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An analysis is made of the influence of reemission and multiple reflection of light from a surface on the 
intensity and polarization of luminescence in resonant excitation of excitons in a cubic crystal when excitons 
are scattered elastically by impurities. An integral equation is obtained for a matrix SR relating the light fluxes 
incident on and scattered from an internal surface of a crystal. This equation is reduced to a system of simpler 
integral equations with one variable. Numerical solution of these equations is used to calculate the 
dependences of the intensity and polarization of light on the refractive index, quantum efficiency of a single 
scattering event, and directions of propagation of the exciting and scattered light. An analysis is made of the 
characteristic features which appear in the backscattering as a result of interference effects associated with 
multiple scattering of excitons. The theory developed is applicable also to the Rayleigh scattering of light by 
defects in isotropic solid or liquid media. 

5 1. INTRODUCTION We shall consider the influence of reabsorption and 

A theory of the optical orientation of excitons by res- reemission on the polarization of the exciton lumines- 

onant excitation has been developed in earlier investi- cence, i.e., we shall consider the case of an arbitrary 
relationship between 7, and T,,. We shall assume that gationsl*' in which two authors of the present paper par- 

ticipated. It is assumed in these investigations that: the first two conditions ( l a )  and ( l b )  are satisfied; this 
is possible if  T ,  << T ~ .  In this case the exciton momen- a) excitons and photons can be regarded as weakly turn distribution becomes completely isotropic during 

interacting particles, i.e., that the mean free path of the total exciton lifetime rt . For simplicity, we shall 
an exciton 1,= uqO7 is much less than the path I,, consider a triplet exciton in a cubic crystal. As be- =uqo~,,, of an exciton in the case when a photon i s  
emitted; b) the diffusion length of an exciton I d i f f  

fore,' we shall assume that the scattering of excitons 
is elastic so that the frequencies of the incident and 

=V,,(T,T)'/~ i s  short compared with the mean free path emitted light are identical. Moreover, we shall ignore 
of a photon cu-'= I,,; c )  the nonradiative exciton life- the spin relaxation of excitons on the assumption that 
time 7, is much shorter than the radiative lifetime the spin relaxation times T ,  of an electron and a hole in 
T , ~  

I f  we bear in mind that a= 2rwLTq0, we find that an exciton are longer than 7,. In the case of spin re- 
the conditions a)-c) can be written in the form laxation of excitons associated with the longitudinal- 

O ~ r Z 9 1 /  m p o ~ ,  ( la)  transverse splitting, the time 7,1 (o;,r)-' is known to 
WI,FT<I 1 w * ( T ~ T ) ' ~ ,  ( I b )  be longer than 7, because of the condition (lb). 

~ L T T C ~  / O-TO. ( 1 4  

Here, w,, is the longitudinal-transverse splitting of 
the exciton branch far from resonance; T =  (2r)-' 
= (T#-'+ rt-')-' is the total drift time; T ,  is the exciton 
momentum relaxation time; rt = (lo-' + T,,")" is the 
total exciton lifetime; Ew@, u@, and qo are the kinetic 
energy, velocity, and wave vector of an exciton at the 
point of intersection of the exciton and photon branches. 

We can see that the last of the three conditions ( la ) ,  
( lb) ,  and ( l c )  is the most stringent. When this condi- 
tion is satisfied we can ignore the reemission proces- 
ses. In the case of GaSe crystals investigated ear- 
lier,'*' the condition ( c )  is well satisfied, as indicated 
by a high degree of polarization of the exciton lumines- 
cence. Gallium selenide differs from the majority of 
semiconductors in that it has a small value of w,, and 
a short lifetime lo, facts associated with the charac- 
teristics of its energy band structure. Therefore, one 
has to justify the application of this theory to other 
crystals. 

When the above conditions are satisfied, the light- 
scattering matrix differs from the Rayleigh form only 
by a different frequency dependence of the absorption 
coefficient cr and by a general factor Go= T, /T,&, which 
governs the quantum efficiency of the luminescence for 
a single scattering of a photon by an exciton. There- 
fore, the problem considered here is equivalent to that 
of the Rayleigh scattering of light in a turbid isotropic 
medium. Problems of this kind have been frequently 
considered in astrophysics and geophysics, and meth- 
ods for solving them are given in detail in the mono- 
graphs of Chandrasekhar3 and sob ole^.^ In problems 
of this kind it is assumed that the density of the scat- 
tering medium is low and that its permittivity is prac- 
tically identical with that of vacuum, so that the re- 
flection and refraction of light at the boundary with 
vacuum can be ignored. In the case of a solid the re- 
flection of light from an internal surface plays an im- 
portant role. Agranovich and Konobeev5 as well as 
Doronina et al.' (their work is recounted in the mono- 
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graph of Agranovich and Galanin7) considered the in- 
fluence of reflection on the luminescence decay time. 
Gutshabashs and Zege with KatsevQ analyzed the influ- 
ence of reflection on the intensity of scattered light in 
the case of specular reflection and also reflection in 
accordance with the Lambert law. However, in all 
these cases4" the question of polarization of the lumi- 
nescence is not considered, the luminescence is con- 
sidered to be unpolarized, and the equation of propaga- 
tion for the matrix of the Stokes parameters I is re- 
placed by an approximate equation for the total inten- 
sity I. 

We shall calculate the change in the polarization of 
scattered light allowing for the reflection and refrac- 
tion at a boundary (the results of the present work are  
reported partly in a short communication'0). A modi- 
fication of the proposed method, which will be given in 
a separate paper, makes it possible to consider the 
scattering of polarized light also in the opposite lirnit- 
ing case of a strong exciton-photon interaction, when 
the inequalities opposite to those of (la)-(lc) are  sat- 
isfied and one has to allow for the polariton effect. 

52. FORMULATION OF THE PROBLEM 

We shall use the S matrix method developed by 
Chandra~ekhar.~ We shall introduce the Stokes matrix 
I(€3) which represents the intensity and polarization of 
the radiation scattered in a crystal when traveling in 
the direction €3, defined by the polar angle 8 between 
€3 and the normal to the surface, and by the azimuthal 
angle (p. The positive values of p= cos8 represent rays 
traveling toward the surface and the negative values 
represent those traveling away from the surface. In 
Chandrasekhar's book3 the column matrix I is selected 
in the form 

The unit vector 1 lies in a meridional plane containing 
hl and the normal to the z plane, whereas the unit vec- 
tor r is  perQendicular to this plane; E, and E, are  the 
corresponding components of the electric field of the 
light wave; n is the refractive index. 

The degree of linear polarization of the radiation 
Pli, in the system of (1,r) axes, the degree of linear 
polarization qi, in the system of (If, r') axes rotated 
relative to the (1,r) axes by 45", and the degree of cir- 
cular polarization PC',,, are related to the components 
of I by 

where I = I, + I,. The quantity 1(hl)/dS2 gives the total 
intensity of the scattered radiation traveling in the di- 
rection 0 in a solid angle dS2. 

We shall assume that a plane light wave is  incident on 
a crystal and after refraction it travels in the direction 
€3, given by the angles 8, and (p,. Then, the radiation 
transmitted by the boundary of the crystal (z=+O) is 

described by 
I. (+O, p, (p) =nF6 (p+po) 6 (v-B~) 9 

where po= -cos8,> 0. In this case the equation for the 
matrix I(T, €3) representing the scattered radiation be- 
comes 

tr. 
- T e x p ( - t ) ~ ( ~ . 4 ) ~ ,  (5) 

where r =  uz; z is the distance from the surface; u is 
the absorption coefficient; P(a,  a') is the Rayleigh 
scattering matrix. 

According to Ref. 3, the matrix P(€3,01) described by 
the representation (2) is  

P(n, W) -Q('l~P'" (p, p') 

+[(I-pl) (i-p") ]"P"'(Q ft')+P(')(Q, W)). (6) 

Here, 

2 (4 - pS) (I - p'%) + pZp'% pa 0 0 

P'O' (p , p') = 1 .IS 0 0 0 0 '  
I 0 0 1  

L . O  - 0  o C O S ~ J  

p'p' a ws 2.9 - p2 cos 29 $pt sin 29 0 
2.9 cos 2.9 - p' sin 29 0 

psin29 pp'cw2.9 0 
0 0 0 

where $= cp' - (p. In Eq. (6), the matrix P(n, €3') is nor- 
malized to unity, so that 

The boundary condition for Eq. (5) should allow for 
the reflection by the surface. In the case of a semiin- 
finite medium and specular reflection, we have 

I(+o, 8) --R(~)I(+o, 01, I(-, 0 )  -0, (7) 

where the directions and fi a re  related by the condi- 
tion for specular reflection ji= -p < 0, ?= (p. It follows 
from the Fresnel formulas" that the reflection matrix 
R is 

For angles 8 smaller than the total internal reflection 
angle 00= sin4(l/n), we have 

R,=r$, Rpr.', R,-r'r,, R,==O, (9) 

where 

Here, n= nc,/no, n,, and no are the refractive indices 
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of the crystal and the surrounding medium (in vacuum 
we have no= 1). If O> 8,, then 

RI-R,=1, RFCOS 8, RI-sin 8, (10) 

where 6 is found from 

The four-component vector representing the energy 
flux F(+O, 8,) on the internal surface of the crystal (z 
= +0) is related to the corresponding quantity F(-0, 0,) 
on the external surface (z = -0) by 

F(+O, 0 , )  =po-'plT(po, PI)F(-O, PI)  , (11) 

where the matrix of the transmission coefficients is  

whose components a re  TI( p,) = 1 - R,( p,), T2( pO)= 1 
- R2( p,), Ts( po) = (T,T,)'/~, and & and p, a re  related 
by the Snell formula 

I-pIZ-nZ (1-poZ). (12) 

The light scattered out of the crystal is  characterized 
by 

I(-0, P,)=n-'T(pr, p)I(+ 0, P ) ,  (13) 

where p, and p are again related by Eq. (12). In Eq. 
(13) an allowance is made for the change in the solid 
angle in which the radiation is scattered out of the 
crystal because of refraction: it follows from Eq. (12) 
that da,= n2p/p&n. 

93. EQUATION FOR THE MATRIX SR 

In the absence of reflection the scattered flux I(O,0) 
is related to the incident flux a t  the boundary I(0, p) 
by the S matrix:' 

Equation (14) is valid not only at the boundary of a 
medium but on any plane inside it. This statement rep- 
resents the principle of invariance, first formulated 
by Ambar ts~myan.~~ This principle is used in Ref. 3 to 
obtain the integral equation for the matrix S. In the 
presence of a reflecting boundary we can introduce, by 
analogy with Eq. (14), a matrix SR relating the incident 
and reflected fluxes on an internal surface in a crystal. 
For example, when a plane light wave is incident on a 
crystal [see Eq. (4)], then 

The principle of invariance is invalid when the re- 
flection occurs a t  a boundary. However, Eq. (14) is  
valid on any other surface inside a crystal. This allows 
us to derive an integral equation relating the matrices 
SR and S. We shall actually consider a plane parallel to 
the boundary and located at a distance r << 1. The f lux  
qr,8') incident on this plane consists of the primary 
flux (4) and the flux (7) reflected from the boundary. 
Therefore, it follows from Eqs. (4), (7), and (14) that 
if r<<1, we have 

\ 

a0 
I(T,~~)==-s(Q,Q~)F(%) 

4p 

a '  +L Jdp' J~~'s (P ,P' )R(cI ' ) I (~ ,Q' ) .  
4'Vo 0 

(16) 

We shall now assume that ~ = + 0  and substitute in Eq. 
(16) the expression (15) for I(+ O,8), which gives the 
following integral equation for the matrix SR: 

It should be noted that the minimum value of p, for 
light entering the crystal is  (1 -n'2)1'2. However, for- 
mally, Eq. (17) describes the matrix SR(O, 8,) through- 
out the full range of p, and p between 0 and 1. 

54. SYMMETRY PROPERTIES OF THE MATRIX SR 

Before calculating the matrix SR, we shall consider 
the general requirements which are  imposed on this 
matrix by the symmetry conditions. In the case of a 
cubic crystal (and also a uniaxial crystal whose illum- 
inated surface is  perpendicular to the principal axis) 
the matrix SR should be invariant under the operations 
described by the symmetry groups C,,, i.e., it should 
not be affected by rotation through any angle about the 
z axis or reflection in planes passing through this axis. 
It follows from the first requirement that SR(0,8,) can 
depend only on the difference between the angles rp, 
- q: 

~ ~ ( 0 ,  no)  -sR(p9 POI (PO-(P).  (18) 

Reflection in the xz ( q =  0) plane converts E, to El, E, 
to -E,, rp to 2r - rp and q, to 2r - cp,. Therefore, it 
follows from the second requirement that 

sR(p,  pO, qO--q) =D-'SR(pI p., - ((PO-9) )D, (19) 

where 

In particular, in the case of a ray scattered in the plane 
of incidence, i.e., when rp= rp,, we have 

- 
SR(p, PO, O)=D-'Sn(p, PO, O)D (20) 

and consequently, the matrix SR(p, po,O) splits into two 
2 x 2 blocks and its nondiagonal components vanish: 
sfk=sti=O ( i = l  or 2, k = 3  or 4). 

In the case of normal incidence and normal scatter- 
ing, i.e., when p = po = 1, the components E, and E, 
transform in accordance with the irreducible represen- 
tation El of the C,, group. Consequently, the compo- 
nents of the Stokes matrix I of Eq. (2) transform in ac- 
cordance with the representations El X E, =Al + A,+ E,, 
namely I = (I ,  + I,) transforms in accordance with A,, 
Q =  (I, -I,) and U in accordance with E,, and V in ac- 
cordance with A,. Therefore, the matrix SR(l, 1,O) 
should be goverened by three linearly independent co- 
efficients S,, S,, and S, that connect the components I 
and I, and transform in accordance with the same irre- 
ducible representation. In the basis of Eq. (2), the ma- 
trix SR(l, 1,O) has the form 
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s=t/, (S,+S,) , Sf='/, (S,-S*). (21) 

It should also be noted that in the case of normal in- 
cidence the total scattered flux n 9  [see Eq. (49) below], 
which also transforms in accordance with the repre- 
sentation A,, depends only on the component F= F, + F, 
and, therefore, it is independent of the polarization of 
the radiation. 

The scattering matrix satisfies the reciprocity con- 
dition 

Q-'P ( 9 ,  Po)  = K q a O , B )  Q-'K-I. (22) 

Hence, it follows that 
P (n ,  no )  =KP (Q, n o )  =c?; (no, q G-I. 

Here, 

As before, a, corresponds to the case p = -po, rp = rp, 
and the tilde represents the matrix transposition op- 
eration As pointed out in Ref. 3, the matrix S of Eq. 
(14) also satisfies a condition similar to Eq. (23): 

This can be proved by applying the operation K to the 
integral equation for the S matrix3 or by using the for- 
mulas (29)-(32) derived below for this matrix. 

We shall show that the matrix SR satisfies Eq. (24). 
We shall do this by writing down, employing the itera- 
tion method, the solution of Eq. (17) in the form of an 
expansion in the powers of 5,: - 

where 

soR(n ,  0 0 )  =s (a ,  n o ) ,  

The term Sf with y 3  1 describes the contribution to SR 
associated with the reflection of light v times from the 
surface. Application to Eq. (26) for S: of the operation 
K in accordance with Eq. (23) and the use of Eq. (24) 
easily demonstrates that KSPR = SVR and, cansequently, 

The relationship (27) is the result of invariance under 
time inversion: when the directions of the incident and 
scattered rays a r e  reversed, p becomes -p,, po be- 
comes - g, (p becomes rp,+ r, and (p, becomes qo+ n. 
It follows from Eq. (18) that the change in rp and rp, by 
r does not alter the form of the matrix SR. Reversal 
of the sign of the component U is related to the selec- 
tion of the basis unit vectors: when the direction $2 is 

reversed, i.e., when p i s  replaced with -p and rp with 
cp + r, the value of E, becomes E:, whereas E, becomes 
E,*. In general, on the right-hand side of Eq. (27) we 
should replace gR with sR+=SR*, but since the basis (2) 
is selected to be real, it follows that SR+= gR. The fac- 
tor Q in Eq. (22) i s  also associated with the selection of 
the basis: for the unitary representation I' =Q'l19 we 
find that the matrix becomes G= K. As shown above, it 
follows from Eq. (20) that in the case of a ray scattered 
in the plane in incidence, i.e., when rp = rp,, the matrix 
sR splits into two 2 x 2 blocks. It follows from Eq. (27) 
that the components of these blocks a r e  related by 

Sip(, ,  PO, O)=SIP(PO, P. O), i-1-4, 
(28) 

S12R(P, Po, 0 )  =S21R(Pol P, 01, Ss&n(P, Po. 0 )  --S.sR(P., B, 0 ) .  

It should be noted that the matrix S, like the matirx 
P(Q, no), has components Sf,= S,, = 0 ( i  # 4) which vanish 
for any value of n and a,. The appearance of these 
components in the case of the matrix SR is.associated 
with the reflection of light from a boundary and i s  ex- 
plained by the existence of the corresponding compo- 
nents R,= -R,, of the matrix R. 

55. GENERAL SOLUTION OF THE EQUATION FOR 
THE MATRIX SR 

The main equation (17) for the matrix SR can be re- 
duced to simpler equations. This can be done employ- 
ing explicit expressions for the matrix S. It follows 
from Refs. 3 and 13 that 

s (n ,  no )  =QIJ/,s(~) (P, PO) +[ (1-pa) (I-P:) l C ~ ( i ) ( ~ ,  P ~ ) P ( " ( * ,  8) 
+S(%' (p, po) P(') (Q, a,)}. (29) 

Here, the matrices pa)  and P"' a re  given by the ex- 
pressions in Eq. (6), 

PPa 
S(O)(P, ~ o ) - ~ ~ ~ ) i ( - ~ o ) - ,  

P+PO 
UP) =M(P)H(o)(B), (30) 

the matrix H(O) is the solution of the integral equation 

where 

This matrix equation reduces to a system of four equa- 
tions for the components H$' (i, j =  l or 2) and one equa- 
tion for the component H::'. 

The matrix S"' in Eq. (29) has the form 

where E is a unit 3 x 3 matrix. These components, 
like the function S")(P, po) in Eq. (29), a re  given by 
expressions of the type 

Plrr 
S a ( p , l r r ) - - & ( ~ ) H ~ ( ~ ) ,  

P+P0 
(32) 

so that the components Sa', S i ) ,  and S"' correspond to 
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the functions Ha'(p), H: '( p), and Hi,'( p), which are  
solutions of the equation analogous with Eq. (31) with 
the * functions eU) (p )  = $ (1 - p2)(1 + 2p2) for Ha): 

v.(~d='I.(i-a') for ~ ! ' ) a n d ~ * ) ( p ) = ~ / , , ( i + ~ ~ ) a  for aca). ( 3 ~ ~ )  

The general equation for the matrix SR can be written 
in a form similar to Eq. (29): 
sm(n,  Q,)=-Q(I/,s?' (B, pO) +I (i-pX) (1-CL:) I ~ ~ S . ( " ( ~ ,  8 , )  +sr' cn, n o )  1. 

(33) 
The matrices S t '  contain terms proportional to cos n$ 
or sin nJI. Since integration with respect to (P' in Eq. 
(17) causes the products of terms with different values 
of n to vanish, Eq. (17) splits into three independent 
equations relating the components Sg) and Sn with the 
same values of n= 0, 1, and 2. For example, in the 
case of the matrix st), we obtain the equation 

3 dpl 
s:)(~, =s(o) (P, Po) + --ao J--s(o) (P, P*)R(ROQS~O) (PI, PO). 

0 

(34) 
Substituting in Eq. (34) the value of s'O' in the form of 
(30) and writing down 

we obtain the following integral equation for the ma- 
trix A: 

where 

The matrix has nonzero components a,,, a,,, a,, 
= iP,, and a,,. Therefore, the matrix equation (36) 
splits into two systems of two equations each for the 
components A,,, A,, and A,,, A,, and one equation for 
the component Ad4. 

The matrices Skm)(f2, no) (m = 1 or 2) a re  described by 
the following equation derived from Eqs. (17) and (33): 

sjm' (0, GIo) =S'"" (p, po) PCm) (8 ,  

dq'6'") (p') s'") (P, pf) P("') ( Q ~ ) R ( ~ ' ) Q S : ~ )  (8', 8.) , 
(37) 

where @ ( I ) =  1 - p2, #J(,)= 1. Direct substitution demon- 
strates that the equation of S:) may be satisfied by 
assuming that 

Here, E is a unit 3 x 3 matrix, P u'(6b,6bo) is  described 
by Eq. (6), and 

2hsin $ 0 cos $ 0 
(39) 

We shall now introduce the matrices 

Here, B,(p, p,) a re  components of the matrix (381, 
whereas the components b,( p, p,) a re  given by the re- 

lationship 

Plr, 
B(P, PO)= GH'" ( P ) ~ ( P ,  PO)H'" (PO), (41) 

where 

Using Eqs. (32), (37), (38), and (41) we can show that 
the matrix b(p, p,) is given by 

where 

@, (p) =EC') (p)x("(p)E"' (PI, 

and R,( p) a re  the components of the reflection matrix 
R defined by Eqs. (8)-(10). The matrix equation (42) 
splits into two pairs of independent equations for the 
components b,, b, and b,, b,. 

Equation (37) for the component Sg' can be satisfied 
assuming that 

If we now introduce the function a(p, po) defined by 

PPo sit' (K I*)= ;r;;oH"'(~)a(~, i*)H")(vd, (45) 

we find that the substitution of Eqs. (441, (451, and (32) 
in ~ q .  (37) gives the following equation for a(k, 1,) 

where 

It follows from Eq. (15) that the matrix SR relates the 
scattered flux on an inner boundary of a crystal to the 
incident flux which has entered the crystal. 

It follows from Eqs. (11) and (13) that the scattered 
and incident fluxes on an external boundary are related 
by 

B 
I(-0, PI, q) = P ~ * ( p z ,  T; p, qO)F(-0, --PI, (PO).  

4 ~ 2  
(48) 

Here, 

1 FzP1 sm(pZ, cp; p,, (po)=y-T(~z, P ) S ~ ( P ,  TJ; (PO)T(P~, PI) ,  
PCLa 

where p, and p, p1 and po are related by the Snell for- 
mula (12). 

The total radiation flux emerging from a crystal (per 
unit surface) is 

1 a. 

~13 = J ~r d ~ r  5 d91 (-0, PZ, v) .  (49) 
0 0 

The ratio of the emerging to the incident flux crossing 
the boundary 
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represents the total quantum efficiency of the lumines- 
cence. It is clear from Eqs. (33), (35), (38), and (44) 
that in the case of a ray incident normally on the sur- 
face and scattered in the reverse direction, i.e., when 
p2= po= p= pl= 1, the degree of polarization of the 
scattered light in the case when the exciting light is 
completely (linearly or circularly) polarized is given 
by the expressions 

where 

Here, H:;' are the corresponding components of the 
matrix H'O) defined in accordance with Eq. (31). 

In the case of low values of Go, the integral equation 
for the matrix S, like the equation for the matrix SR, 
can be solved by iteration in powers of Go. In the first 
approximation, i.e., when allowance is made only for 
the first- and second-order scattering, we find that if 
p2= pl = 1, it follows from Eq. (51) on the assumption 
that n2= 1: 

9:; -I-0.i60650, 9 ' ~ ~ c = - ( i - 0 . 3 1 5 ~ 0 ) ;  (52) 

however, if n2= 10, then 

9'::; =i-0.248 @o, 9'zic -- (1-0.491 a , ) .  (53) 

56. CHARACTERISTICS OF BACKSCATTERING 

A s  pointed out in Ref. 1, when excitons with a wave 
vector qo are excited, the probability of backscattering 
of these excitons, i.e., of the scattering in the direction 
q =  -qo, is doubled for 7; >> 7, because of interference. 
This additional contribution is described by diagrams 
with intersections (in a certain order) of vertical im- 
purity lines whose contribution is important on devia- 
tion of q from -qo by an angle ~ 0 ,  < (qoldi,,)". Conse - 
quently, the intensity of light scattered once backward 
should be doubled and this intensity is governed by the 
matrix Sf(po, cpo+ n, po, qo), equal-in accordance with 
'Eqs. (53) and (18)-to P(po - pO, n)/2. At the exit of the 
crystal the doubling of the radiation scattered singly 
backward should occur on deviation from the direction 
of the incident ray by an angle cp < A@,= X/2nl,,,, in an 
azimuthal plane and by an angle 0 < ~ 0 ~ ~ ~ / p ~  in a mer- 
idional plane. Here, X is the wavelength of light outside 
the crystal. Within this angle the scattering matrix is 
SR+ St. Since the polarization of singly scattered light 
governed by the matrix S t  is stronger than the polariza- 
tion of multiply scattered light, the degree of polariza- 
tion of the backscattered radiation increases. Thus, if 
p2= p1 = 1, then instead of Eq. (53) for the backscattered 
radiation we find that if n2= 10, then 

9:: =I-o. i24aO. 9';: =-ii-0.246 a , ) .  (54) 

This effect is associated with multiple scattering of 
excitons in the case when light is  scattered once. Mul- 
tiple scattering of light by excitons should also result, 
because of interference, in doubling of the backscat- 
tered radiation (see the review in Ref. 14). This doub- 

ling occurs within an angle ~ 0 '  - X/2nlr,. Since it fol- 
lows from the condition (lb) that lr,>> Z,,,,, we find that 
~ 0 ' < < ~ 0 , .  As a result of interference associated with 
multiple scattering of light and with multiple scattering 
of excitons, the intensity of,the radiation is doubled 
within the angle &I' but its polarization is  not affected. 

87. RESULTS OF A NUMERICAL CALCULATION 

A numerical calculation was carried out in which the 
integral equations (36), (42), and (46) for A, b, and a 
were solved on a computer by the iteration method.15 
The corresponding H functions were determined by the 
same method from Eq. (31) using the \k functions from 
Eqs. (31a) and (32a), since the tables in Refs. 3 and 13 
were insufficient for this purpose. The iteration pro- 
cedure was continued until the difference between the 
two consecutive values became less than 0.01% at every 
point. For Go close to 1, where the convergence of the 
method was slow, the zeroth approximations were the 
values of the H functions calculated in Ref. 3 for Go= 1. 
In all cases the calculated H functions agreed (within the 
limits of the calculation error) with those given in Ref. 
13. 

By way of a check, the total scattered flux n y  [see 
Eq. (49)] was calculated for all values of the refractive 
index and Go= 1, and it was checked whether it was 
equal to the incident flux nF. The discrepancy between 
these fluxes did not exceed 0.5%. Figure 1 shows the 
dependence of the total quantum efficiency of the lurn- 
inescence qO= F/F in the case of normal incidence of 
the exciting light on the quantum efficiency Do for a 
single scattering event. As pointed out earlier, if po 
= 1, the value of qo is independent of the polarization of 
the exciting light. We can see that on increase in n the 
value of Q,, decreases steeply even for tio close to unity 
and this is due to an increase in the number of scatter- 
ing events N because of the reflection of light. For ex- 
ample, if Go= 0.9, and increase in n2 from 1 to 10 in- 
creases N= In qo/ln Go from 8.5 to 28. 

At high values of n the radiation leaving the crystal 
is incident on the surface in a narrow solid angle ASZ 
= n/n2 and only a small proportion of the radiation es- 
capes within this angle. Therefore, the density of the 
radiation incident on an internal surface of a crystal, 

L U 

n~,,,= j p dp j ~ V Z ( + O ,  P , ( P ) ,  
0 0 

FIG. 1. Dependences of the total quantum efficiency of the 
luminescence qo on the quantum efficiency for a single scat- 
tering event Go when p o = k  = 1. Curves 1-5 correspond to 
the following values of n2: 1 )  1 . 0 ;  2 )  2 .0 ;  3) 6 .25;  4) 10; 5 )  25.  
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FIG. 2. Dependences of the flux incident on an internal surface 
of a crystal on n  for /.q =po= 1. Curves 1-4 correspond to the 
following values of Go: 1) 0.95; 2) 0.975; 3) 0.99; 4) 1.0. The 
right-hnd scale applies to the dashed curve 4'; the left-hand 
scale applies to all the other curves. 

may be considerably greater than the flux npOF(+O) en- 
tering the crystal across  this surface. Figure 2 shows 
the dependence of the ratio .&,/F(+O) on the value of 
n for a normally incident ray and various values of Go. 
We can see that when Go= 1, this ratio i s  a few tens 
when n is  large, but i t  decreases rapidly when wo i s  
reduced slightly. 

Figure 3 shows the angular distribution of the inten- 
sity of the scattered radiation in the case when n2= 10, 
calculated for various values of 5, when the exciting 
light is  incident normally. This angular distribution 
depends on the polarization of light and when the ex- 
citing light is linearly polarized it depends also on the 
direction of this light relative to  the plane of polariza- 
tion. Figure 3a corresponds to the propagation of light 
in the plane of polarization, whereas Fig. 3b corre- 

FIG. 3. Angular distributions of the radiation emerging 
from a crystal excited with linearly polarized light when p, 
= p o = l  and the radiation travels in the plane of polarization 
(a) or when the radiation travels in a plane making an angle 
of r/4 with the plane of polarization (b); the latter set of 
curves applies also to unpolarized and circularly polarized 
light. The continuous curves are calculated for n = 10 and 
the dashed curves for n = 1. The dash-dot curves are the 
angular distributions of the intensity I @ )  of light incident on 
an internal surface of a crystal. Curves 1-4 correspond to 
the following values of Do: 1) 0.6; 2) 0.8; 3) 0.99; 4) 1.0. 

FIG. 4. Dependences of the degree of polarization of the 
scattered radiation on the value of Go plotted for pz =p = 1 and 
normal incidence of circularly polarized light. Curves 1-6 
correspond to the following values of n Z :  1) 1.0; 2) 1.2; 3) 2.0; 
4) 6.25; 5) 10; 6) 25. Curves a and a' correspond to allowance 
solely for single and double scattering when n  = 1 (a ') and n 
= 10 (d [see Eqs. (52) and (53)l. Curves b and b' again corre- 
spond to single and double scattering but an allowance is made 
also for the contribution of the third-order scattering pro- 
cesses. 

sponds to the propagation a t  an angle of 45" relative to 
this plane. It follows from Eq. (28) that the same scat- 
tering diagram as in Fig. 3b applies also to the excita- 
tion by unpolarized o r  circularly polarized light. For 
comparison, we a r e  showing the angular distributions 
in the absence of reflection, i.e., when n =  1, a s  well 
as the dependence on p of the intensity of light incident 
on an internal surface of a crystal. Since, in the case 
of large values of n, a small p, corresponds to p close 
to unity, the plot of I(p,) i s  much flatter for n2= 10 than 
for n =  1. It follows from the symmetry relationships 
(28) that the curves in Fig. 3b describe also the depen- 
dence of the intensity of light scattered normally to the 
surface ( p Z =  1) on the cosine of the angle of incidence 
of the radiation p, [apart from a factor po/pl in Eq. 
(48)]. The curves in Figs. 3a and 3b can also be used 
to find the intensity of the scattered light in a plane per- 
pendicular to the plane of polarization. 

The influence of reemission and reflection from a 
surface on the polarization i s  demonstrated in Figs. 4 
and 5. These figures give the dependences on Go and 

FIG. 5. Dependences of the degree of polarization of the 
scattered radiation on Go plotted for p2 = p =  1 and normal 
incidence of linearly polarized light. The notation is the 
same as  in Fig. 4. 
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n of the degree of polarization of normally scattered 
light in the case of normal incidence of circularly or 
linearly polarized exciting light. We can see that as 
Go approaches 1, the degree of polarization falls rapid- 
ly, and it decreases on increase in n. For example, 
when Go= 1 and n2 is increased from 1 to 10, ~c,,c de- 
creases from 23.7 to 1.996, whereas gl,, decreases 
from 31.9 to 3 . 6  (the degrees of polarization for n= 1 
agree with those calculated in Ref. 3). I t  is clear from 
Figs. 4 and 5 that an increase in n causes the degree of 
polarization to fall first rapidly and then reach almost 
a saturation plateau when the average transmission co- 
efficient 1 -a becomes less than the quantity [I  
- qO(GO, n= I ) ]  and, therefore, a further increase in 
does not increase significantly the average number of 
the scattering events. The dashed curves in Figs. 4 
and 5 are calculated by the method of iteration of pow- 
ers of Go allowing only for single, double, and triple 
scattering. We can see that i f  allowance is made for 
the reflection, these curves are practically coincident 
with the exact solution for Go below 0.15 and 0.20. 

Figure 6 gives the dependences of the degree of cir- 
cular polarization of light on the cosine of the angle of 
emergence p,. The dash-dot curve shows the corre- 
sponding dependence on p for light incident on an in- 
ternal surface of a crystal. We can see that at low val- 
ues of p2 the degree of polarization of light for n2= 10 
is higher than for n= 1. This is due to the fact that 
when n is large, small values of p2 correspond to p 
close to unity and an increase in the degree of polar- 
ization because of approach of CL to unity compensates 
its reduction because of an increase in the number of 
scattering events R on increase in n. This enhances 
q,,, particularly at low values of Go, when-in ac- 
cordance with Fig. 4-the value of PC',,,, decreases very 
smoothly on increase in n. In accordance with the con- 
sition (28) the curves in Fig. 6 describe also the depen- 
dence of the degree of polarization of light scattered 

FIG. 6. Angular dependences of the degree of circular po- 
larization b&c bz) in the case of excitation with circularly 
polarized light bl =pO= 1). The continuous curves are calcu- 
lated for n = 10 and the dashed curves for n = 1. The chain 
curves show the dependence Pcirc b) for the radiation incident 
on an internal surface of a crystal. Curves 1-5 correspond 
to the following values of Go: 1) 0.2; 2) 0.6; 3) 0.8; 4) 0.99; 
5) 1.0. 

normally to the surface ( p=  1) on the angle of incidence 
KO. 

Figure 7 demonstrates the influence of the interfer- 
ence effects occurring in multiple scattering of excitons 
by impurities. We can see that the polarization of the 
back-scattered radiation increases considerably within 
the selected solid angle. This increase is greatest for 
Go= 0.6-0.95. At low values of Go, when single scatter- 
ing of light predominates, the intensity of the backscat- 
tered radiation doubles but the polarization does not 
change when allowance is made for the additional con- 
tribution. When Go is close to unity, the contribution of 
single scattering decreases and a change in the degree 
of polarization becomes less. Thus, for Go= 1 and n2 
= 10, the interference effects in b~ckscattering increase 
PI,, from 3.0 to 4.3% and qirC from 1.9 to 3 .a .  Thus, 
such interference effects can be detected from a change 
in the intensity and from a change in the polarization. 
Precision measurements of the angular distributions 
make it possible to determine the diffusion length of 
excitons. 

We shall consider briefly the frequency dependence 
of the intensity and polarization of the scattered light 
in the case of excitation by a line of considerable width 
AW >> r. In the Introduction we have given the value of 
the absorption coefficient a(w,)= W,,~,/I' at a reso- 
nance frequency corresponding to the point of intersec- 
tion of the exciton and photon branches. Away from the 
resonance frequency w, , the absorption coefficient a( w )  
decreases in accordance with the law 

where for the sake of generality we have included also 
the background absorption coefficient ag which in inde- 
pendent of the frequency. Then, the radiative time 
(when rp << T~ ) is given by 

Therefore, away from the resonance frequency w ,  

FIG. 7. Changes in the polarization of backscattered radiation 
because of interference effects in multiple elastic scattering of 
excitons when =p =po=pl = 1 and the exciting light i s  circu- 
larly polarized (curves denoted by 1) or linearly polarized 
(curves denoted by 2); it i s  assumed that n = 10. The con- 
tinuous curves are calculated allowing for interference and 
the dashed curves correspond to Figs. 4 and 5. 
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there is a reduction also in the quantum efficiency for 
a single scattering of a photon, which-when allowance 
is made for %--is 

7 a-a* 
dlo = 2 .  

Tr.d a 

When 6, is close to unity, the quantum efficiency de- 
creases rapidly on reduction in 6,. Consequently, for 
Go(* ) = 1 the line width of the scattered radiation may 
be considerably less than r. It then follows from Figs. 
4 and 5 that the degree of polarization of the radiation 
increases away from the line center, so that the aver- 
age degree of polarization of a line may exceed greatly 
the degree of polarization at the center. In the case of 
strong inhomogeneous broadening r' >> r with a Lo- 
rentzian distribution of the frequency w, ,  Eqs. (55) and 
(56) should be modified by replacing r with r'. 

We shall conclude by noting that the above theory ap- 
plies also to the Rayleigh scattering of polarized light 
by defects in isotropic solid and liquid media, and- 
under certain conditions-it also describes the reso- 
nance scattering of acoustic phonons.16*'' 

The authors a re  grateful to N. A. Silant'ev for  his 
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Phase relaxation investigation under conditions of 
appreciable spin polarization 
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Measurements were made of the phase-memory time T, of Yb3+ ions in CaWO, single crystals activated 
simultaneousiy with Yb3+ and Tb3+ ions, which have substantially different g-factors. Under conditions when 
Tm is determined by the dipole-dipole interactions between the Yb3+ and Tb3+ ions, a strong decrease of the 
relaxation rate Tm -' is observed with decreasing temperature. This is due to the considerable polarization of 
the Tb3+ ions, for which the condition kT <&H is satisfied. 

PACS numbers: 61.80.Jh 

1- INTRODUCTION i.e., gp>> k ~ .  Experiments when the low-temperature 
approximatipn is valid are of particular interest if 

The overwhelming majority of EPR research has the investigations a re  performed by the electron spin 
been performed under conditions when the high-tem- echo (ESE) method, which is highly effective in the 
perature approximation is valid, i.e., gp<< kT (the study of relaxation processes. No such investigations 
notation here is standard). Yet the courses of the were performed previously, apparently because of the 
spin-spin and spin-lattice relaxation should change sub- need for obtaining very low temperatures: thus, at 
stantially if appreciable spin polarization1) takes place, wavelengths -3 cm we have gpH -0.5 K so that the hard- 
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