
of solution of such equations would make i t  possible to 
consider a large class of problems. 

We a r e  grateful to V. M. v2nberg  and and A.  V.  Tur- 
biner for discussing the results of the work. 
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APPENDIX A 

As we have already noted in 04, the first  two orders 
of the perturbation theory can be calculated analytically 
for  the anharmonic grZN oscillator with the initial 
ansatz (4.1). We give here the necessary formulas. 
In what follows, we shall use the fact that the coefficient 
C, in the asymptotic behavior (4.11) is equal to the 
energy eigenvalue for the Hamiltonian 

In the first  order of perturbation theory, we readily 
obtain 

E"'=E,+E,=CI',> 
~ + l  I . V - I I ~ ( . Y + I I  ( N+D-1 ( 

=(N+D-1) (-i-) - r - D , (A. 1) 
N+l N+l  

where z = 2rN+'/(N + I ) ,  and r ( a ,  z)  is the incomplete 
gamma function. 24 It can be seen from this that 
y l - r  a s  r - 0 ,  and yl-r-I a s  r- s o  that y,(r) is 
bounded for a l l  0 < r  < *. 

The second-order correction E, is obtained by 
averaging y t ( r )  with weight x:(r). Using (A. 2), we 
find 

J-  j{ r!wL -,- r(P'z) )'~*-*L-I(~, a, I.) +](fit fi. I) -21(a, fi. 1). 
, r (a )  Ufi) 

(A. 4) 

fr (a, x) r ( fi, 2) @a+-*&. l'a*fi*')- r(a)r(fi) 

Replacing here the incomplete gamma functions by the 
integral representation 

and calculating the integral over x ,  we obtain 

(A. 5) 

For  the above values of the parameters a ,  8, and X 
the relation j3 + A =  1 holds, by virtue of which the two in- 
tegrals in (A. 4)can be readily calculated: 

N+D-1 
(A. 6) 

2 2-0  N+D-1 
ru= I*(=) -*(%)I / r. (-N?i-). (A. 7) 

where $(z) is the logarithmic derivative of the gamma 
function, and C = -$(I) i s  Euler's constant. The re- 
maining integral can be reduced by means of formula 
(7.512.12) in the handbook Ref. 25 to the generalized 
hypergeometric series: 

where v =  1/(N + 1). Further, using Whipple's identity 
(see Ref. 26, p. 33), which for a =  1 takes the form 

[ 1, b,c; -1 I =  r(k-b)r(k-c) b, C, (k-1)/2; I 
k - k c  l'(k)~(k-b-c) k-l,(k+l)/Z 1 ' 

and the formula given on p. 14 in Ref. 26, we transform 
the hypergeometric function to an argument equal to 
unity: 

This ser ies  converges for a l l  values of N and D (the 
n-th term of the ser ies  decreases a s  -n-'z"+l') and is 
convenient for  numerical calculations. Finally, the 
second order of the perturbation theory for the energy 
of the ground state is determined by Eqs. (A.3-A.8), 
and these were the ones used in calculating Table I. 

In a number of cases, the above formulas admit a 
further simplification. For  example, for  the three- 
dimensional gr4 oscillator Dv = 1, and the hypergeo- 
metric function in (A. 8) becomes unity. At the same 
time 

ej- (2/s)s/1r (I/,), ez-- (2/,)v1r ('/,I 13-~-2n/fi-q(~/,) 1. (A. 9) 

Note that for D = 2 the expressions (A. 6)-(A. 8) contain 
pole singularities that cancel each other (so that E2 re- 
mains finite). 

APPENDIX 6 

Proof of the convergence of the iteration procedure of 54 

We construct a convergent sequence that majorizes 
the ser ies  

We assume that for al l  k < l  the functions y, a r e  
bounded: 1 y,(r) 1 < C,. Then 

is also bounded: 

In accordance with (4.6) and (4.7) we now obtain 

and r, will be fixed below. Denoting 

mar I (r) =A/2, 
o<r<- 

we see that the majorizing ser ies  
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converges if AC, <a. Indeed, s ince by construction 

it follows that  S =AS2 + C,, whence 

Since S h a s  a s ingular i ty  at 4AC1= 1, it is clear that 
the series ZC, converges if AC, <+. 

We shal l  show that  thus condition is indeed sat isf ied 
as g-- 0.  For s m a l l  g ,  f ( r )  2: r2 and the integral  Z(r) 
does not depend on g (we set r, = 1). Fur ther ,  we use 
the circumstance that  

Sunstituting th i s  in  (4. 7), we find that y,(r, g )  = O(g) 
and accordingly C, = O(g) as g - 0. Therefore ,  we 
definitely have AC, <f. 

Although the at tempt to make  a similar es t imate  f o r  
g>> 1 was  not crowned with s u c c e s s ,  we believe that a 
detailed study will lead to proof of the convergence of 
the series (4.2) at l a r g e  Igl as well. An indication of 
th i s  is the rapid convergence of the approximations 
~ ' ~ ' ( g )  to the exact energy eigenvalue even in the l imi t  
g - - ( see  Table I). 

''That in fact the entire perturbation theory can be constructed 
using the wave function of only the level to which the correc- 
tions a r e  sought was established by Zel'dovich (see Ref. 9 and 
also the book Ref. 10, p. 143). Concretely, in Ref. 9, using 
Lagrange' s method, Zel'dovich obtained an expression for 
the corrections of second order to the energy of the level in 
the form of a multiple integral containing the unperturbed 
wave function of the given level. One can show that this ex- 
pression is equivalent to (4.8) for k =  2. The same formula 
was obtained by ~irzhnits." po1ikanoS2 considered in detail 
the calculation of the higher orders of perturbation theory on 
the basis of Riccati's equation. He noted particularly that 
any order of perturbation theory can in principle be calculated 
by means of the wave function of the zeroth approximation. 
However, the scheme he develops for calculating the k-th 
order of perturbation theory for k  > 2  differs from the one 
presented below and is more cumbersome. The construction 
of perturbation theory on the basis of Riccati's equation was 
also discussed by pekar.13 We a r e  grateful to V. A. Kolkunov 
and A. V. Turbiner for acquainting us with these studies. 

2)~uppose, for example, v ( r ) = r 2  + g ~ ( r ) ,  where v(r) is regular 
a t  all finite r a n d  increases faster than r2 a s  r - m .  Then 
the coefficients E, increase factorially a s  k - - ,  and the per- 
turbation series has zero radius of convergence. 

3 ) ~ o r  the generalization of the method to excited states, see 
Refs. 14 and 16. 

4 ) ~ e e  the equations for 5 ,  glven in 02 of the previous paper Ref. 
7 (in which it is necessary to set ~ ( r ) = r ~ ~ ) .  Note that the 
aoharmonicity v(r) occurs only in the equation for the f i rs t  
correction 5 ' .  The equations for [, when k  2 2 have standard 
form and do not contain the anharmonicity v(r) (see Eq. (2.6) 
in Ref. 7). This leads to important simplifications compared 
with ordinary perturbation theory. 

5 ) ~ o r  all k ,  Ck are  integers, and Ck is odd if and only if k = 2 " .  
The generating function for the Catalan numbers has the form 

6 ) I f ~ k  a r e  the coefficients of Bender and Wu, the c k =  (-$)".'A,. 
The difference between our E, and their A, arises because 
their Hamiltonian in Ref. 4 has a different normalization 
from our (1.1). In Ref. 4, the coefficients A, a r e  calculated 
exactly for k  6 9 and numerically (to 12 decimal figures) up 
to k  = 75 [see Eqs. (2.12) and Table 1 in Ref. 41. 

 he terms of the perturbation-theory series for the logarith- 
mic derivative 5 (r ,g)  are  denoted here by yk (and not (4. 
since 5 ,(r) has already been used earlier (02) in the construc- 
tion of the perturbation theory in powers of g. As can be 
seen from Eqs. (4.1) and (4.7). the dependence of yk(r,g) 
on g does not have a simple power form [in 02, the k-th 
order of perturbation theory had the form g k b  (r)] .  

 his problem was also considered by ~olikanov,'~ who calcu- 
lated seven orders of perturbation theory in powers of the 
screening parameter p. 
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Perturbation theory and variation principle in quantum 
mechanics 
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A nonstandard perturbation theory (PT) is developed in many-dimensional quantum mechanics; in this theory 
knowledge of the entire spectrum of the unperturbed problem is not required, and only the characteristics of 
the level for which corrections are to be determined must be known, In the one-dimensional case this theory 
reduces to the PT proposed by Zel'dovich. It is shown that the problem of constructing the PT in the k- 
dimensional case is equivalent to that of k-dimensional electrostatics with a variable dielectric constant. The 
relation between the variational principle and PT is found, and it is shown that the PT developed here makes 
it possible to estimate the accuracy of variational calculations and to improve this accuracy by using an 
iteration method. A recipe is formulated for constructing an unperturbed problem so as to get converging PT 
series. A theorem on the uniqueness of PT series is proved. Examples considered are the ground states in the 
potentials x2" (n = 2, 3,4) and m2x2  +gx4; it is shown that the first two or three approximations are enough 
to calculate the energy to an accuracy of 10-'-lo-' (for arbitrary g). For the two-dimensional anharmonic 
oscillator calculations are made of the first several coefficients of the PT series in powers of the coupling 
constant. 

PACS numbers: 03.65.Db 

1. INTRODUCTION 

One of the problems most frequently encountered in 
quantum mechanics i s  that of finding the energies of 
bound states. I t  i s  analyzed in detail in practically al l  
books on quantum mechanics (cf., e.g., Ref. 1). I ts  
importance i s  due to the fact that many phenomena in 
various fields of physics can be described by means 
of potentials, s o  that frequently an  investigation re-  
duces to the solution of the SchrSdinger equation with 
some particular potential. The main difficulty in al- 
most a l l  cases is that the Schriidinger equation with a 
potential that describes an actual physical phenomenon 
i s  almost always incapable of exact integration. This 
makes necessary the use of various approximate meth- 
ods. Here it must be s t ressed that the present possi- 
bilities for numerical integration of the SchrSdinger 
equation a r e  rather limited: It can be used success- 
fully only for one-dimensional problems, and is  prac- 
tically helpless even in two-dimensional quantum- 
mechanical problems (see the discussion in Ref. 2). 
Fo r  this reason, in dealing with many-dimensional 
problems o r  studying the analytic properties of solu- 
tions of the Schrodinger equation one has to use approxi- 
mate methods. 

The most frequently used approximate methods a r e  
the Rayleigh-Schriidinger perturbation theory and the 
Rayleigh-Ritz variation principle. Let us examine each 
of them in more detail. To construct the Rayleigh- 
SchrSdinger perturbation theory (PT) it is necessary 

to know the entire spectrum of the unperturbed problem 
or,  equivalently, i ts  Green's function, since the cor-  
rections to the wave function and the energy a r e  ex- 
pressed a s  sums over intermediate states o r  integrals 
containing the Green's function. This means that the 
unperturbed problem must be exactly soluble. Up to 
now the number of exactly solved problems is  rather 
limited. A typical situation is that of a perturbation 
potential that i s  more singular than that of the unper- 
turbed problem, or,  in other words, is large compared 
with it. This i s  the main cause of the divergence of P T  
ser ies  in physically interesting cases. Consequences 
a r e  the difficulties with coupling constants of the o rde r  
of unity and with strong-coupling cases  (see the discus- 
sion in an  ear l ier  paper3). Besides this, the use of the 
SchrSdinger-Rayleigh P T  gives r i se  to technical diffi- 
culties with calculating matrix elements and finding 
multiple sums over intermediate states. These diffi- 
culties a r e  especially marked in attempts to deal with 
many -dimensional problems. 

The Rayleigh-Ritz variation method and other varia- 
tional methods of the Hartree-Fock type a r e  practically 
the only tool for investigating the spectra of many- 
dimensional problems. However, when this tool i s  used 
i t  is a very complicated problem to estimate the ac-  
curacy of the results (see, e.g., Ref. 4). There a r e  
other difficulties with variational calculations; in par- 
ticular it i s  rather complicated to construct a one- 
parameter family of test functions. All of these dif- 
ficulties of the two approaches, those of principle and 
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