
 he following units are  used: ti/(2rngno)"2 for distances, 
ti /2gno for time, and n9I2 for the wave function, where m is 
the mass of the atom and no is the equilibrium density of the 
condensate. The constant g characterizes the interaction 
between the particles and is assumed to be small enough to 
make the coherence length 5 larger than the interatomic 
distances. 

2 ) ~ h e  function #, is not a solution of Eq. (I),  except a t  v = 0, 
inasmuch a s  in a medium that is  immobile a t  infinity a 
straight vortex, being the only perturbation of its ground 
state, is immobile (see below). 

3 ) ~ t  is defined a s  the line the circuit around which (around each 
of its elements) changes the phase by 2m(n =*I, *2,. . . ). In 
the immediate vicinity of such a line we have @ OC#,.  

4 ) ~ t  is possible to separate in the gradient of the phase @ the 
various contributions (of the flux, of another vortex, of a 
reflected vortex, of other elements of the considered vortex, 
etc.) and resolve the Magnus force into several forces (in- 
teraction with external flux, interaction with another vortex, 
interaction with the wall-image force, interaction with other 

elements of the same vortex-rectifying force acting on a 
bent vortex). 
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A phenomenological analysis is presented of resonant absorption of light by excitons with spatial dispersion 
taken into account. It is shown that the form of the absorption line contour and its characteristics change 
drastically when the damping constant goes through a certain critical value. Analytic formulas are obtained 
for the absorption coefficient, for the integral absorption, for 
and for the equivalent line width at damping-constant values 

PACS numbers: 71.35. + z, 78.20.Dj 

1. INTRODUCTION pendence on T in a wide tempera ture  interval.  In addi- 

Light absorption by excitons h a s  been the subject of a 
considerable number of e ~ p e r i m e n t a l " ~  ( see  also the  
re fe rences  in  these  papers )  and theoretical6-lo s tudies .  
It h a s  been establ ished that a change i n  the sample  
tempera ture  is accompanied by a change in the absorp-  
tion-line shape and the  line p a r a m e t e r s  such as the  
half-width, maximum of the line, and integral absorp-  
tion. One of the distinguishing fea tures  of the observed 
s p e c t r a  is the d e c r e a s e  of the integral absorption with 
temperature.  T h e r e  is still no complete theoret ical  
explanation of all the fea tures  of the absorption spec- 
tra, although it is clear that the  experimentally ob- 
se rved  changes are connected with the dependence of 
the phenomenological damping constant v on the t e m -  
pera ture  and on the frequency. ' The  role played by 
spat ial  dispersion i n  the d e c r e a s e  of the integral  ab-  
sorpt ion with decreas ing  tempera ture  was recently 
considered in Refs. 9 and 10. 

We repor t  h e r e  a detailed quantitative investigation 
of the dependence of the  absorption line shape and of 
the line p a r a m e t e r s  on v i n  a c r y s t a l  model i n  which 
spat ial  dispersion is taken into account. We confine 
ourselves h e r e  to a macroscopic solution of the  prob-  
l e m  and assume v t o  be  an independent variable;  th i s  
assumption is justified because v h a s  a monotonic d e -  

tion, to revea l  the role played in absorption by spat ial  
dispersion 'in p u r e  form," we assume v to be  constant 
o v e r  the  e n t i r e  range of f requencies  to interest to us. 
Effects  connected with the frequency dependence of v 
are discussed briefly at the end of the  article. 

2. ABSORPTION COEFFICIENT 

We consider  an isotropic  nongyrotropic crystal whose 
d ie lec t r ic  constant in  the vicinity of an isolated exciton 
absorption line can be  represen ted  in the  f o r m  

where c o  is the  contribution made to the dielectr ic  
constant by o ther  resonances,  # is the oscillator 
s trength,  w, is the natural  frequency of the mechanical 
exciton at K= 0, P=tiw,/m$c2, and m,* is the effective 
m a s s  of the exciton. Let  the c rys ta l  be  a plane-paral- 
lel plate  of thickness  d. At normal  incidence of the 
light on the  face  of the plate t h e r e  will  propagate inside 
the  plate ,  at a given frequency w, two waves with re- 
fract ive indices  2,=nl + i Ul and 2,=n, + iu , .  The 
complete fo rmula  f o r  the amplitude t ransmission coef- 
ficient of the plate, with allowance for  the  multiple re- 
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flections, i s  of the form1' 

where el =exp(i?i,k&), e, = exp(z%,kod), k, = w/c, R,, and 
T,, a re  the elements of the reflection and transmission 
matrices a t  each of the faces of the plate, while D is 
given by 

D-det ( 1- (RIIZell-RIIRlle,e,) -R l l e l (R l l e i+R~~et )  
-Rzier(Ritei+Rr&r) 1- (R,lR1aeies-Rdct') ) .  

The indices a and b pertain to the entrance and exit 
faces of the plate. The plate thickness d i s  assumed to 
be large enough to satisfy in the resonant-frequency 
region of interest to us  the condition kod >> u :,, where 
x,, is the smaller of the absorption coefficients u l  or  
x,. In this case the order of smallness of the terms 
in (2) i s  determined by the factors e and e,, which sat-  
isfy the inequalities ( e l  1 << 1 and \ e, 1. We need 
therefore retain in the numerator of (2) only the first 
two terms, and all the terms proportional to the pro- 
ducts e, and e, can be discarded, while in the denomina- 
tor  we can discard all terms proportional to the first  
powers of el and e,. Then D= 1 and formula (2) takes 
the form 

Formula (3) corresponds to the usual approximation of 
single passage of waves through a crystal (large ab- 
sorption) and to neglect of the interference phenomena. 
The transmission coefficients T,, in (3) can be calcu- 
lated with the aid of additional boundary conditions, a s  
was done in Ref. 11, but we shall not need the explicit 
forms of these coefficients. 

In practice we a re  interested in the absorption coef- 
ficient, which is expressed in terms of the logarithm 
of the transmission coefficient 

k (o) = (In1 9- 1 -') lkod (4) 

and whose frequency dependence corresponds to the 
contour of the absorption line. The absorption coef- 
ficient (4) differs from the usually defined one1, by a 
factor k,= w/c in the denominator, and is a dimension- 
less quantity in our case. When the absolute value of 
the logarithm of (3) is taken in the frequency regions 
where el and e, a re  of different order of magnitude, we 
can discard the smaller of the terms, e.g., T,T$,, 
and we obtain then 

The transmission coefficients T,, a t  individual bounda- 
r i e s  of the sample a re  of the order of unity, therefore 
the logarithmic term in (5) can be neglected compared 
with 2 ul. If u z  > x we must replace the subscript 1 
in (5) by 2. On the other hand if n, - x,, then a quanti- 
ty u(ln2)/kod is added to (51, but i t  can also be neg- 
lected compared with 2 x,. 

-- 

FIG. 1. The dependence of the absorption coefficient ( ~ n l y l - ~ ) /  
k& (solid curve) and of the doubled damping indices of the two 
waves in the medium (dashed) on the frequency [x  =(w-  w ~ ) / w ~ ~  
for three values of the damping constant (y=  v/wo): a) r =  0.5 
. b) y =4 .5 .  c) y = 8.5 We used for the calcu- 
lations the following parameters: kod = 20, Eo = 8.3, p = 0.013, 
m,*=0.9me, hwo=2.5524 eV. At these values of the parameters, 
the critical damping is  y o  = 0.548. 

Thus, the absorption coefficient is determined mainly 
by that term of (3) which describes the passage of the 
wave with the smaller of the quantities u1 or  n,, and 
we can put 

The foregoing is illustrated in Fig. 1, which shows 
the 2 x1(w) and 2x2(w) spectra obtained from the dis- 
persion relation with account taken of formula (1) and of 
the absorption coefficient (4) calculated with a computer 
on the basis of the exact formula (2) at kod = 20. 

In the plot we used the dimensionless frequency x 
= (w - w,)/w, and the damping constant y = v/wo. It i s  
seen from the figure that the relation (6) is satisfied 
with high accuracy in the vicinity of the resonant f re-  
quency even a t  y =  0.5 x lo'*. At larger y or  with in- 
creasing k,d, the formula (6) becomes more accurate. 
It follows therefore that in the large-thickness ap- 
proximation the investigation of the absorption in crys- 
tals reduced to an investigation of the frequency be- 
havior of the functions u1(x) and x,b) in the vicinity 
of the exciton resonance line. There have been many 
such investigations (see, e.g., Refs. 1 and 7), and in 
some of the results we must repeat ourselves here. 

3. REFRACTIVE INDICES WITH ALLOWANCE FOR 
DAMPING, AND THE ABSORPTION-LINE CONTOUR. 

The refractive indices of the normal waves in the 
considered crystal a re  determined from the dispersion 
relation = E(W, wfi/c), the solutions of which a r e  of 
the form 

(7 ) 
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where A =  (w: -w2 - iwv)/w;. We are interested in the 
behavior of the functions Z,,, in the vici&ty of the reso- 
nant frequency, and we can therefore put A =  -2x - iy. 
Changing over to the complex argument z = 2x/8 - c o  
+ iy/p, we obtain for the refractive indices the com- 
plex -variable function 

where qa = 4p/p. The two branches of this function de- 
termine the two refractive indices. When extracting 
the square root in (8) we consider, a s  usual, only that 
branch of the function W(z) whose imaginary part is pos- 
itive. The behavior of the functions 7i1(z) and S,k) must 
be investigated on the straight-line contour C shown by 
the solid line in Fig. 2. The contour C i s  parallel to 
the real z axis, with the distance between the contour C 
and the z axis equal to y/p. An interesting feature of 
the function (8) i s  the presence of a branch point z = iq 
in the upper half-plane of the variable z.  The contour 
encounters the branch point if y = yo = 2(~ ,3) ' /~ .  We call 
this quantity, a s  in Ref. 7, the critical damping. The 
behavior of the functions nl(z) and n2(z) changes radical- 
ly when y goes through the critical value. This singu- 
larity can be described in the following manner. 

We shall designate as  classical the refractive index 
whole limit a s  m,*- m is the quantity [co -p/(2x 
+ iy)]li2. The second branch of the function (8) will be 
assumed to be nonclassical. Then at a damping larger 
than critical the refractive index on one of the sheets 
of the Riemann surface of the double-valued function 
2 (z) i s  classical on the entire contour C, and the re- 
fractive index on the other sheet of the Riemann sur- 
face is nonclassical on the entire contour C. The clas- 
sical refractive index corresp~nds to the smaller of 
the absorption coefficients n,,(x) (Fig. lc). The 
xWn(x) curve is close to a Lorentz contour and coin- 
cides with the latter at ymy,. Thus, at y >yo the ab- 
sorption line takes the same form as  without allowance 
for spatial dispersion. 

If the inverse inequality holds, y < yo, the contour C 
passes below the branch point, the sheets of the Rie- 
mann surface intersect in this case, and the function (8) 
has a different behavior on the different ends of the 
contour C. On one sheet of the Riemann surface, the 
function E(z) is classical on the left part of the contour 
C and nonclassical on the right; the situation i s  re- 

FIG. 2. Integration contow in the plane of the variable z .  
The dashed line shows the branch cut. 

versed on the second sheet. In this case the smaller of 
the absorption coefficient x ,,,(x) also corresponds to 
the classical branch of the function Ek), and n,,(x) on 
the opposite ends of the contour C lies on different 
sheets of the Riemann surface. To obtain the absorp- 
tion line in this case we must draw a cut through the 
Riemann surface along the line drawn from the branch 
point on which the absorption coefficients are equal, 
x ,k)  = x2(x), and to determine k(x) at the point of the 
intersection of the contour C and the branch cut it is 
necessary to go over from one sheet of the Riemann 
surface to the other. The absorption line to the left and 
to the right of the branch cut will then be determined by 
the different branches of the function E (z) (see Fig. la, 
lb). It i s  shown in Appendix A that the branch cut is 
determined by the formula 

It takes the form of a parabola (shown dashed in Fig. 2). 
The absorption-line contour has in this case an asym- 
metrical *trapezoidalw form (Fig. la),  where the right- 
hand vertex of the *trapezoidw coincides in position with 
the point of intersection of the contour C and the branch 
cut. The left-hand vertex of the *trapezoidA corre- 
sponds approximately to the frequency x =  0co/2. At 
y = 0 the distance, along the frequency axis, between 
the vertices of the trapezoid coincides with the longi- 
tudinal-transverse splitting. Such an absorption-line 
contour was observed in a number of s t ~ d i e s . " ~  De- 
viation from this contour at low temperatures (when 
y <yo) occurs when thin crystals were used in the ex- 
periment. The wave-interference effects are then sig- 
nificant and the influence of the boundary condition 
should manifest itself. 

4. INTEGRAL ABSORPTION COEFFICIENT 

To find the integral absorption, it is necessary to in- 
tegrate the absorption coefficient k ( ~ )  with respect to 
the frequencies. We shall integrate with respect to the 
dimensionless frequency x .  The resultant value of the 
integral absorption coefficient xdiffers  from the or- 
dinary onela by a factor o;/c. By definition we have 

where n,,(x) is  the classical refractive index. 

Let y > yo. Then in (9) the integration contour C can 
be deformed into a semicircle C, of radius R- m, 

drawn in the upper half-plane of the variable z (Fig. 2). 
The contributions made to the integral by the arcs lo- 
cated on the ends of the semicircle and contained be- 
tween the contour C and the real z axis are infinitely 
small and can be neglected. We make in (9) the change 
of variable z = R exp irp, and assume that R -- a, so that 
in the integrand we can expand in terms of the small 
parameter 1/R. We then obtain 
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It is seen therefore that when the damping exceeds the 
critical value the integral absorption is independent of 
y and is proportional to the oscillator strength. 

When the inverse inequality holds, y < y ,, the inte- 
grand in (9) has a discontinuity at the point of intersec- 
tion of the contour C with the branch cut (the point 2,). 
To simplify the calculations we make the integrand 
continuous, closing the integration contour by the lines 
C, and C, along the edges of the cut and by the infinite- 
ly small circle C, around the branch point. The inte- 
gral  over the closed contour is then equal to  the inte- 
gral over the contour C,. Recognizing that the inte- 
gral over the contour C, tends to zero a s  p- 0, the 
sought integral is equal to 

FIG. 3. Plots of the integral absorption coefficient (a), of the 
maximum value of the absorption coefficient [dashed-exact 
value, solid-calculated with the aid of (17) and (20)1, and c) 
of the equivalent line width (solid curve) and the line half - 
width (dashed) against the damping constant. 

aX/ay is continuous in the entire range of variation of 
the damping constant, including the point y = yo. Fig- 
ure 3a shows a plot of N y )  calculated from formulas 
(10) and (14). If i t  is recognized that the parameter y 
depends linearly on temperature in a wide range of i t s  
values, a plot was obtained in experi- 
ment. 

and reduces to calculation of the integrals along the 
edges of the cut. 

We make the changes of variables t = [z + (z2 + q2)1'2]/ 
2 and t = [z - (.z2 +q2)112]/2 in the first  and second inte- 
grals of ( l l ) ,  respectively. The two integrals in (11) 
can then be combined into one: 5. MAXIMUM VALUE OF THE ABSORPTION 

COEFFICIENT 

The exact value of the frequency x = x,,, on which 
the absorption is maximal, is difficult to  calculate 
analytically. From the numerical calculations (see 
Fig. 1) i t  is seen, however, that at any damping pa- 
rameter the maximum of the absorption line is located 
on the right of the frequency x =  0. To simplify the 
calculations we obtain the value of the absorption coef- 
ficient at the point x =  Bc0/2 located between the points 
x = 0 and x =x,,. In the case y > yo, the classical r e  - 
fractive index at this frequency is 

with integration limits on the lower ends of the con- 
tours C, and C,: 

The integral in (12) can be easily calculated: 

from which we get 

Substituting the integration limits in (13) and separating 
the imaginary part  (see Appendix B), we obtain 

In the asymptotic case y >> yo, the maximum value of 
the absorption coefficient can be obtained by carrying 
out the expansion in (16). In this case 

3-P 7 
e.2 (arc. (G-,,, #is 

+ 7 (7,'-71)'h 
~ o l  ) .  

At y << yo, formula (14) can be written in the form 

i.e., k,, is inversely proportional to y, as in the case 
of a Lorentzian absorption line. 

When the opposite inequality y <yo is satisfied, the 
refractive index with the smaller imaginary part  is ob- 

Thus, a t  small y the integral absorption depends li- 
nearly on y and tends to zero a t  y - 0. The derivative 
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tained from the formula 

Hence 

If y << yo, we can carry out the expansion in (19) and ob- 
tain 

i.e., in the region of small y the maximum value of the 
absorption coefficient depends linearly on the damping 
constant. At y =%, the maximum of the absorption 
coefficient takes on the largest value, equal to 

This formula describes the absorption coefficient at 
the branch point and coincides with the exact value of 
the maximum of the absorption coefficient. 

A plot of the maximum absorption against y, calcu- 
lated from formulas (17) and (20), is shown in Fig. 3b 
in the form of a solid curve. The computer-calculated 
plot for the exact value of the maximum of the absorp- 
tion coefficient is shown dashed. The e r r o r  in the de- 
termination of the maximum of the absorption coeffi- 
cient from the above formulas i s  -10% and is approxi- 
mately the same for all y, with the exception of yz yo. 

6. LINE WIDTH 

It is difficult to  calculate analytically the line half - 
width in this case. We therefore take here the line 
width to be the width of the equivalent rectangular con- 
tour, whose a rea  equals the areaof the considered con- 
tour and whose maximum absorption i s  equal to the 
height of this contour. For example, for a Lorentz 
contour, the equivalent line width differs from the 
half-width by a factor n/2. In each of the considered 
cases the line width i s  then equal to the ratio of the in- 
tegral absorption to the maximum absorption coeffi- 
cient. We writedown below the formulas only for the 
limiting cases. At y>> yo the equivalent line width is 

and at y<<yo the formula for  r is of the form 

Figure 3c shows the curves for the equivalent line 
width, calculated a s  a ratio of the integral absorption 
[formulas (10) and (14)] to the maximum absorption 
[formulas (17) and (20)], and also for the line half- 
width calculated with a computer using the exact for- 
mula (2). It is seen from the figure that for all y the 
two quantities differ by approximately the same factor, 

- 1.5. It is therefore possible in practice to convert 
from the equivalent width to  the half-width by dividing 
the latter by this factor. 

7. DISCUSSION OF RESULTS 

We have investigated the shape and parameters of the 
absorption-line contour in a medium with spatial dis- 
persion. We see that the spatial dispersion exerts a 
strong influence on the integral absorption, on the line 
width, and on the line maximum as functions of the 
damping parameter. These curves change shape ra- 
dically a t  the point y =yo, which depends both on the 
effective mass of the exciton and on the oscillator 
strength. Analytic formulas for  the indicated depen- 
dences were obtained also in Ref. 8, but did not con- 
tain the dependence on the parameter mt that charac- 
terizes the spatial dispersion, and seem therefore in- 
correct to  us. The characteristic value obtained in 
Ref. 8 for the damping constant, starting with which 
the integral absorption begins to decrease, differs 
from yo by two orders of magnitude. A discrepancy of 
the same order with the results of Ref. 8 was found by 
numerical calculations in Ref. 10. This is apparently 
the reason why that theory led previously to a disagree- 
ment with the experimental data of Ref. 3. 

In the reasoning above we did not take into account 
the frequency dependence of y, which, as noted in Ref. 
1, can substantially influence both the absorption-line 
shape and the integral absorption. However, the pre- 
sence of such a dependence can be easily revealed by 
comparing the experimental and theoretical absorption 
curves. For example, in the region y <yo the absorp- 
tion coefficient at each frequency depends approximate- 
ly linearly on y. Therefore in this case the absorption- 
line contour is represented in the form of a product of 
the theoretical contour by the function y(w). Such a 
simple dependence makes i t  possible to determine di- 
rectly the y(o) dependence from a comparison of the 
experimental contour with the theoretical one. 

APPENDIX A 
DETERMINATION, OF THE GEOMETRIC LOCUS OF 
THE Z-PLANE POINTS AT WHICH THE IMAGINARY 
PARTS OF THE REFRACTIVE INDICES ARE EQUAL 

The refractive indices of the two waves in the medi- 
um (7) can be expressed in the form 

n,+ix ,=[eo/2+x/b+u+i  ( ( r 2 p f u )  1'". (A. 1) 

n,+i~~=[~~/2+x/$-u+i(y/2$-v) I"', (A. 2) 

where 

We equate the imaginary parts of the refractive in- 
dices, which can be calculated by the general rules 
from (A. 1) and (A. 2): 

{[ (eo/2+z1p+u)'+ ( y / 2 p + ~ ) ~ ] " ~ -  ( E , / ~ + x J ~ + ~ ) )  112 

-{[  (eo12+z18-u)'+ ( y l z p - v ) V -  ( E ~ I ~ + X / ~ - U ) ) ~ .  (A. 4) 
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Squaring both halves of (A. 4) and performing simple 
calculations we obtain the relation that must be satis- 
fied by the quantities u and v :  

(A. 5) 

Substituting here the expressions for u and v calculated 
from (A. 31, we get an equation for x :  

(A. 6) 
whose solution is 

z=112(eo~+pleo-~'/4e4). (A. 7) 

Changing from x to the variable z ,  we obtain an equa- 
tion that specifies parametrically the sought contour r: 

z= (70'-r2) 14S'eo+ryl~. (A. 8) 

The parameter in this equation is the quantity y. The 
relation n1 =us is valid at each point of the contour I' 
in the parameter range 0 <y <yo.  

APPENDIX B 
CALCULATION OF THE INTEGRAL ABSORPTION 
COEFFICIENT 

The refractive indices El and %, and the variables t, 
and t, on the contours C, and C, are  connected by the 
relations 

With the aid of (B. 1) we can obtain the following two 
identities: 

Substituting in (13) the integration limits and changing 
from t ,  and t, to the variables 2, and E,, we obtain 

Substituting in (B. 3) the formulas (B. 2) and separating 
the imaginary part, we obtain ultimately 

The expression for the derivative of r w i t h  respect to 
y is 
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