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The dfect of surface magnetic-anisotropy energy on spin-flip transitions, caused by change of sign of the first 
anisotropy constant k,, is investigated. It is shown that, first, transitions within the volume should be 
accompanied by surface transitions (which under certain conditions are of second order); and second, the 
hysteresis loops should change their shape (become narrower). This change is independent of the specimen 
dimensions. The effect of surface fluctuations is considered, and a criterion is formulated for applicability of 
Landau's theory (without allowance for fluctuations) to surface reorientation transitions of the second order. 

PACS numbers: 75.30.Kz, 75.30.G~ 

1. INTRODUCTION the constant but also of the direction of the axes of easy 

Spin-flip transitions in magnetic materials, which and hard magnetization. Both these facts a r e  taken into 

have been studied intensively in recent years,' can be account by introduction of a surface anisotropy energy 

described by introduction of an effective anisotropy con- f,, which without loss of generality may be represented 

stant k, that changes sign with change of temperature in the form1' 

[k, =B(T - To)/T,,= BT; for definiteness, P > 01. The fs==k. sin' (6.-(pt, (2) 

treatment as a rule can be reduced to investigation of where k, i s  the surface-anisotropy constant, 0, i s  the 
the anisotropy energy value of the angle 0 a t  the surface of the specimen 

M - 9 ,  (6) -fv (6) =-k, sin' 6-k. sin4 6, (1) (x = 01, and the angle cp, for k, > 0, gives the direction - .  
of the axis of easiest magnetization on the surface (k,, where M is the magnetic moment of unit volume (in the 
in contrast to K, and k,, has the dimension of length; simplest case of a uniaxial ferromagnet, M = p/a3, 

where p i s  the Bohr magneton and a i s  the interatomic k, and k, a r e  dimensionless quantities). 

distance), and where k, i s  the second anisotropy con- There i s  no reason to expect that k, will vanish in 
stant ( Ik, I << Ik, I far  from T = To). The nature of the the same temperature range where k, changes sign. 
transition within the volume i s  determined by the sign This permits us  to restrict  ourselves to the first term 
of k,: when k,> 0, the transition from the state with of the expansion, written in (2). 
0 = 0 to the state when 0 = n/2 occurs a s  a transition of 
first order (Figs. 1 and 2); when k, < 0, a s  two transi- Our problem consists in the elucidation of the effect 

tions of second order located close together (Figs. 3 
of the surface energy (2) on the reorientational transi- 

and 4). As for any transition of second order,  in the tions; for this purpose, it i s  necessary to investigate 

neighborhood of reorientational phase transitions [kt the functional 

=kc, = 0 and k, =kc, = 2 Ik, I (see Figs. 2 and 411 the role - 
of fluctuations i s  anomalously large. But because of M - T F , ( ~ ( = ) } = ~  {fv(6)-fv(*-). 

0 

the fact that the inhomogeneous part of the free energy 
is determined by the comparatively large exchange +C(d61dz)')dz+kS sina(6s-cp), 

forces, and the reorientation by the temperature depen- 
dence of the small (relativistic) anisotropy constants, 
the condition for applicability of the Landau theory (the 
Levanyuk-Ginzburg criterion; see  Ref. 2, 5 146) i s  
violated only in the immediate vicinity of the transition 
point. On adding to f,(B) the energy of nonuniform ex- 
change C(dB/dx)', where C =a20/pM ( 0  is a quantity of 
the order of magnitude of the Curie temperature), one 
can easily show that the Landau theory i s  valid when 

that is ,  over practically the whole range of k, values of 
interest to u s  (Ik, I S Ik, I ;  see  Figs. 2 and 4). The ap- 
plicability of the expansion (1) to the case of a phase 
transition of first order i s  justified by the fact that this 
is an expansion not in an order parameter but (essen- 
tially) in the ratio v,/c (u, i s  the velocity of the atomic 
electrons, c the velocity of light; see  Ref. 3,937). 

where 0, is  the equilibrium value (stable o r  meta- 
stable) of the angle 8 in the depth of the specimen (at 
x - a ) .  

The function 0(x) that minimizes the functional (3) 
satisfies the equation 

In a surface layer, the anisotropy constants must dif- FIG. 1. Variation of anisotropy energy with direction of mag- 
fer substantially from their bulk values. Here, of netic moment within the volume when kz > 1: a, kl < -2kz; b, 
course, there may be a change not only of the value of -2kz<ki<-k , ;  c ,  k l = - k , ;  d, - k z < k i < O ;  e ,  kl>O.  
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FIG. 4. Variation of direction of 
FIG. 2. Hysteresis loop when magnetic moment within the vol- 

ume with kt, when k2 < 0. 

-ZkZ -kz 0 0 -2kz k, 

and the boundary conditions cos eS (I kl l/kz-2 sin2 es) 
( lk, l/kz-si3 6.) % 

' + a COS 2(0s-9)> O' 

Figure 5 shows a graphic solution of Eq. (11). For 
sufficiently large values of Ik, Ilk,, the equation has 
only one root. Since Ff(8,=O)< 0, it corresponds also 
to a minimum. For smaller values of Ik, Ilk,, Eq. 
(11) has two roots: the smaller corresponds to a mini- 
mum, the larger to a maximum. -There is  a value of 
Ik, I (we denote it by Ik,, I ) such that when Ik, I < Ik,, I ,  

there a r e  no roots. The values of Ik,, I and 8, [8, is , 
the multiple root of Eq. ( l l ) ]  a r e  determined by solution 
of the system of equations 

According to (4) and (5 ') 
C(d0/d2)'=fv (0) -fv (0-1. 

The sign of d8/dx coincides with the sign of 8, - 8,; 
d0 sign (b,-0~) -= 
dz 

c,,, [fv (0) -fv(ft-) 1,". (7) 

The last equation2' enables u s  to give the boundary con- 
dition (5) the following form: sin 6,( 1 k,.l /kt-sinz O.)"='lza sin 2(cp-6.), 

cos 6,(2 sin2 6,- 1 k,,l/k,) 
= 0 cos 2 (6.-9). 

(12) 
(I k,.I/kz-sin2 0,) % 

Substitution of the value of d8/dx in (3) enables us to 
transform the functional (3) to a function of 8,: 

The parameter that occurs in Eqs. (11) and (12) i s  
a measure of the surface energy. Since k,=z,a, where 
z, i s  a dimensionless quantity of the same nature a s  k, 
and k, (as a rule, z, >> Ik, I), o = k , ( p ~ / k ~ @ ) ~ ' ~  may he 
either larger or  smaller than unity. We shall consider 
the two limiting cases (a>> 1, a<< 1). then the boundary condition (8) i s  the condition for an 

extremum of the function F(0,). To the stable solu- 
tion, of course, corresponds that root of Eq. (8) for 
which F(8,) has a minimum; that is ,  

We begin with the calculation of Ik,, I/k2 and 0,: 

025 (l/za sin 2cp) ", I k,. 1 /kz=2 ('/,o sin 2cp)"z, o a i ,  

0.q-sins cp cos cp/oZ, I kt. l/kz=sin2 cp(l+sinz 2cp/4az), o>l. 
(13) 

If Ikll >> Ik,,I, then 
.Bs% sin 2cp/2(l k,I/k,)"al. 2. SURFACE TRANSITIONS DURING A VOLUME 

TRANSITION OF FIRST ORDER (k2 >0) 
But when a>> 1, this formula i s  valid only a t  very large 
values of lk, Ilk, ( Ik, I/k, >> fo2 sin22p). In the opposite 
limiting case, 

We begin with a negative first anisotropy constant (k, 
< 0). When k, < -k2, the state with 8,=O i s  stable with- 
in the volume; when -k, < k, < 0, this state is  meta- 
stable. We shall seek a minimum of F(8,) when 0, = 0. 
If the axes uf easy magnetization within the volume and 
on the surface coincide ( p =  O), then O(x) GO.  If Ik, 1 5 Ik,, I ,  then 8, 8, -A(k, -kl)1'2; the coefficient 

A i s  determined by the value of F"'(8,). The last for- 
mulas show that the surface energy shifts the lability 
point somewhat: the state with 8, = 0 becomes absolute- 
ly unstable not when k, = 0, but when 

We first consider the case in which the surface axis 
i s  not perpendicular to the volume axis (cp #n/2). It i s  
obvious that the angle 8, must lie between 0 and p. On 
substituting the value of fv(8) and taking into account 
that fv(8,)= 0, whereas d8/dx < 0, we have k,=k,. - { - (ksk2 sin 29) *(2/C) ", ks/ (k,cl1"< 1, 

-kz sin2 cp, ks/(kzC) ">I. 

We now consider the case in which the surface and 
volume axes of anisotropy a r e  perpendicular to each 

--- FIG. 3. Variation of anisotropy energy with direction of mag- 
netic moment within the volume when k2 < 0: a ,  kl < 0; b, FIG. 5. Graphic solution of Eq. (11) ( k 0 ,  kz >O): a, lkll 
0<k1<2(k2l; c ,  ki>21kzl. kz; b, Ik,l< Ikll< 4; c. Ikil <lkJ . 
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other (q=n/2). In this case, Eq. (11) has two solu- 
tions: 

sin 6 a 4 ,  sin 6 4  (Ik, Ilk,-a2)l(i-a') 17,. 

The second root exists if 

a'< 1 kt 1 l k r 4  

or  

i< 1 k, Ilk,<a'. 

The values of the second derivative F" at the ex- 
tremum point a r e  proportional to ( Ik, l /k2)'/2 - u for 
the first root and to (0- 1) sin2B, for the second. 

Thus if o <  1, there i s  only one solution 8, =O;  this 
means that when Ik, I/k, > c?, the direction of the mag- 
netic moment i s  uniform over the whole body [B(x) r 01, 
and the lability point is 

kl=kle--kz~', cp=nI%, a<l .  (17) 

If o >  1, then a t  lk, I /k, = o2 a new solution appears, 
corresponding to a minimum, 

sin = 

that is, when Ik, 1/k2=02> 1 there should be observed 
a surface phase transition of the second order. When 

I k, I = k,, the angle 8, reaches the value n/2, and con- 
sequently k,= -k, in this case: a lability point of the 
state with 8, = 0. 

We turn now to consideration of states with 8, = n/2. 
Without allowance for boundaries, they a re  stable when 
k, > -k, and metastable when -2k, < k, < -k,. Now, cp 
< 0, < 1/2 ((p of course i s  not equal to n/2 ; when cp = n/ 
2, the boundary makes no change in the state diagram). 
It is easily verified that, with the notation 

6,,=n/2-~, Zk,+k,=k,', (p'=n/2-(p, (19) 
Eq. (8) can be given the form, coinciding with (111, 

sin x (k1'lk2-sin2 X) "=1/2u sin 2 ((p'-n12). (19 '1 
This enables w to use the results obtained above. 

Figure 6 shows the function 8, = O,(k,), a surface 
hysteresis loop for cp#n/2. We note some features of 
this loop: d~,/dk, becomes infinite a t  the lability 
points: although the phase-equilibrium line (k, = -k,) 
i s  practically unshifted [the shift is  an effect of order 
( O / ~ M ) " ~ ( ~ / L ) ,  where L i s  a dimension of the body], 
the change of width of the hysteresis loop i s  an obser- 
vable effect, since it i s  independent of the specimen 
dimensions. '' 

Figure 7 shows the function ~ , ( k , )  for (p= r/2. The 
form of the hysteresis loop depends on the value of the 
surface energy: when o <  1, the surface hysteresis loop 
has the form of a rectangle (Fig. 7a); when o >  1, there 
should occur a phase transition of second order at k, 
= -8k2; in the immediate vicinity of the lability point 

FIG. 6. Surface hysteresis loop 
for cp **/2; (variation of O s  with 
ki when kz >O). 

- 2  k 0 kr 

FIG. 7. Surface hysteresis loop for cP=n/2 (variation of tJ 
with hi when h2 >O): a, u 1; b, a >1. 

k, = -k,, the state with 8, = 0 i s  already metastable 
(the phase-equilibrium line with allowance for surface 
energy moves slightly to the left). It i s  interesting to 
note that when k, > -k,, there i s  no metastable state 
with e,=o. 

3. THE 8, (kt ) RELATION DURING A VOLUME 
TRANSITION OF SECOND ORDER (kz <0) 

The anisotropy energy 
fv (6)  --k, sin2 6+ 1 k, 1 sin' 6 

always has one minimum when k, i s  negative (see Fig. 
3). When k, < 0, the angle 8, i s  zero; when 0 < k1 
< 2 Ik, I ,  we have sine, = (k1/2 lk21)"2; and when k, 
s- 2 Ik, I ,  the angle 8, i s  n/2. The change of 8, with k, 
(Fig. 4) leads to the result that when 0 < k1/2 Ik, ! 
< sin2q , there occurs a state that monotonically de- 
creases from the boundary (dB/dx< 0); and when k,/ 
2 Ik, I > sin2(p, one that monotonically increases (dB/ 
dx > 0). When k,/2 Ik, I = sin2(p, the uniform state i s  
stable. 

When 8, = 0 (k, < 01, the equations analogous to (11) 
have the form 

1 k 
s i n 0 ~ ( l ~ J + s i n ~ ~ . ) " ' = - a s i n 2 ( c p + ~ ) ,  2 a=; (IkalC)" ' (21) 

cos 6, (I k,/k21 + 2 sin2 6=) + a cos 2 (6.-(p) > 0. 
( I kc/k, I + sina es )  " ' 

It i s  evident that a solution always exists and that i t  al- 
ways corresponds to a minimum: 

a sin 2q/2 (I k,/k,l ) ", U< I k,/k,I, 
(p-o-'sin cp(l k,/k,l+ sin")"', o w  lk,/k,l. 

When sine, = (k,/2 I k, 1 ) ' I2, the equation for determina- 
tion of 8, looks especially simple: 

sin2 6s-sin' 6,='lro sin 2 (cp-6.), ki>O. (22) 

Hence for small o(o<< sing,) 
sin 6 ~ m s i n  6,+u sin 2(cp-6,) 14 sin 6,, 

and for large o(o>> sing,) 
6s=cp+o-'(sin' cp-sin2 6,). 

When 8, = n/2 (k, 5- 2 I k, I ), a substitution analogous to 
(191, 

reduces this case to the case 0,=0. Thus 8,, a s  well 
as 8,) i s  a single-valued function of k,, evidently having 
no singularities [at k, = 0, the angle 8, = O,(k,) and its 
f irst  derivative a r e  continuous; see Fig. 8a]. 

We consider the case (p = n/2 separately. Proceed- 
ing as before, we find 
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of the infiniteness of the correlation radius the transi- 
tion to the equilibrium (volume) value occurs according 
to a power law. 

5. THE ROLE OF FLUCTUATIONS 

FIG. 8. The fuuction O =O s(  hi) when h2 4 0: a, (p**/2; b, 
(P=n/2.  Dotted curve: the functions 0 ,  =O ,(kt). 

Thus the transition from the state O = O  to the state 0 
=n/2 is  preceded by three phase transitions: one sur- 
face phase transition of second order at  k, = - Ik, 102 
and two volume transitions (at k, =O and a t  k, = 2 Ik, I ). 
At the point k, = 0,O, and dO,/d7 a re  continuous; but a t  
the point k, = 2 Ik, I ,  dO,/dk, has a finite discontinuity 
(Fig. 8b) 

4. DEPTH OF PENETRATION 

An important characteristic of a surface state i s  the 
depth of penetration, which, because of the complicated 
spatial variation O(x), can be defined in various ways. 
In the immediate vicinity of the boundary (for x - O), 
the spatial variation B(x) is  conveniently character- 
ized by the quantity 

which according to (7) and (8) can be exhibited in the 
following form: 

By using the values of 8, obtained above in limiting 
cases, one can make the 6, = 6,(k1) relation specific. 
We note that although 6,(k1) repeats the singularities 
of O,, it does not always become infinite on approach 
to the values of k, at which a uniform state occurs: for 
example, when q =  n/2 and k, - -02 Ik, I (k,g 0) from 
larger values of k,: 

6s-taO/pMks. 

Another characteristic of the nonuniformity of the 
state O(x) is the quantity 6,, which describes the pas- 
sage of the solution to the asymptotic behavior, O(x) 
-O(m), for x >> 6,. According to (7) 

From this expression it i s  clear that 6, becomes in- 
finite a t  those values of k, at  which there occurs a 
change of behavior within the volume. As is evident 
from the preceding, the dependence on x in 0(x) does not 
disappear. We consider a s  an example of such a case: 
k,=O,k,< 0 ,0<  q#n/2. Using (7) and (5'1, we have 

Surface phase transitions possess singularities caused 
by their two-dimensional nature. In particular, the 
fluctuational corrections have an unusual structure. In 
order to demonstrate this, we shall calculate the fluc- 
tuations of the angle e(x) near a point of surface phase 
transition of second order, when k, s -8k, (k, > 0, 1, 
q =  n/2, Fig. 7b). The fluctuation 68 of the angle obeys 
the following equation: 

A66-ki66/C=0, 66+0 as x**. (30) 

Since a t  the boundary 
d ks 
-661-0;- -C661-o, 
dz 

therefore 68(r) = b8(p)e-*X, where y = k ,/C and where 
6O(p) i s  the solution of the two-dimensional equation 

Hence the correlation radius of the fluctuation i s  

P . = X . - ~ .  x:= ( 1 kl 1 - d k a )  /C, 

that is ,  

[Cl ( l  k ,  I -oaka) 

The fluctuational part of the thermodynamic potential, 
after integration over the depth, takes the form 

6Qn ( 1 k l  1 -oak2) (MzCS/2ks) (6&)', (33) 

where S i s  the area  of the surface of the body and 
where 68, is the value of the fluctuation of the angle 
on the surface (x= 0). Hence 

and the mean square fluctuation, averaged over the cor- 
relation area  S,,, = p:, i s  

< (66s)2)=Tk,/MzCz= (TpM/B2) ks. (35) 

We point out the fact that ((6e,)2) does not tend to zero 
on approach to the transition point [in the case of vol- 
ume transitions, the square of the averaged fluctuation 
over the correlation volume i s  proportional to 7, ',, 
where 7= (0, - T)/O,; see  Ref. 2,51461. According to 
(35) and (181, the fluctuations a r e  critical when 

( I k ,  (-$kt ( 4 ( T f l / B 2 )  k s k ~ ( a t - l )  (36) 

This condition i s  considerably more exacting (the fluc- 
tuitional range is broader) than the Levanyuk-Gin~burg 
condition formulated above (see51). Approach of k, to 
( k , p ~ / O ) " ~  diminishes the role of fluctuations, since 
for k,= (k ,pM/~) ' /~  the transition under investigation 
becomes transformed to a transition of the first kind 
(cf. Fig. 7a and b). 

6. CONCLUSION 

When x>z 8,  O(x) =3/x. As was to be expected: because The problem solved here is  similar to problems in 
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the calculation of domain structures during spin-orien- 
tation transitions (see the bibliography to Chapter I in 
the bookof Belov et al .  '). The specific characteristic 
of the present treatment is  the introduction of the sur-  
face energy, which makes the value of the direction of 
the magnetic moment at the boundary (the angle 0,) an 
additional parameter characterizing the state of the 
magnet. Apparently there a r e  not a t  present sufficient- 
ly definite experimental data with which to compare the 
results obtained here. The author hopes that the pre- 
sent publication will stimulate, one the one hand, in- 
vestigations of reorientational transitions on the basis 
of surface characteristics (for example, on the basis 
of reflection of light); and on the other, the development 
of methods of study of the surface that use the state 
diagram of magnets near reorientational transitions. 

')1t has been assumed (and this i s  important!) that the magnetic 
moment both on the surface and in the interior is parallel to 
the plane of the specimen surface. This means that the total 
anisotropy energy has the following structure: 

fv (8 ,  X )  -ki' sin' 8 cost %-kt" sin' 8-kz sinb+, k,'>O, (1') 
x is  the angle between the magnetic moment and the direction 
of the normal to the surface. If the surface energy also at- 
tains a minimum for x=O, then x(x)=O and fv(B)=fv(8.x=O), 
k,=kf*- ki*. 

2, We note a curious detail: if 8 ,  corresponds not 
to a minimum of the function fv(B) but to i t s  smallest  value 
(this i s  s o  in reorientation transitions), then dO/dx vanishes 
a t  a finite distance x, from the boundary: 

and this means that the interior of a specimen whose dimen- 
sion is  larger  than 2xm does not feel the surface at all. If 

'0, then%,=". 
' )~ t  is  not obligatory to detect narrowing of the hysteresis loop 
on the basis of the 8s=Bs(kl) relation. The surface energy 
shifts the lability point, i.e. changes the hysteresis loop 
O,=e,(kl). 
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The effect of giant spin splitting of excitonic states in semiconductors with magnetic impurities was first 
obse~ed  for the hexagonal crystal CdSe:Mn. A theoretical explanation is presented for those peculiarites of 
the effect which are connected with the anisotropy of the crystal. Comparison with experiment was used to 
determine the band-structure parameters A ,  = 46*3, A ,  = 137.t 1, and A ,  = 140.6+0.3 meV. It is shown 
that in CdSe:Mn, just as in cubic semiconductors, the exchange interaction with the magnetic impurities is 
ferromagnetic for the electrons of the conduction band and antiferromagnetic for the electrons of the valence 
band. The exchange constants are of the same order of magnitude as for the crystals CdTe:Mn, ZnTe:Mn, and 
ZnSe:Mn. 

PACS numbers: 71.35. + z, 71.70. - d 

INTRODUCTION 

The effects of giant spin splittings of electronic (and 
correspondingly excitonic) states in 11-VI semiconduc- 
tors with magnetic impurities or else in the solid solu- 
tions A ~ : M , B ~  (here M is a 3d ion) were recently ob- 
served and investigated inthe cubic crystals CdTe : ~n,'* 
ZnTe:Mn,4 ZnSe:Mn, and ZnSe:Fe.' A phenomenologi- 
cal theory of the effect was considered in Refs. 1, 2 ,  
and 4 on the basis of the concept of carrier-impurity 
exchange interaction. Values were obtained for the 
energies and for the probabilities of the transitions into 
the excitonic states. A microscopic theory of the car- 

rier-impurity exchange interaction was previously 
proposed6 for semiconductors with cubic symmetry, and 
the experimentally ~ b s e r v e d l - ~  differende between the 
signs of the constants of the exchange interaction of the 
conduction electrons I , ,  and the valence electrons I ,, 
with the 3d ions was explained. No such effects in non- 
cubic crystals were previously investigated either 
experimentally or  theoretically. 

We present here the results of an experimental inves- 
tigation of giant spin splittings of excitonic states in 
hexagonal CdSemn, a s  well a s  a theory that explains 
the observed effects. 
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